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Abstract: We study the dynamical behavior of a model commonly used to describe the infection of
mice due to hantavirus (and, therefore, its possibility of propagation into human populations) when
a parameter is changed in time. In particular, we study the situation when the ecological conditions
(e.g., climate benignity, food availability, and so on) change periodically in time. We show that the density
of infected mice increases abruptly as the parameter crosses a critical value. We correlate such a situation
with the observed sudden outbreaks of hantavirus. Finally, we discuss the possibility of preventing a
hantavirus epidemic.
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1. Introduction

The mouse colilargo (Oligoryzomis longicaudatus), unlike the other group of rodents present in South
America since the arrival of Europeans, does not hibernate. Thus, it devotes all its leisure time to the
intensive proliferation of its species. The colilargo is indicated as a carrier of the Hanta “Andes” virus, the
strain of hantavirus that is found in the Andean–Patagonian zone. Numerous observations [1–3] carried
out in several areas have shown a marked increase in the population of this rodent when there are positive
ecological conditions (e.g., climate benignity and increased food availability). In this case, population
explosions of these so-called “rats” may occur. The population of rodents increases notoriously because
these sub-species respond quickly to the supply of food and to benevolent climate conditions. In some
cases, the population density of colilargo (with normal values of 10 to 100 individuals per hectare) can rise
to about 1000 to 1500 individuals per hectare [4,5]. This overpopulation generates stress among the mice,
due to agglomeration and competition for food, which makes them more aggressive, generating many
fights with bite wounds, which increases the propagation of the hantavirus. This behavior has been cited
as the reason explaining the significant correlation between the index of abundance and the number of
positive animals detected. The proportion of seropositivity can increase from 5% up to 10% of the total
population of the mice [5]. High population densities also lead them to propagate outwards in space,
looking for food or just better living conditions. Different types of rodents transmit the hantavirus in the
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different geographic areas of the world, and all must be considered potentially dangerous. Hantavirus,
although with a low probability of infection, is not unimpressive in terms of its mortality. The mortality
rate for humans is around 40% and it has not been possible to obtain a successful vaccine for this disease
thus far [5]. Therefore, a good knowledge on the dynamics of the colilargo population could help to predict
changes in the risks of human hantavirus infection and generate prevention policies. A mathematical
model has already been proposed to analyze the propagation of hantavirus [6,7]. The model was based on
the population dynamics of the mice and studied the evolution of the populations of healthy and infected
mice. in [6], a study of spatial effects through the diffusion of mice (i.e., diffusion mainly characterized
their movement through space) was carried out; additionally, a random variation of a parameter was
included. In [8], the authors showed that the inclusion of the movement of the mice with respect to space
(i.e., the diffusion term) affected additional features of the simulation in a physically understandable
manner, with higher diffusion constants leading to greater agreement with the mean field results. Here,
we show, instead, that diffusion is not necessary in order to explain a sudden increase in the density of
infected mice and, as a consequence, the appearance of an epidemic of hantavirus. As the influence of the
environmental conditions play a role in the evolution of the population, both at the seasonal level and at
the level of very long cycles, we propose a model taking into account a variable parameter to analyze the
population dynamics of the colilargo mice. We analyze the dynamical solutions and we show how the
number of infected mice increases abruptly when a threshold of the control parameter is crossed. Such an
increase may generate a large expansion in the transmission of the disease, even without the existence
of diffusion.

2. Model and Results

If we take into account only the temporal evolution of the susceptible Ms and infected Mi mice, the
corresponding differential equations (as introduced in [6,7]) are:{

dMs
dt = (b − c)Ms + bMi − (a + 1

K )Ms Mi − 1
K M2

s
dMi
dt = −cMi + (a − 1

K )Ms Mi − 1
K M2

i

, (1)

where the parameters b and c are the natural rates of birth and death of the susceptible and infected mice,
respectively; a is the infection rate of the susceptible mice that become infected due to an encounter with
an infected mouse; and the parameter K, in both equations, takes into account the limitations in the process
of population growth due to competition for shared resources, which called the carrying capacity and is
defined, for each biological species, as the maximum population size of the species that the environment
can sustain indefinitely, in accordance with their necessities. It is well-known that the infection is chronic:
Infected mice do not die of it, and they do not lose their infectiousness (probably for their whole life).
Therefore, the rate c is the same for both categories of mice. It is worthwhile to note that all mice are
born susceptible at a rate proportional to the total number of mice, since all mice contribute equally to
procreation. Even if these equations allow for a simple interpretation of each term, it is convenient to write
them in terms of the total number of mice M = Ms + Mi and the infected mice Mi. By just adding the two
differential equations above and replacing Ms in terms of M and Mi, we get:{

dM
dt = (b − c)M − 1

K M2 = F(M, Mi)
dMi
dt = −cMi + (a − 1

K )MMi − aM2
i = G(M, Mi)

. (2)

If the variable M is independent of Mi, then it is trivial to find the stationary solutions and
their stability.
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The total number of mice takes only two steady-state values:

M = 0

and M = K(b − c).

The first one indicates that such a type of mouse does not exist in the region and the second one is
proportional to the difference between birth and death rates, where the constant of proportionality is the
carrying capacity. In a phase space portrait, the two straight lines corresponding to the possible values of
M are two of the nullclines (zero-growth isoclines) of the dynamical system. The equation corresponding
to the infected mice immediately gives the following nullclines:

Mi = 0, and

Mi = (a − 1
K
)M − c.

The four nullclines are represented in Figure 1 in the space of Mi as a function of M. Their intersections
are the fixed points of the system:

(M, Mi)1 = (0, 0)

(M, Mi)2 = (0,
−c
a
)

(M, Mi)3 = (K(b − c), 0)

(M, Mi)4 = (K(b − c), K(b − c)− b
a
)

.

!
i

!
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Figure 1. Nullclines in phase space. Their intersection defines the four fixed points of the system. The arrows
indicate the stable and unstable manifold corresponding to each fixed point. The parameters were chosen
such that the fixed point with a positive number of infected mice is stable. The fixed points (0, 0) and
[K(b − c), 0] are both saddle points.

The first steady-state solution is the trivial one, in which there are no mice in the region of interest.
The second steady-state solution, (M, Mi)2 = (0, −c

a ), is not compatible with the problem as the number of
infected mice is negative. The third and the fourth solutions are interesting solutions. The third solution
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corresponds to a situation in which all mice are healthy, and the number of infected mice vanishes. For the
solution (M, Mi)4 = (K(b − c), K(b − c)− b

a ) susceptible and infected mice co-exist, with Ms = b
a .

A very simple linear stability analysis gives the region in parameter space where one of the solutions
will prevail. The Jacobian Γ of the system is:

Γ =

[
∂MF(M, Mi) ∂Mi F(M, Mi)

∂MG(M, Mi) ∂Mi G(M, Mi)

]
=

[
(b − c)− 2 1

K M 0
(a − 1

K )M −c + (a − 1
K )M − 2aMi

]
.

Then, the eigenvalues of Γ corresponding to the (0, 0) solution are:

λ1 = b − c

and λ2 = −c
.

Thus, as expected, the trivial solution is stable if the death rate is bigger than the birth rate, which
causes the extinction of the mice. If the birth rate is greater than the death rate, the solution is clearly a
saddle point. The eigenvalues for the (K(b − c), 0) solution are:

λ1 = −(b − c)

and λ2 = Ka(b − c)− b
.

This solution will be stable if the birth rate b remains in the range:

c < b < c/(1 − (1/Ka)).

For values of the Ka product greater than one, there exists a range of the birth rates for which the
solution with all mice healthy is stable. It is important to notice that the upper limit depends on the value
of K, and that the range of stability is reduced for large values of K. Outside the range of stability, the
solution becomes a saddle point. Finally, the stationary solution (K(b − c), K(b − c)− b

a ), which predicts
the co-existence of healthy and infected mice, is stable if b > c/(1 − (1/Ka)). At a fixed value of the birth
rate b > c, there exists a critical value of K at which there is an exchange of stability between the last two
steady-state solutions. At that point, we have a transcritical bifurcation, leading to the appearance of
infected mice. The critical value of the carrying capacity Kc is given by:

Kc = b/[a(b − c)].

We show the two relevant stationary solutions as a function of K for a birth rate bigger than the death
rate in Figure 2. The bifurcation happens at the exact point where the number of infected mice becomes
positive. Above the bifurcation point, the number of infected mice is proportional to the carrying capacity.
The transcritical bifurcation is a smooth transformation and, therefore, it predicts a relatively slow increase
in the number of infected mice as the carrying capacity K is swept across the critical value. As stated
above, the mouse colilargo does not hibernate; thus, we can consider the birth rate, as well as the death
rate, to be almost constant in time. We will assume, also, that the the rate of infection per mouse (a) is
constant. If the capacity K is suddenly increased from an initial value Kinit below the threshold to a final
value K f in above the threshold, the total number of mice increases relatively fast, from the stationary
solution corresponding to Kinit towards the steady-state solution corresponding to the final value of K.
The number of infected mice will increase from 0 to the steady-state value with a well-marked lethargy,
as can be seen in Figure 3. The bifurcation delay is a well-known effect each time a parameter is swept
across a bifurcation point [9,10], which is a consequence of the critical slowing down at the bifurcation
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point [11]. The delay time measured when the parameter changes discontinuously corresponds to the
minimum delay. As long as the speed at which the parameter changes decreases, the delay time increases.

0
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!
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Figure 2. Steady-state values of susceptible mice (Ms) and infected mice (Mi) as a function of the carrying
capacity K. Note the transcritical bifurcation at K = Kc. The infected mice stationary solution switches
from 0 to a linear increase with K, while the number of susceptible mice switches from a linear growth
with K to become constant. Therefore, after the bifurcation, the increase in the carrying capacity has, as a
consequence, an increase of infected mice. The arrows in the figure show the evolution of both populations
as K is increased.

TIME 

M KMi

Figure 3. The total number of mice (M), infected mice (Mi), and carrying capacity K as a function of time
t for a = 0.8, b = 5, and c = 1. The carrying capacity changes discontinuosly from K = 1 (below the
threshold) to K = 2 (above the threshold) at t = 0. The total number of mice grows from M = 4 to M = 8
in a short time after t = 0. The number of infected mice, instead, begins to grow from a vanishing value
after a time t = 20 and, then, grows until the stationary value Mi = 1.75. This graph presents evidence for a
delay in the bifurcation of Mi. In fact, Mi begins to grow much later than the time at which M and K arrive
at their steady-state values.
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Here, we analyze the behavior of the dynamical system when the the carrying capacity K changes
relatively slowly, compared to the characteristic time of the variables. We introduce the following temporal
variation of the carrying capacity:

K = K0(1 + mcos(ωt)). (3)

Even if a periodic and smooth modulation of the carrying capacity does not strictly adhere to reality,
it allows us to understand the origins of the different possible dynamical behaviors and, therefore, to
correlate them to the real observations. In order to make the simulation realistic, we would need to
introduce a noise term on the temporal evolution of the carrying capacity, because it is affected by several
external factors which change from season to season. However, it is not the objective of this manuscript to
compare numerical results with quantitative data, but, instead, to understand the qualitative processes
in the dynamics of mouse populations. We analyze three different situations corresponding to different
values of K0 and m. In the first one, K0 is smaller than Kc and m is such that the maximum value of K is
still smaller than Kc. In the second one, K0 is greater than Kc and the minimum value of K is still larger
than Kc. Finally, the third is a situation in which K is swept across the critical value. In the first case, the
number of healthy mice is modulated while the number of infected mice vanishes independently of the
initial condition. During the whole modulation period, the solution with no infected mice remains stable.
In this case, a seed of infected mice will vanish independently of the value of K. In the second case, there is
always a positive number of infected mice, which becomes modulated as well as the total population of
mice. The modulation follows the modulation of the carrying capacity with a different phase. The last case
is the most interesting one, because the carrying capacity is swept across the bifurcation point and the
system has to switch between the two solutions (which are alternating their stabilities). In this paper, we
analyze the behavior of the number of mice when the frequency of the modulated parameter is smaller
than the response rate of the variables. It is worthwhile to note that the frequency of the modulation,
together with the amplitude of the modulation, will define the average speed at which the parameter is
changed; thus, they will determine the delay time in the bifurcation. The most noticeable result consists
of the fact that the number of infected mice will not increase continuously from 0 to a value that will
follow the modulation. In fact, by simple observation of Figure 4, it is clear that, at a certain value of K, the
number of infected mice will grow discontinuously. This behavior is more appropriate of a saddle-type
bifurcation than a transcritical bifurcation. As a consequence, the number of susceptible mice Ms decreases
abruptly while, at the same time, the number of infected mice Mi increases. It is evident that a graph of Mi
as a function of K will show a bistable behavior as K swept across the bifurcation up and down (Figure 5).
It is important to remark that the bistable behavior is a dynamical one. If the sweeping is stopped at any
moment, the system will evolve towards the corresponding stable steady-state solution.
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Figure 4. number of infected mice (Mi), susceptible mice (Ms) and carrying capacity K as a function of
time for a = 0.8, b = 5, c=1, K0 = 3, m= 0.8 and ω = .1571. The behavior of the system is periodic in time.
This graph puts in evidence a discontinuous increase in the number of infected mice and decrease in
the number of susceptible mice when K is increased.
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capacity oscillates around the Kc value then the variables Mi and Ms do not follow adiabatically the176

change in K. The delayed bifurcation generates an almost discontinuous increase of the infected mice177

and therefore this effect can be understood as the origin of an outbreak of hanta virus infection among178

the mice with the consequence of an epidemic among other living mammals and in particular humans179

beings. On the other hand the delayed in the bifurcation justify also that the infection disappears for180

long period of time even if the carrying capacity is already above the critical value Kc but a further181

increase in K will trigger a almost immediate epidemic in the population of mice. Furthermore it is182

necessary to reduce K below the critical value Kc to be able to eradicate the disease again. Finally, we183

reaffirm the importance of the non intuitive concept that determines that the slow variation of some184

Figure 4. Number of infected mice (Mi), susceptible mice (Ms), and carrying capacity K as a function of
time for a = 0.8, b = 5, c = 1, K0 = 3, m = 0.8, and ω = 0.1571. The behavior of the system is periodic in
time. This graph presents evidence of a discontinuous increase in the number of infected mice and decrease
in the number of susceptible mice when K is increased.

Figure 5. Infected mice (Mi) as a function of carrying capacity K corresponding to the parameter values
used for Figure 4. The number of infected mice grows very fast as K increases, while it decreases slowly as
K decreases. This graph presents evidence for a delay in the bifurcation of Mi. In fact, Mi begins to grow
when K has already overcome the critical value corresponding to the transcritical bifurcation.
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It is important to notice that this type of dynamical behavior is general and is a simple consequence of
the critical slowing down at the bifurcation point. It happens by modulating every parameter and appears
in a very large range of frequencies and amplitudes of the modulation, because it is intrinsically associated
to the existence of a bifurcation point. The behavior will be different only if the modulation period is
smaller than the decay time of the variable. A simple analysis of Figure 4 allows us to conclude that, in
this simple model, a sudden increase in the infected mice is a consequence of the sweeping of a control
parameter across a bifurcation point. Thus, the variable Mi does not adiabatically follow the change of
the parameter, even if the rate of change of the parameter is slower than the response rate of the variable.
It is worthwhile to notice that, once the number of infected mice switches on, the number of susceptible
mice remains constant and the dynamical system adiabatically follows the increase of the capacity by
increasing the number of infected mice. During the time that K is decreasing, the system follows almost
adiabatically the evolution of the parameter, with a very small delay. The consequence of this delay is that
the number of infected mice vanishes at values of K slightly smaller than the one corresponding to the
bifurcation point.

3. Discussion

The results shown above suggest that the capacity K may control the appearance and disappearance
of hantavirus infection in rats. In fact, if K is always below Kc, only susceptible mice exist. If just a few
mice get infected, this perturbation will decay faster towards the situation where infected mice vanish. If
K is always above the critical value, then infected mice will always exist. If the capacity oscillates around
the Kc value, then the variables Mi and Ms do not adiabatically follow the change in K. The delayed
bifurcation generates an almost discontinuous increase of the infected mice and, therefore, this effect can
be understood as the origin of an outbreak of hantavirus infection among the mice with the consequence of
an epidemic among other living mammals and, in particular, humans beings. On the other hand, the delay
in the bifurcation justifies the infection disappearing for long periods of time, even if the carrying capacity
is already above the critical value Kc; however, a further increase in K will trigger a almost immediate
epidemic in the population of mice. Furthermore, it is necessary to reduce K below the critical value Kc in
order to be able to eradicate the disease again. Finally, we re-affirm the importance of the non-intuitive
concept that slow variations of some ecological parameters can trigger an outbreak of hantavirus infection.
This concept should be taken into account in the development of public health policies.

4. Conclusions

In conclusion, we propose that a typical ecological model representing the temporal evolution of
mouse population densities can explain several aspects of the propagation of hantavirus. A relatively fast
variation of the parameters controlling the carrier capacity K, or of any of the parameters of the system, will
produce continuous variations in their densities and a continuous, but predictable, increase in infection.
However, a changing parameter which varies much slower may cause a much faster increase in the
density of infected mice, generating an epidemic of hantavirus in mice. The ideal situation is represented
by the situation in which the environmental conditions maintain the system below the threshold of the
transcritical bifurcation. In this situation, the density of infected mice can not grow and it will always
decay to a vanishing quantity. In this paper, we studied the effects of a slow variation of the environmental
conditions for the mice. As a future work, it will be necessary to take into account the situations in which
the living conditions change very quickly, compared to the response time of the system, and also the
transmission of hantavirus among human beings.
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