International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 8; Issue 04 (A); April 2019; Page No.18113-18124 DOI: http://dx.doi.org/10.24327/ijcar.2019.18124.3455

PREDICTING PROPERTIES OF SPECIES DERIVED FROM N-(1H-INDOL-3-YLMETHYL)-N,N-DIMETHYLAMINE, GRAMINE, A INDOL ALKALOID

Maximiliano A. Iramain, José Ruiz Hidalgo and Silvia Antonia Brandán*

Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina

ARTICLE INFO	A B S T R A C T
<i>Article History:</i> Received 6 th January, 2019 Received in revised form 15 th February, 2019 Accepted 12 th March, 2019 Published online 28 th April, 2019	Hybrid B3LYP/6-31G* calculations were employed to study the structural, electronic, topological and vibrational properties of free base, cationic and hydrochloride species of indol alkaloid, N-(1H-indol-3-ylmethyl)-N,N-dimethylamine known as gramine. The experimental available IR, Raman, 1H- and 13C-NMR spectra were compared with the corresponding predicted showing reasonable concordance among them. In solution, the properties were studies with the polarized continuum (PCM) and the universal solvation
<i>Key words:</i> N-(1H-indol-3-ylmethyl)-N,N-dimethylamine, structural properties, force fields, vibrational analysis, DFT calculations.	model. The cationic species of gramine presents a corrected solvation energy of -261.58 kJ/mol slightly higher than the corresponding to cocaine (-255.24 kJ/mol). NBO and AIM studies have evidenced higher stabilities for free base and hydrochloride species while the comparisons of N-CH3 distances obtained for three species of gramine with similar compounds have evidenced that the hydrochloride species of gramine in solution presents practically the same value than the corresponding species of heroin. The frontier orbitals studies suggest higher reactivities for the hydrochloride species in both media due to its low gap values while on the contrary are observed for the cationic species in both media. Furthermore, the cationic species of gramine shows global nucleophilicity and electrophilicity indexes closer to cocaine. Probably, these results could justify why the corrected solvation energy value observed for the 75, 78 and 81 normal vibration modes of free base, cationic and hydrochloride species are reported for first time.

Copyright©2019 Maximiliano A. Iramain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Ethylamine derivatives are reactive of interest in organic chemistry and in the pharmacological industries because they play in important role in the preparation of new drugs with a wide gamma of effects on animal and humans [1-4]. For instance, the 4-bromo-2,5-dimethoxyphenethylamine derivative, known as 2C-B, is a phenylethylamine derivative identified by numerous biological studies as an abuse drug, as tropane alkaloids [5-15]. Above studies on properties of some alkaloids have evidenced a great structural difference existent between the free base, cationic and hydrochloride species of 2C-B with those corresponding to scopolamine, morphine, heroin, cocaine and tropane alkaloids where clearly in the hydrochloride species of 2C-B the Cl atom is linked to a N-H bond of a NH_3^+ group while in the tropane alkaloids and in the antihistaminic cyclizine the Cl atom is linked to a N-H bond of a quaternary amine group containing among other a N-CH₃ group [5-15].

Corresponding author: Silvia Antonia Brandán Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina Also, in other antihistaminic species as promethazine and diphenhydramine, the two N-CH₃ groups of their three species are linked to side chains instead different rings as in tropane alkaloids [12-14]. In this work, we have studied the properties of the free base, cationic and hydrochloride species of an indol alkaloid. specifically N-(1H-indol-3-ylmethyl)-N,Ndimethylamine, named gramine, in whose structures there are two N-CH₃ groups linked to a quaternary N atom, as in promethazine and diphenhydramine. Hence, due to the presence of those groups in their structures are expected that three species of that derivative present similar properties to the alkaloids or probably to the antihistaminic agents. Here, the clear objectives of this work are, first, to optimize structures of gramine in gas phase and in aqueous solution by using the hybrid B3LYP/6-31G method [16,17], second, to study the structural, electronic and topological properties by using the same level of theory and after that, to predict the infrared and Raman spectra of gramine in order to compare with the corresponding experimental available [18]. Here, the complete vibrational assignments for the three species of gramine will be performed with the scaled quantum mechanical force field (SQMFF) methodology and the Molvib program [19-21]. Additionally, the reactivities and behaviours of three species of gramine will be predicted by using the frontier orbitals and equations previously reported [22-26]. All properties will be compared with those published for the scopolamine, morphine, heroin, cocaine and tropane alkaloids [5-11], with antihistaminic agents as cyclizine, promethazine and diphenhydramine [12-14] and with the properties recently published for the three species of 2C-B [15]. Here, it is expected to find some correlations among the properties of these different species that could probably explain the mechanisms of action of these different species with similar biological activities. Furthermore, the predicted ¹H- and ¹³C-NMR and Ultraviolet-visible spectra of the three species of gramine will be compared with the corresponding experimental ones.

Mechanical Quantum Calculations

The modelled of free base, cationic and hydrochloride structures of gramine was carried out with the GaussView program [27] while their optimizations were performed in gas phase and in aqueous solution with the Revision A.02 of Gaussian program [28]. Here, the solvent effects were considered with the integral equation formalism variant polarised continuum method (IEFPCM) while the universal solvation model was used to predict the solvation energies of those three species [29-31]. For all calculations, the hybrid B3LYP/6-31G* method [16,17] was employed because the properties predicted for the three species of gramine were compared with those reported for scopolamine, morphine, heroin, cocaine and tropane, cyclizine, promethazine, diphenhydramine and 2C-B with the same method [25,26]. The predicted solvation energies for the three species were corrected by zero point vibrational energy (ZPVE) while the Moldraw was used to calculate the volumes [32]. The free base, cationic and hydrocloride structures of gramine are shown in **Figure 1** together with the atoms labelling.

Figure 1. Theoretical molecular structures of free base, cationic and hydrocloride species of N-(1H-indol-3-ylmethyl)-N,N-dimethylamine and atoms labeling.

Structural, electronic and topological properties were studied by using NBO and AIM2000 programs [33-35] and Merz-Kollman (MK) charges [36] while the frontier orbitals and global descriptors were used in the prediction of reactivities and behaviours of three species in both media [22-26,37,38]. Transferable scaling factors and the normal internal coordinates of three species were used to compute the harmonic force fields and force constants with the scaled quantum mechanical force field (SQMFF) methodology and the Molvib program [19-21]. The vibrational assignments of bands observed in the infrared and Raman spectra to the normal vibration modes were performed considering potential energy distribution (PED) contributions major or equal to 10%. To a better correlation between the experimental and predicted Raman spectra, the theoretical spectra expressed in activities were transformed to intensities with known equations [39,40]. The ¹H and ¹³C chemical shifts of three species of gramine were predicted with the Gauge-Independent Atomic Orbital (GIAO) method [41] taking as reference to Trimethylsilane (TMS). In addition, the electronic spectra of three species of gramine were also predicted with Timedependent DFT calculations (TD-DFT) at the same level of theory and the Gaussian 09 program [28]. All predicted spectra were compared with the corresponding experimental ones.

RESULTS AND DISCUSSION

Studies of Three Species in both Media

In Table 1 are presented calculated total uncorrected and corrected by zero point vibrational energy (ZPVE) energies, dipole moments and volumes (V) of three species of gramine in gas phase and in aqueous solution by using the B3LYP/6-31G* method.

Table 1 Calculated total energies (*E*), dipole moments (μ) and volumes (V) of free base, cationic and hydrochloride species of gramine in gas phase and in aqueous solution.

	B3LYP/6-31G* Method Gas Phase										
Species	E	ZPVE	μ	V							
~P*****	(Hartrees)	(Hartrees)	(D)	(Å ³)							
Free base	-537.0948	-536.8627	2.37	206.6							
Cationic	-537.4888	-537.2411	7.73	208.3							
Hydrochloride	-997.9161	-997.6704	10.55	231.7							
	Aqueou	s Solution									
Free base	-537.1063	-536.8735	3.82	206.1							
Cationic	-537.5793	-537.3312	10.87	208.0							
Hydrochloride	-997.9531	-997.7051	16.09	234.6							

Table 1 shows that the total energy values corrected by ZPVE in both media have lower values than those uncorrected, as was also observed in the three species of promethazine and 2C-B [14,15]. Also, in the three species of gramine it is observed increase in dipole moments values in solution and, in particular, in the hydrochloride species in solution where a significant increase of volume is observed different from the free base and cationic species which shows contraction of volume in this medium. Apparently, the water molecules that hydrate these species in solution justify clearly the changes in their respective volumes. In Table 2 are shown corrected and uncorrected solvation energies by the total non-electrostatic terms and by zero point vibrational energy (ZPVE) of three species of gramine by using the B3LYP/6-31G* method. In Table 3 the values for gramine are compared with the values reported for scopolamine, morphine, heroin, cocaine and promethazine, tropane [5-11], alkaloids cyclizine, diphenhydramine [12-14] and 2C-B [15]. The differences among these species can be easily seen in Figure 2.

Table 2. Corrected and uncorrected solvation energies by the total non-electrostatic terms and by zero point vibrational energy (ZPVE) and volume variations of free base, cationic and hydrochloride species of gramine in aqueous solution by using the B3LYP/6-31G*

	n	nethod.			
	B3LYP/6	-31G* meth	nod ^a		
Solv	ation energy	/ (kJ/mol)		$-\Delta V (Å^3)$	
Species	$\Delta {{\mathbf{G}}_{{\mathbf{un}}}}^{\#}$	ΔGne	ΔGc	$\Delta V(A)$	
Free base	-28.33	6.56	-34.89	-0.5	
Cationic	-236.33	25.25	-261.58	-0.3	
Hydrochloride	-91.02	24.49	-115.51	2.9	
1					

^aThis work

 $\Delta G_{un}^{\#}$ = uncorrected solvation energy, ΔG_{ne} = total nonelectrostatic terms, ΔG_c = corrected solvation energies. ^aThis work.

Table 3 Corrected solvation energies by the total non-electrostatic terms and by zero point vibrational energy (ZPVE) of free base, cationic and hydrochloride species of gramine in aqueous solution compared with other species by using the same method.

B3LYP/6-31G* method ^a											
ΔΟ	ΔG_c , Solvation energy (kJ/mol)										
Species	Free base	Cationic	Hydrochloride								
Gramine ^a	-34.89	-261.58	-115.51								
$2C-B^{b}$	-49,31	-308,69	-122,58								
S(-)-Promethazine ^c	-36.07	-14.48	-70.44								
R(+)-Promethazine ^c	-17.87	-262.81	-52.02								
Cyclizine ^d	-29.53	-244.36	-105.06								
Morphine ^e	-60.91	-309.19	-144.74								
Cocainef	-71.26	-255.24	-138.14								
Scopolamine ^g	-75.47	-310.34	-122.74								
¹ Heroin ^h	-88.67	-323.14	-161.94								
Tropane ^c	-12.55	-244.33	-87.18								

^aThis work, ^bFrom Ref [15], ^cFrom Ref [14], ^dFrom Ref [13], ^eFrom Ref [5], ^fFrom Ref [7], ^gFrom Ref [11], ^hFrom Ref [9]

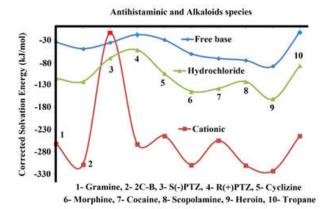


Figure 2 Corrected solvation energies of free base, cationic and hydrocloride species of 2C-B compared with the corresponding to other species by using the B3LYP/6-31G* method.

The deep analysis of Fig. 2 reveals that the cationic species present higher corrected ΔG_c , with exception of species corresponding to S(-)-PTZ (Promethazine) enantiomer, which presents a value of -14.48 kJ/mol while the cationic species of gramine has a value (-261.58 kJ/mol) slightly higher than the corresponding to cocaine (-255.24 kJ/mol). Here, the higher negative value is observed in the heroin species (-323.14 kJ/mol). Notes that the hydrochloride and free base species follow approximately the same tendency, showing the most negative values the hydrochloride species, justifying this way, why these species are preferred in the pharmacological preparations because these species are easily absorbed in the human body. The hydrochloride species are in their cationic forms. On the contrary, the free base species have low ΔG_c , for which they are not usually employed in pharmacology. That high ΔG_c value observed for the cationic species of gramine similar to cocaine could justify its behavior as an alkaloid.

Geometries of Three Species in Both Media

The experimental structure of gramine even was not experimentally determined and, for this reason, those calculated geometrical parameters for the three species of gramine by using the hybrid B3LYP/6-31G* method can be seen in Table 4 compared by using the root-mean-square deviation (RMSD) values with the experimental values determined for [(5-Bromo-1 *H*-indol-3-yl) methyl] dimethylazanium nitrate by Wang *et al* [42]. Figure 3 shows the experimental molecular structure of [(5-Bromo-1*H*-indol-3-yl) methyl] dimethylazanium nitrate determined by X-ray diffraction by Wang *et al* [42].

 Table 4 Comparison of calculated geometrical parameters of three species of gramine in gas phase and aqueous solution with experimental values taken from Ref [42] for [(5-Bromo-1H-indol-3-yl)methyl]dimethylazanium nitrate.

		В	3LYP/6	-31G* M	lethod		
Damana atama	Free	base	Cat	ionic	Hydroc	chloride	E-montal ^b
Parameters	Gas	PCM	Gas	PCM	Gas	PCM	- Experimental ^b
			Bond	lengths ((Å)		
N1-C5	1.467	1.482	1.556	1.532	1.519	1.525	1.520
N1-C10	1.456	1.463	1.500	1.495	1.481	1.490	1.491
N1-C11	1.455	1.464	1.499	1.496	1.486	1.492	1.491
N2-C6	1.381	1.378	1.386	1.381	1.384	1.381	1.345
N2-C7	1.382	1.378	1.366	1.371	1.374	1.371	1.375
C3-C4	1.444	1.445	1.446	1.444	1.448	1.445	1.374
C3-C5	1.500	1.500	1.477	1.485	1.491	1.489	1.483
C3-C7	1.372	1.375	1.381	1.378	1.376	1.378	1.374
C4-C6	1.422	1.425	1.418	1.422	1.420	1.423	1.408
C4-C8	1.405	1.408	1.407	1.407	1.407	1.407	1.402
C6-C9	1.399	1.399	1.397	1.399	1.398	1.399	1.389
C9-C13	1.390	1.391	1.389	1.391	1.389	1.390	1.382
C8-C12	1.389	1.390	1.388	1.390	1.389	1.390	1.379
C12-C13	1.410	1.412	1.410	1.411	1.409	1.411	1.411
RMSD ^b	0.030	0.027	0.025	0.022	0.023	0.022	
			Bond	l angles (°)		
C11-N1-C10	111.1	108.9	111.9	111.4	111.9	111.0	110.6
C11-N1-C5	111.0	108.8	112.1	110.9	110.3	109.9	112.7
C10-N1-C5	112.4	110.4	112.1	112.3	115.2	112.8	110.5
N1-C5-C3	113.6	114.5	111.3	112.8	115.9	115.2	113.2
C5-C3-C4	127.2	127.5	125.9	127.1	129.2	128.3	126.5
C5-C3-C7	126.2	126.3	127.0	126.2	123.9	125.1	127.3
C4-C3-C7	106.3	106.0	106.9	106.5	106.6	106.4	106.0
C3-C7-N2	110.0	110.4	109.3	109.9	109.9	110.1	110.2
C6-N2-C7	109.1	109.1	109.8	109.4	109.3	109.3	109.6
C4-C6-N2	107.1	107.2	107.2	107.3	107.4	107.3	107.2
RMSD ^b	0.9	1.5	1.0	1.0	2.4	1.6	
			Dihedı	al angles	s (°)		
C11-N1-C5-C3	171.	171.3	163.7	167.6	-165.2	179.4	59.5
C10-N1-C5-C3	-63.5	-68.9	-69.2	-66.8	-37.1	-55.9	-176.0
N1-C5-C3-C4	-54.5	-79.3	-70.5	-74.9	-71.0	-83.8	-103.7
N1-C5-C3-C7	128.9	101.0	109.4	105.7	112.6	99.6	78.1
C3-C4-C6-C9	179.8	179.7	-179.7	-179.9	179.7	179.6	177.6
C5-C3-C4-C8	3.5	-0.8	-0.4	0.7	3.4	2.1	-0.6
C5-C3-C7-N2	176.7		-179.8	179.2	177.0	177.3	-178.8
C8-C4-C6-N2	179.6	-179.1	-179.5	-179.9	179.6	-179.5	179.1
RMSD ^b	139.9	187.8	187.3	226.4	157.6	188.8	

^aThis work, ^bRef [42]

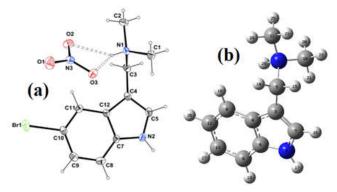


Figure 3 (a) Experimental molecular structure of [(5-Bromo-1*H*-indol-3-yl) methyl] dimethylazanium nitrate compared with (b) the cationic species of gramine.

The RMSD results have evidenced good correlations in the bond lengths with values between 0.030 and 0.022 Å while for bond angles between 2.4 and 0.9 °. The free base species showed worse concordance in bond lengths in both media while the hydrochloride species in the bond angles. Note that the experimental structure compared is in its cationic form as the corresponding to gramine. Note that there are not good concordance in the dihedral C11-N1-C5-C3, C10-N1-C5-C3 and N1-C5-C3-C4 angles resulting higher differences in the RMSD values of three species (226.4-139.9 °), as shown in Table 4. The good correlations in bond lengths and angles suggest that the three optimized structures of gramine can be evidently used to perform the vibrational assignments.

N-CH₃ Distances

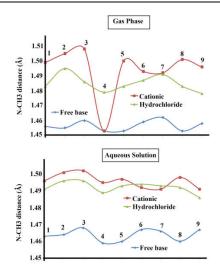

Tropane alkaloids are characterized by the presence of N-CH₃ groups where the distances between those two N and C atoms of group could explain some of its properties, as was previously reported for some of them [10]. Here, these distance for the three species of gramine are compared in Table 5 with values observed for different species containing that group, as S(-)-Prometazine (PTZ), R(+)-PTZ, cyclizine, morphine, cocaine, scopolamine, heroin and tropane [10]. Here, the species 2C-B was not compared because it doesn't present this group. In the case of PTZ and gramine both with two N-CH₃ groups, the distances presented are the corresponding average.

 Table 5 Calculated bond N-C lengths corresponding to N-CH₃ groups of gramine, S (-)-Prometazine (PTZ), R(+)-PTZ, cyclizine, morphine, cocaine, scopolamine, heroin and tropane species in gas and aqueous solution phases by using the B3LYP/6-31G* method.

		GAS PI	HASE	AQ	AQUEOUS SOLUTION			
Species	Free base	Cationic	Hydrochloride	Free base	Cationic	Hydrochloride		
Gramine ^a	1.456	1.499	1.483	1.463	1.496	1.491		
S(-)-PTZ ^b	1.455	1.505	1.495	1.464	1.501	1.496		
$R(+)$ - PTZ^{b}	1.460	1.508	1.486	1.468	1.502	1.496		
Cyclizine ^c	1.453	1.453	1.479	1.459	1.495	1.489		
Morphine ^d	1.453	1.500	1.483	1.460	1.497	1.493		
Cocaine ^e	1.459	1.493	1.487	1.467	1.492	1.494		
Scopolamine ^f	1.462	1.492	1.491	1.466	1.491	1.493		
Heroin ^g	1.453	1.501	1.483	1.460	1.498	1.492		
Tropane ^{b,h}	1.458	1.496	1.478	1.467	1.491	1.486		

[#]Hydrobromide, PTZ, Promethazine, ^aThis work, ^bFrom Ref [14], ^cFrom Ref [13], ^dFrom Ref [5], ^cFrom Ref [7], ^fFrom Ref [11], ^gFrom Ref [9], ^hFrom Ref [6]

In Figure 4 are presented the behaviours of free base, cationic and hydrochloride species in gas phase (upper) and in aqueous solution (bottom) by using the same level of theory. The lower distances are clearly observed for the free base of all species in both media while the cationic and hydrochloride species present the higher values.

Figure 4 Behaviours of N-CH₃ distances corresponding to the three species of 1-gramine, 2-S(-)-Prometazine (PTZ), 3- R(+)-PTZ, 4- cyclizine, 5- morphine, 6- cocaine, 7- scopolamine, 8- heroin and 9- tropane species with the medium.

In gas phase, the cationic species of cyclizine shows extraordinarily the lowest value while the cationic and hydrochloride species of scopolamine present practically the same values in gas phase but in solution slightly increase its differences. A very interesting result is observed for the hydrochloride species of gramine in solution because it presents practically the same value than the corresponding species of heroin while this same species of tropane has the lowest value in this medium.

Charges and Electrostatic Potentials Studies

Above studies on atomic charges applied in alkaloids have suggested that practically there are not significant differences between the values calculated with the Mulliken and natural population (NPA) charges, however, the higher variations were observed on the Merz-Kollman (MK) charges [10,36]. Hence, the MK charges values observed only on the N and C atoms corresponding to the two N-CH₃ groups of the three species of gramine were compared with those reported for S()-Prometazine (PTZ), R(+)-PTZ, cyclizine, morphine, cocaine, scopolamine, heroin and tropane in **Table 6** [10,13,14].

Table 6 Calculated MK charges (a.u.) on the N and C atoms belonging to the >N-CH₃ groups of free base, cationic and hydrochloride species of gramine, S(-)-(PTZ, R(+)-PTZ, cyclizine, morphine, cocaine, scopolamine, heroin and tropane species in gas phase and in aqueous solution at B3LYP/6-31G* level of theory.

		N atoms								
Species		Gas pl	nase	I	Aqueous s	olution				
species	Free base	Cationic	Hydrochloride	Free base	Cationic	Hydrochloride				
Graminea	-0.144	0.126	0.425	-0.133	0.079	0.362				
S(-)-PTZb	-0.346	-0.025	0.369	-0.357	-0.048	0.452				
R(+)-PTZb	0.440	0.045	0.407	-0.335	0.033	0.453				
Cyclizinec	-0.217	0.025	-0.217	-0.267	0.002	0.315				
Morphined	-0.313	-0.041	0.338	-0.328	-0.008	0.338				
Cocainee	-0.273	-0.159	-0.177	-0.289	-0.107	-0.343				
Scopolaminef	-0.359	0.058	0.353	-0.37	0.073	0.357				
Heroing	-0.393	0.015	0.234	-0.373	-0.002	0.263				
Tropaneb,h	-0.309	-0.044	0.406	-0.34	0.062	0.437				
			CA	TOMS						
Species		GAS PH	IASE	AQI	AQUEOUS SOLUTION					
	Free base	Cationic	Hydrochloride	Free base	Cationic	Hydrochloride				
Graminea	-0.334	0.316	-0.360	-0.372	-0.341	-0.414				
S(-)-PTZb	-0.180	-0.351	-0.373	-0.195	-0.332	-0.347				
R(+)-PTZb	-0.189	-0.346	-0.383	-0.171	-0.328	-0.364				
Cyclizinec	-0.314	-0.420	-0.314	-0.315	-0.435	-0.463				
Morphined	-0.328	-0.410	-0.429	-0.303	-0.439	-0.436				
Cocainee	-0.439	-0.449	-0.388	-0.41	-0.451	-0.451				
Scopolaminef	-0.217	-0.283	-0.375	-0.221	-0.300	-0.399				

Heroing	-0.276	-0.434	-0.467	-0.296	-0.443	-0.472	
Tropaneb,h	-0.365	-0.429	-0.500	-0.313	-0.439	-0.43	
#				. 1-			

[#]Hydrobromide, PTZ, Promethazine, ^aThis work, ^bFrom Ref [14], ^cFrom Ref [13], ^dFrom Ref [5], ^cFrom Ref [7], ^fFrom Ref [11], ^gFrom Ref [9], ^hFrom Ref [6]

The different behaviours of MK charges observed on the N and C atoms of two N-CH₃ groups corresponding to the three species of gramine compared with the corresponding to S(-)-Prometazine (PTZ), R(+)-PTZ, cyclizine, morphine, cocaine, scopolamine, heroin and tropane species in both media are shown **in Figures 5 and 6**, respectively.

Analysing first the MK charges on the N atoms of all species it is observed that the behaviours of free base and hydrochloride species in gas phase are very different from those predicted in aqueous solution while the cationic species present practically the same behaviours in both media with exception of tropane species whose value change from negative in gas phase to positive in aqueous solution. The hydrochloride species of cyclizine change from a negative value in gas phase to positive in solution while the negative value observed for the same species of cocaine increase its value significantly in solution. Hence, the most important result observed of this study is that the hydrochloride species of cocaine in solution is the only species where on the MK charges on N atom has a negative value (-0.343 a.u.). If now the MK charges on the C atoms from Fig. 6 are analysed, we observed that the values are negative for all compared species and all have practically the same behaviours in both media and, where the most negative values are observed for the hydrochloride species of cyclizine and heroin while the corresponding species of gramine has a value closer to that observed for tropane.

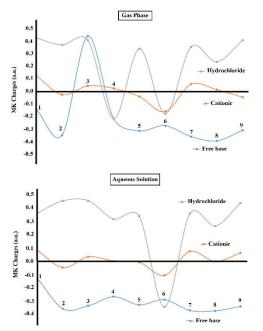
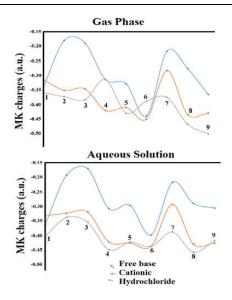



Figure 5 Behaviours of MK charges on the N atoms of N-CH₃ groups corresponding to the three species of 1-gramine, 2-S(-)-Prometazine (PTZ), 3-R(+)-PTZ, 4- cyclizine, 5- morphine, 6- cocaine, 7- scopolamine, 8- heroin and 9- tropane species in both media.

Figure 6 Behaviours of MK charges on the C atoms of N-CH₃ groups corresponding to the three species of 1-gramine, 2-S(-)-Prometazine (PTZ), 3-R(+)-PTZ, 4- cyclizine, 5- morphine, 6- cocaine, 7- scopolamine, 8- heroin and 9- tropane species in both media.

Molecular electrostatic potentials (MEP) are properties very interesting to predict in easy and quick form the different reaction sites based in the colorations of its mapped surfaces. Obviously, these surfaces are strongly dependent on distribution of charges of a molecule. Thus, the MEP values can be theoretically calculated from MK charges [36] and their surfaces can be graphed by using the *GaussView* program [27]. The strong red, blue and green colours indicate clearly the nucleophilic, electrophilic and inert regions, respectively where the reaction with potential nucleophile or electrophile biological reactive take places. In **Figure 7** are represented the mapped surfaces for the free base, cationic and hydrochloride species of gramine in gas phase by using the B3LYP/6-31G* method together with the colour ranges from red to blue and with an isodensity value of 0.005.

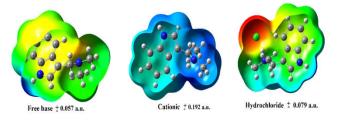


Figure 7 Calculated MK, Mulliken and NPA charges of free base, cationic and hydrochloride species of gramine in gas phase by using the B3LYP/6-31G* method.

The free base shows a red colour on the N atom that contain to the two N-CH₃ groups while on the phenyl ring can be observed a sligth orange colour. On the contrary, in the cationic species a strong blue colours are observed on the two N-CH₃ groups and on the N-H group of ring while on the H atoms of phenyl ring can be seen a mixture of ligth blue with orange colours. In the hydrochloride species a strong red colour is clearly located on the Cl atom and light red colours on the phenyl ring.

Natural Bond Orbital (NBO) study

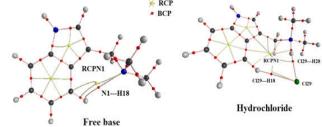
In Table 7 can be seen the main donor-acceptor energy interactions for the free base, cationic and hydrochloride species of gramine in the two studied media by using the B3LYP/6-31G* level of theory. The results for the three species show three $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ and $\pi^* \rightarrow \pi^*$ interactions while only in the hydrochloride species are observed in both media the $\pi \rightarrow n^*$ and $LP(4)Cl29 \rightarrow \sigma^* NI$ -H28 transitions. The former interactions are transitions from bonding C=C orbitals to lone pairs of C4 atom, as shown in Table 7.

Table 7 Main delocalization energies (in kJ/mol) of free base, cationic and hydrochloride species of gramine in gas phase and in aqueous solution by using B3LYP/6-31G* calculations.

			B3LYP/	6-31G* ^a		
Delocalization	Free	base	Cati	onic	Hydroc	hloride
	Gas	PCM	Gas	PCM	Gas	PCM
$\pi N2-C6 \rightarrow \pi^*C3-C7$			51.58	50.45	92.29	94.59
$\pi C9$ -C13 $\rightarrow \pi^*N2$ -C6			73.44	73.07	140.16	140.24
$\pi C3-C7 \rightarrow \pi^*C4-C6$	63.75	65.42				
$\pi C4$ -C6 $\rightarrow \pi^*C3$ -C7	77.79	77.12				
$\pi C4\text{-}C6 \rightarrow \pi^*C8\text{-}C12$	81.43	81.01				
<i>π</i> C4-C6→ <i>π</i> *C9-C13	78.96	79.71				
$\pi C8-C12 \rightarrow \pi^*C4-C6$	70.64	70.35				
<i>π</i> C8-C12→ <i>π</i> *C9-C13	84.27	82.35			89.28	87.86
$\pi C9$ -C13 $\rightarrow \pi^*C4$ -C6	79.46	78.83				
<i>π</i> C9-C13→ <i>π</i> *C8-C12	69.64	70.47			68.55	68.84
$\Delta E_{\pi \to \pi^*}$	605.93	605.26	125.02	123.52	390.29	391.54
$\pi C3-C7 \rightarrow LP(1)C4$					127.32	128.45
$\pi C8-C12 \rightarrow LP(1)C4$					190.19	190.40
$\Delta E_{\pi \to LP^*}$					317.51	318.85
$LP(1)N2 \rightarrow \pi^*C3-C7$	144.71	147.97				
$LP(1)N2 \rightarrow \pi^*C4\text{-}C6$	144.50	145.59				
$LP(1)C4 \rightarrow \pi^*N2\text{-}C6$			497.04	485.63	1141.18	1143.56
$LP(1)C4 \rightarrow \pi^*C3-C7$			123.69	125.27	246.49	262.80
$LP(1)C4 \rightarrow \pi^*C8-C12$			126.28	126.99	253.56	254.65
$\Delta E_{LP \to \pi^*}$	289.21	293.56	747.01	737.90	1641.24	1661.01
$LP(4)Cl29 \rightarrow \sigma^* N1-H28$					389.03	157.04
$\Delta E_{LP \to \sigma^*}$					389.03	157.04
$\pi^*C4\text{-}C6 \rightarrow \pi^*C8\text{-}C12$	1246.10					
π *N2-C6 \rightarrow π *C3-C7			85.94	85.77	118.29	137.56
π *N2-C6 \rightarrow π *C9-C13			149.48	151.61	342.59	337.58
π^*C9 -C13 $\rightarrow \pi^*C8$ -C12					693.55	749.27
$\Delta E_{\pi^* \to \pi^*}$	1246.10		235.42	237.38	1154.43	1224.41
ΔE_{TOTAL}	2141.25	898.83	1107.45	1098.80	3892.50	3752.85

^aThis work

The total energy values evidence high stabilities for the hydrochloride species in both media but, especially in gas phase while the free base in solution shows the lowest stability. Obviously, the high values observed in the $\pi^* \rightarrow \pi^*$ interactions of free base in gas phase and of the hydrochloride species in both media justify the higher stabilities of both species.


Atoms in Molecules (AIM) studies

Different inter or intra-molecular, ionic, covalent or H bonds interactions can be easily predicted by using the Bader's theory of Atoms in Molecules (AIM) related to the topological properties calculated in the bond critical point (BCPs) or ring critical points (RCPs) [34]. Hence, the electron density, $\rho(r)$, the Laplacian values, $\nabla^2 \rho(r)$, the eigenvalues ($\lambda 1$, $\lambda 2$, $\lambda 3$) of the Hessian matrix and, the $|\lambda 1|/\lambda 3$ ratio can be calculated from the AIM2000 program [35] and with the B3LYP/6-31G* method. Then, we can quickly see ionic or highly polar covalent (closed-shell interaction) interactions when $\lambda 1/\lambda 3 < 1$ and $\nabla^2 \rho(r) > 0$. Thus, in Table 8 can be observed the topological properties only for the free base in gas phase and for the hydrochloride species in both media because in these two species are formed new H and halogen bonds,

respectively. The molecular graphics represented for these two species in gas phase are shown in Figure 8.

Table 8 Analyses of the topological properties in Bond Critical Points (BCPs) and Ring critical point (RCPs) for free base and hydrochloride species of gramine in gas phase and in aqueous solution by using the B3LYP/6-31G* method.

	B3	LYP/6-31G					
Parameter [#]	Free	base		AS PHASE Hydrochloride			
1 ai aiictei	N1H18	RCPN1	Cl29H18	Cl29H28	RCPN1		
ρ(r)	0.0059	0.0058	0.0118	0.0697	0.0031		
$\nabla^2 \rho(\mathbf{r})$	0.0207	0.0227	0.0372	0.0969	0.0131		
λ1	-0.0044	-0.0035	-0.0105	-0.1110	-0.0009		
λ2	-0.0020	0.0025	-0.0098	-0.1108	0.0045		
λ3	0.0272	0.0237	0.0574	0.3188	0.0093		
$ \lambda 1 /\lambda 3$	0.1618	0.1477	0.1829	0.3482	0.0968		
Distances (Å)	2.918		2.642	1.777			
	AG	QUEOUS SO	LUTION				
Parameter [#]			Cl29H18	Cl29H28	RCPN1		
$\rho(\mathbf{r})$			0.0380	0.0045	0.0025		
$\nabla^2 \rho(\mathbf{r})$			0.0730	0.0133	0.0087		
λ1			-0.0472	-0.0025	-0.0006		
λ2			-0.0469	-0.0023	0.0026		
λ3			0.1672	0.0182	0.0067		
$ \lambda 1 /\lambda 3$			0.2823	0.1374	0.0896		
Distances (Å)			3.221	2.075			
In a.u.							
6	9	★ RCP ▲ BCP			ę		

Figure 8 Molecular graphic for the free base and hydrochloride species of gramine in gas phase showing the geometry of all their bond critical points (BCPs) and ring critical points (RCPs) by using the B3LYP/6-31G* method.

We can from Table 8 and Figure 8 see the new H bond formed in the free base species of gramine, N1---H18 while in the hydrochloride species are formed two new halogen bonds which are: Cl29---H18 and Cl29---H28. Obviously, these new H bonds generate new RCPs, indicate as RCPN1 in Figure 8. The short distance (1.777 Å) predicted between the Cl29 and H28 atoms produces a higher electron density (0.0697 a.u.) in this halogen bond, as compared with the other one. In solution, the H bond disappear in the free base species while in the hydrochloride species the distances between atoms increase and, as a consequence decrease the values of their topological properties. These studies justify clearly the high stabilities of free base in gas phase and of the hydrochloride species in both media, in accordance with the NBO studies.

Frontier Orbitals and Quantum Global Descriptors Studies

The frontier orbitals were computed for the three species of gramine in both media because from their differences can be easily obtained the gap values, as suggested by Parr and Pearson [37,38]. Then, with those parameters the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors were predicted by using the hybrid B3LYP/6-31G* level of theory by using known equations [22-26,43-47]. This way, those parameters are summarized for the three species of gramine in Table 9. The calculated gap values and descriptors for the three species of gramine are compared in Table 10 with values reported for

alkaloids and antihistaminic species [5-7,9-14]. The low gap values for the hydrochloride species suggest its higher reactivities in both media while the high gap values for cationic species in both media suggest lowest reactivities. For all species, the behaviours of gap values are shown in Figure 9.

 Table 9 Frontier molecular HOMO and LUMO orbitals and gap values of gramine in gas phase and in aqueous solution phases by using the B3LYP/6-31G* level of theory.

	Gramine ^a											
Orbital	Free	base	Cat	tion	Hydro	chloride						
Orbital	GAS	PCM	GAS	PCM	GAS	РСМ						
HOMO	-5.3062	-5.3389	-9.0396	-8.9906	-5.5865	-4.7538						
LUMO	-0.0054	-0.0735	-3.7225	-3.6708	-0.4327	-0.5742						
GAP	5.3008	5.2654	5.3171	5.3198	5.1538	4.1796						
Descriptors												
Descriptor	GAS	PCM	GAS	PCM	GAS	РСМ						
χ	-2.6504	-2.6327	-2.6586	-2.6599	-2.5769	-2.0898						
μ	-2.6558	-2.7062	-6.3811	-6.3307	-3.0096	-2.6640						
η	2.6504	2.6327	2.6586	2.6599	2.5769	2.0898						
Ś	0.1887	0.1899	0.1881	0.1880	0.1940	0.2393						
ω	1.3306	1.3909	7.6579	7.5337	1.7575	1.6980						
Е	-7.0389	-7.1246	-16.9643	-16.8390	-7.7554	-5.5672						

^aThis work

 Table 10 Gap values for the three species of gramine compared with other species in gas phase and in aqueous solution by using the B3LYP/6-31G* level of theory.

			Free base/	Gas phase				
Gramine ^a	Scopolamine ^{#,b}	Heroin ^c	Morphine ^d	Cocaine ^e	Tropane ^f	Cyclizine ^g	Promet S(-)	hazine ^h R(+)
5.3008	5.4004	5.6563	5.6044	4.8580	7.5506	5.3946	4.7157	4.7756
]	Free base/Aqu	ieous soluti	on			
5.2654	5.4758	5.6414	5.4750	4.9487	7.6611	5.5067	4.7702	4.8028
			Cationic/0	Jas phase				
5.3171	5.6356	5.4268	5.1889	5.4468	9.5595	5.5823	4.5661	4.5770
			Hydrochlorid	le/Gas phas	se			
5.1538	4.9239	5.3024	5.4417	3.6813	6.8246	7.5506	4.8654	4.8110
		Hy	drochloride/A	queous sol	ution			
4.1796	5.4026	4.4469	4.5840	3.6813	5.9119	4.2159	4.2042	4.4926

[#]Hydrobromide, ^aThis work, ^bFrom Ref [11], ^cFrom Ref [9], ^dFrom Ref [5], ^eFrom Ref [7], ^fFrom Ref [6], ^gFrom Ref [13], ^hFrom Ref [14]

The results of Table 10 show that all hydrochloride species in solution have low gap values with exception of scopolamine that shows a value similar to observed for the free base in solution. This behaviour can be easily justified because the compared species was studied as hydrobromide instead hydrochloride.

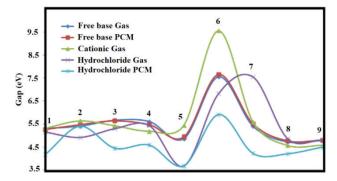


Figure 9 Variations of gap values for the free base, cationic and hydrochloride species of 1-gramine compared with the values reported for 2-scopolamine, 3-heroin, 4- morphine, 5- cocaine, 6- tropane, 7- cyclizine, 8- S(-)-PTZ and 9- R(+)-PTZ in both media and by using the B3LYP/6-31G* level of theory.

Fig. 9 reveals clearly that the hydrochloride species of cocaine present the higher reactivity due to its low gap value while the cationic species of tropane exhibit the highest gap value evidencing the lowest reactivity. On the other hand, when the descriptors are analyzed, the cationic species in gas phase present the highest global electrophilicity and nucleophilicity indexes than the other ones evidencing results similar to observed in 2C-B [15] and in the two enantiomer of promethazine [14]. Furthermore, the cationic species of gramine shows those global indexes closer to cocaine [7]. Probably, these results could justify why the solvation energy value observed for the cationic species (-261.58 kJ/mol) is approximately closer than the value corresponding to cocaine (-255.24 kJ/mol).

Vibrational Study

The experimental available infrared spectrum of hydrochloride species of gramine in the solid state is given in Figure 10 compared with the corresponding predicted for free base, cationic and hydrochloride species by using the hybrid B3LYP/6-31G* method. The experimental available infrared spectrum was taken from Ref [18] while experimental available Raman spectrum of gramine in solid state was taken from Ref [48]. In Figure 11 are compared the experimental and the predicted Raman spectra for the three species of gramine in gas phase at room temperature and at the same level of theory. The three structures of gramine were optimized with C_1 symmetries and are expected 75, 78 and 81 normal vibration modes for free base, cationic and hydrochloride species, respectively. The predicted Raman spectra in activities for the three species of gramine were transformed to intensities by using known equations reported in the literature [39,40]. As in other alkaloids and antihistaminic hydrochloride species the form hydrochloride is not present in the solid phase because the very strong IR band predicted at 1869 cm⁻¹ for this species is not observed in the experimental spectrum [5-7,9-14]. This band is clearly assigned in that species to the N1-H28 stretching mode. Both figures show good correlations among the spectra compared.

The harmonic force fields for the three species were calculated at the same level of theory with the corresponding normal internal coordinates and by using the SQMFF methodology [19] and the Molvib program [21]. Then, the complete vibrational assignments were performed with these scaled force fields considering potential energy distribution (PED) contributions higher or equal to 10% and with the experimental available infrared spectrum of hydrochloride gramine in the solid state [18]. Transferable scale factors reported in the literature were employed to obtain the harmonic scaled force fields [20]. The observed and calculated wavenumbers and assignments for the three species of gramine in gas phase can be seen in **Table 11**. Then, some vibration modes only for important groups are discussed at continuation.

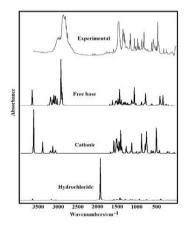


Figure 10 Experimental available infrared spectrum of hydrochloride species of gramine in solid phase compared with the predicted for free base, cationic

and hydrochloride species in gas phase by using the hybrid B3LYP/6-31G* method.

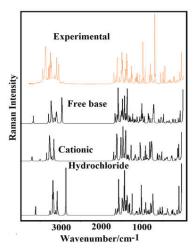


Figure 11 Experimental available infrared spectrum of hydrochloride species of gramine in solid phase compared with the predicted for free base, cationic and hydrochloride species in gas phase by using the hybrid B3LYP/6-31G* method.

 Table 11 Observed and calculated wavenumbers (cm⁻¹) and assignments of free base, cationic and hydrochloride species of gramine in gas phase.

		B3LYP/6-31G* Method ^a							
Experimental		Free base		Cationic		Hydrochloride			
IR ^c	Raman ^d	SQM ^b	Assignments	' SQM ^b	^{Assignments^a}	¹ SQM ^b	Assignments ^a		
3457 vw	3242vw	3518	vN2-H17	3498	vN2-H17	3514	vN2-H17		
	3162vw			3277	vN1-H28				
3105 m	3120w	3128	vC7-H16	3134	vC7-H16	3126	vC7-H16		
		3084	vC8-H18	3092	vC13-H27				
				3081	vC12-H26				
				3073	vC9-H19	3078	vC12-H26		
		3070	vC13-H27	3073	$v_a CH_3(C10)$	3068	$v_a CH_3(C10)$		
3067m	3064s			3063	$v_aCH_3(C11)$	3066	vC9-H19		
				3062	$v_aCH_3(C11)$	3058	$v_aCH_3(C11)$		
		3056	vC12-H26	3059	$v_a CH_3(C10)$	3054	vC8-H18		
	3050sh					3050	vC13-H27		
3037m		3047	vC9-H19			3039	$v_a CH_3(C11)$		
	3026vw			3029	vC8-H18	3033	$v_a CH_3(C10)$		
	2002	2011	$v_a CH_3(C10)$	2010	<u>au</u>		/		
	3002w	3011	$v_a CH_3(C10)$	3018	$\nu_a CH_2$				
2986sh	2974w	2990	v _a CH ₃ (C11)			2983	$v_a CH_2$		
2965sh	2956s	2958	$v_s CH_3(C10)$	2973	$v_s CH_3(C10)$	2955	$v_s CH_3(C10)$		
2944sh	2943m	2947	$v_a CH_3(C11)$	2970	$v_{s}CH_{3}(C11)$	2950	v _s CH ₃ (C11)		
	2936m		vacing(err)	2957	v _s CH ₂	2934	v _s CH ₂		
2918s	2887vw	2909	$v_a CH_2$		(sell2		130112		
2808s	2859w	2812	$v_a CH_3(C11)$						
2800sh	2824s	2801	$v_s CH_3(C10)$						
2770m	2779m	2781	v _s CH ₂						
_ , , ,	_ , , , ,		130112			1869	vN1-H28		
1674w							vC6-C9		
1620w	1616m	1623	vC6-C9	1623	vC6-C9	1623	vC8-C12		
			vC4-C8						
1551w	1575w	1581	vC9-C13	1581	vC4-C8	1579	vC4-C8		
	1545s	1556	vC3-C7	1543	vC3-C7	1549	vC3-C7		
					βC12-H26				
1483sh	1496w	1494	βC12-H26	1497	βN2-H17	1495	βC12-H26		
					p112 1117		δ _a CH ₃ (C11)		
1475sh						1480	ρ'N1-H28		
1464sh	1463m	1477	$\delta_a CH_3(C11)$	1474	$\delta_a CH_3(C10)$	1470	$\delta_a CH_3(C10)$		
	1 105111		$\delta_a CH_3(C10)$		0aC113(C10)	11/0	0ae113(010)		
1455s		1465	δCH ₂	1465	$\delta_a CH_3(C11)$				
			$\delta_a CH_3(C10)$						
1455s		1463	$\delta_a CH_3(C11)$	1459	$\delta_a CH_3(C10)$	1460	βС9-Н19		
1455s		1453	βC9-H19	1457	βС9-Н19	1458	$\delta_a CH_3(C10)$		
					•		δCH ₂		
1442sh	1446s	1448	δCH_2	1451	$\delta_a CH_3(C11)$	1448	$\delta_a CH_3(C10)$		
1439sh		1446	δ _a CH ₃ (C10)	1437	δCH_2	1442	δCH ₂		
1737511			$\delta_a CH_3(C10)$ $\delta_s CH_3(C11)$	1+3/	0CH2	1442	$\delta_a CH_3(C11)$		
1435sh	1434s	1434	$\delta_{s}CH_{3}(C11)$ $\delta_{s}CH_{3}(C10)$	1427	$\delta_s CH_3(C11)$	1437	$\delta_a CH_3(C11)$ $\delta_a CH_3(C10)$		
			0 _s C113(C10)				$0_{a} \in 11_{3} (C10)$		

		, enign			11 1////07 11//		·
1422sh	1425sh	1418	βN2-H17	1417	βN2-H17	1433	ρΝ1-Η28 δ _a CH ₃ (C11)
1422sh	1425sh			1411	ρ'N1-H28	1417	βN2-H17 vN2-C7
1401vw	1399w	1400	$\delta_s CH_3(C10)$ $\delta_s CH_3(C11)$	1392	$\delta_s CH_3(C10)$	1394	δ _s CH ₃ (C11)
	1368m	1396	wagCH ₂	1383	ρN1-H28	1392	$\delta_s CH_3(C10)$
1374s	1352sh	1252		1362	wagCH ₂	1388	wagCH ₂
1349m 1339w	1347s 1335s	1353 1338	vC3-C4 vC4-C6	1351 1339	vC3-C4 vC4-C6	1360 1336	vC3-C4 vC4-C6
			ρCH ₂				βC7-H16
1298w	1297w	1296	βC7-H16	1308	vN2-C7	1303	vN2-C7
1252sh	1272w	1276	ρCH ₃ (C10)	1273	ρCH ₂	1277	ρCH ₂
1246m	1242s	1269	ρCH_2	1242	βC8-H18	1246	βC8-H18 ρCH ₃ (C10)
1239s	1234m	1237	βC8-H18	1226	vN2-C6	1232	ρCH ₃ (C10) ρCH ₃ (C11)
1220sh	1228sh	1214	βC7-H16 vN2-C6	1214	ρ'CH ₃ (C10)	1219	vN2-C6
1171sh	1169sh	1188	vN1-C11 ρ'CH ₃ (C10)		0.012 112(
1164m	1162w	1158	ρ'CH ₃ (C11) ρCH ₃ (C10)	1163	βС12-Н26 βС13-Н27	1170	ρCH ₃ (C11)
1164m	1146w			1148	pCH ₃ (C11)	1157	βC12-H26 ρCH ₃ (C11)
1143w	1138w	1151	βC13-H27	1132	vC8-C12	1140	pCH ₃ (C10)
1125w	1122m	1123	vC8-C12	1112	ρCH ₃ (C10)	1128	βC13-H27
1109m	1106w	1106	ρ'CH ₃ (C11)	1105	βC7-H16	1005	0.07 1114
1091w 1071w	1089sh 1068m	1087 1063	vN2-C7 vC3-C5	1067	vC3-C5	1095 1067	βC7-H16
		1005	VC3-C3	1007	VC3-C3		νC3-C5 ρ'CH ₃ (C11)
1067sh	1066sh		ρCH ₃ (C11)			1060	ρ'CH ₃ (C10)
1028m	1026w	1043	vN1-C10	1033	ρ'CH ₃ (C11)		
1019sh					vC13-C12	1014	vN1-C10 vC13-C12
1004m	1002vs	1013	vN1-C5	1008	vC9-C13	1010	vC9-C13
989s	983w	1005	vC13-C12	982	vN1-C11		
986sh 961vw	955s	962	γC12-H26	981	γС13-Н27	992 938	γC8-H18 γC13-H27
			•				vN1-C11
920w	918w	922	τwCH ₂ γC13-H27	925	γC12-H26	929	vN1-C5
911sh	877sh	917	γC8-H18	889	τwCH ₂	900	τwCH ₂
877vw	868m	879	$\frac{\beta R_1(A1)}{\beta R_1(A2)}$	873	$\beta R_1(A1)$	878	$\beta R_1(A1)$ $\beta R_1(A2)$
843m	842s			852	γC8-H18 γC9-H19	859	γС9-Н19
837sh	823sh	850	γC9-H19	849	vN1-C10		
819m	816m	834	vN1-C10 vN1-C5	821	γС7-Н16	816	δC3C5N1
789sh	795sh	789	γC7-H16			781	γC7-H16
767w	766w	772	γC7-H16	776	δC3C5N1	772	γC7-H16 τR ₁ (A1)
752sh	751vs	756	$\tau R_1(A1)$	752	βR ₂ (A1)	752	τR ₁ (A1) γC7-H16
746sh	751vs			749	$\tau R_1(A1)$	751	γC12-H26
740vs	741sh	743	γC12-H26 γC9-H19	745	γC13-H27 τR ₁ (A1)		
720w	730sh	738	$\tau R_1(A1)$ $\beta R_2(A1)$	727	vN1-C5	742	$\tau R_1(A1)$
627w	624m	626	$\tau R_2(A2)$ $\tau R_1(A2)$	619	$\tau R_2(A2)$ $\tau R_1(A2)$	631	$\tau R_1(A2)$
586sh	581sh	596	$\tau R_1(A2)$ $\beta R_2(A2)$	593	$\beta R_2(A2)$	595	$\beta R_2(A2)$
577w	576m	569	$\tau R_2(A1)$	566	$\tau R_2(A1)$	567	$\tau R_2(A1)$
553sh	564w	542	$\beta R_2(A1)$	543	$\beta R_2(A1)$	544	$\beta R_2(A1)$
495sh	537s		0D (A1)	499	γN2-H17	487	δC5N1C10
467w	464w	478	βR ₃ (A1) βC3-C5	460	βR ₃ (A1)	451	βR ₃ (A1)
450sh	445w	446	δC10N1C11	438	δC10N1C11	436	δC10N1C11
424sh	416	417	-D (11)	427	δC5N1C10	422	$\tau R_3(A1)$
418sh	416w	417	τR ₃ (A1) γN2-H17	414	$\tau R_3(A1)$		
404m	396w	381	$\tau R_2(A1)$			404	γN2-H17
	360sh	365	δC5N1C10	224	$\tau R_2(A1)$	225	-D (A2)
	353m	334	δC5N1C11	334	δC5N1C10	335	$\tau R_2(A2)$
	330m	201	NO 111 -	321	δC5N1C11	322	δC5N1C11
	281w	306	γN2-H17				

		$\tau R_2(A2)$				
246sh	263	τwCH ₃ (C11) βC3-C5	248	βC3-C5	262	βC3-C5
236sh	235	τwCH ₃ (C11)				
222m	224	τwCH ₃ (C10)			226	vH28-Cl29
222m			215	ButtC6-C4	215	ButtC6-C4
212sh	212	ButtC6-C4	211	τwCH ₃ (C10)		
191s					203	νH28-Cl29 τR ₂ (A1)
191s			194	τwCH ₃ (C11)	186	τwCH ₃ (C11)
178sh	170	$\tau R_2(A2)$ $\tau R_2(A1)$	176	βC3-C5	170	τwCH ₃ (C10)
138sh					120	δN1H28Cl29
	85	γC3-C5 δC3C5N1			90	$\tau_w C3-C5$
			73	γC3-C5	77	γC3-C5
	67	$\tau_w N1$ -C5	57	τ _w N1-C5 βC3-C5	69	τ _w N1-C5 τN1-H28
	45	τ _w C5-C3	42	τ _w C5-C3		
					29	τ _w N1-C5 τN1-H28

Abbreviations: v, stretching; β deformation in the plane; γ deformation out of plane; wag, wagging; τ torsion; β_R , deformation ring τ_R , torsion ring; ρ , rocking; τw , twisting; δ , deformation; a, antisymmetric; s, symmetric; (A₁), Phenyl Ring; (A₂), Five member Ring. ^aThis work, ^bFrom scaled quantum mechanics force field, ^cFrom Ref [18], ^dFrom Ref [48].

Band Assignments

NH modes. In the three species of gramine there is one N2-H17 group for which for each species are expected stretching (vN2-H17), rocking or deformation in-plane (BN2-H17) and deformation-out-plane modes (yN2-H17). However, the N1-H28 group is also present in the hydrochloride species but the N1 atom in this species is in sp³ hybridization, for which, for that group in the three species are expected the stretching (vN1-H28) and two rocking modes (pN1-H28 and p'N1-H28). Table 11 shows that the N2-H17 modes are predicted in the free base and hydrochloride species in approximately the same regions; however, in the cationic species these modes due to the absence of Cl atom are predicted at different wavenumbers. Thus, the vN2-H17 modes are predicted in the free base and hydrochloride species at 3518/3514 cm⁻¹ while in the cationic one at 3498 cm⁻¹. Note that the N1-H28 stretching modes in the hydrochloride species is predicted as a very strong band at 1869 cm⁻¹, not observed experimentally, for which this species is not present in the solid state. This fact was also observed in many hydrochloride species of other compounds [5-7,9-15]. The BN2-H17 rocking modes are predicted by SQM calculations in the cationic species at 1497 cm⁻¹ while in the other two species between 1418 and 1417 cm⁻¹. The deformation-out-plane (yN2-H17) modes in the free base, cationic and hydrochloride species are predicted at 381, 499 and 404 cm⁻¹. Later, the IR bands observed in those regions are assigned to these vibration modes. The two (pN1-H28 and ρ 'N1-H28) rocking modes are assigned as predicted by calculations to the bands observed between 1480 and 1433 cm^1 .

CH modes. The three species of gramine have five CH groups of which one of them (C7-H16) belong to indol ring that contain nitrogen. Thus, the C7-H16 stretching mode is predicted in the tree species at higher wavenumbers than the other ones. The other stretching modes are predicted in the $3134-3047 \text{ cm}^{-1}$ region and, hence, the IR bands observed in

these regions are easily assigned to those vibration modes. The rocking or deformation in-plane (β CH) and deformation-outplane modes (γ CH) are assigned in the expected regions and, in accordance to assignments reported for other similar compounds [5-7,9-15,22,24,43-47].

CH₃ modes. Each gramine species has two CH₃ groups linked to N atoms, as prometazine and diphenhydramine [12,14] while in some alkaloids and cyclizine there are only one CH₃ group linked to N [5-7,9-11,13]. Thus, in these species, the antisymmetric and symmetric stretching modes are observed between 3090 and 2914 cm⁻¹ region [5-7,9-11,13-15,22-25,43-47]. In gramine, those stretching modes are predicted between 3073 and 2801 cm⁻¹, hence, these modes are assigned in accordance to the calculations. As expected, the symmetrical modes are assigned to the most strong IR bands observed in these regions, as detailed in Table 11. The expected CH₃ deformation, rocking and twisting modes are assigned taking into account the SQM calculations and assignments previous reported for similar species [5-7,9-11,13-15,22-25,43-47].

CH₂ modes. In the species of gramine only one CH₂ group is present in its structures. Hence, two antisymmetrical and symmetric stretching, deformation, rocking, waging and twisting modes are expected. In 2C-B, these modes are respectively assigned at 3062/2925, 1459/1437, 1391/1304, 1365/1092 and 872/699 cm⁻¹ [15]. Table 11 shows that these vibration modes for the three species of gramine are assigned as predicted by calculations at 3018/2781, 1465/1437, 1396/1362, 1277/1269 and 922/889, respectively [5-7,9-11,13-15,22-25,43-47]. Here, the symmetrical modes are assigned to the Raman band of the medium intensity observed at 2936 cm¹.

Skeletal modes. The SQM calculations predicted the C=C stretching modes of both indol rings with low intensities and between 1623 and 1543 cm⁻¹ and, for these reasons, the IR bands observed in these regions are assigned to these modes. The C-C stretching modes are predicted and assigned between 1360 and 1010 cm⁻¹. In the cationic and hydrochloride species, the N2-C7 stretching modes are predicted at higher wavenumbers than the N2-C6 ones but, on the contrary, in the free base are observed. Thus, these modes are assigned in accordance to the SQM calculations. The deformations and torsion modes of both indol rings are predicted in the expected regions and assigned in accordance [5-7,9-11,13-15,22-25,43-47]. The prediction of remain skeletal modes are observed in Table 11 and, they are assigned as predicted the SQM calculations.

Force Fields

The force constants were calculated for the three species of gramine because these parameters are useful to predict the characteristics of different bonds taking into account that both NBO and AIM studies have revealed that hydrochloride species are most stable than the cationic ones. Consequently, the harmonic force constants for the three species, computed at the 6-31G* level of theory from its corresponding force fields with the SQMFF methodology [19] and the Molvib program [21], are presented in **Table 12**.

 Table 12 Scaled internal force constants for the free base,

 cationic and hydrochloride species of gramine in gas phase by

 using the B3LYP/6-31G* method.

Force	Gramine ^b				
constant	Free base	Cationic	Hydrochloride		
$f(vN-H)_R$	6.90	6.80	6.80		
f(vN-H)		6.00	2.80		
$f(vN-CH_3)$	4.80	4.10	4.40		
f(vC-N)	6.15	6.30	6.25		
$f(vCH_2)$	4.48	4.92	4.82		
$f(vCH_3)$	4.72	5.05	5.03		
$f(vC-H)_R$	5.18	5.20	5.18		
f(vC=C)	7.30	7.00	7.20		
f(vC-C)	4.50	4.90	4.70		
$f(\delta CH_2)$	0.80	0.80	0.80		
$f(\delta CH_3)$	0.60	0.53	0.53		

Units are mdyn Å $^{\rm -1}$ for stretching and mdyn Å rad $^{\rm -2}$ for angle deformations

^aThis work

Here, the $f(vN-H)_R$ force constant is involved with the N2-H17 bond belong to the indol ring while the other f(vN-H) force constant is related to N1-H28 bond. Hence, for the hydrochloride species the $f(vN-H)_R$ and f(vN-H) force constants show values different from those observed for the cationic ones, as expected because the N1-H28 bond is weak in the hydrochloride species due to that the H28 is linked to Cl29 atom by a ionic interaction and, hence, the force constant is low compared with the cationic one. A similar result was obtained for both forms of promethazine and for cyclizine [13,14]. Analyzing the $f(vN-CH_3)$ force constants for the three species it is observed that the cationic species present the lower value, as also was observed in other species containing the N-CH₃ groups [5-7,9-15]. Such observation probably could be attributed to the positive charge on the N atom that contain to these groups because, then, the presence of Cl atom in the hydrochloride species generates an increase in its value. The values observed in the $f(vCH_2)$ and $f(vCH_3)$ force constants are in agreement with those reported in the literature for similar groups [5-7,9-11,13-15,22-25,43-47].

NMR study

The experimental available ¹H and ¹³C NMR chemical shifts of gramine in DMSO-d6 and CDCl₃ were taken from Ref [49-51]. Hence, the comparisons of these chemical shifts with the corresponding predicted for free base, cationic and hydrochloride species in aqueous solution by using the GIAO [41] and the B3LYP/6-31G* method are shown in Tables 13 and 14, respectively. Note that the differences between experimental and theoretical values can be easily seen when the RMSD values are presented in the tables.

Table 13 Observed and calculated ¹ H chemical shifts (δ in
ppm) for the three species of gramine in different aqueous
solution by using the B3LYP/6-31G* method.

Gramine ^a							
H atom	Free base	Cationic	Hydrochloride	Exp ^b			
14-H	3.50	4.51	3.96	3.52			
15-H	2.42	3.56	2.82	3.52			
16-H	6.26	6.74	6.24				
17-H	6.32	7.24	6.56	10.83			
18-H	7.31	6.86	8.02				
19-H	6.60	7.20	6.63				
20-H	1.66	2.34	2.21	2.14			
21-Н	2.19	2.98	2.38	2.14			
22-Н	0.98	2.07	1.16	2.14			

24-H 25-H 26-H 27-H 28-H	2.17 2.04 6.77 6.76 3.50	3.00 2.80 7.28 7.43 3.75	2.45 2.67 7.09 6.98 9.57	2.14 2.14
RMSD	1.6	1.3	1.5	

^aThis work GIAO/B3LYP/6-31G* Ref. to TMS, ^bFrom Ref [49]

In general, for some nucleus of cationic species the values are overestimated in relation to the experimental ones, this way, a better concordance can be seen for the ¹H nucleus with differences between 1.6 and 1.3 ppm while for the ¹³C nucleus increase in the RMSD values are observed when the predicted values are compared with two different references [50,51]. Hence, RMSD values between 13.6 and 12.3 ppm are obtained with the values from Ref [50] and between 13.7 and 11.9 ppm when the values from Ref [51] are employed. Obviously, these slight differences can be rapidly justified because the 6-31G* basis set was used in all theoretical calculations instead of 6-311++G** basis set.

Table 14 Observed and calculated ${}^{13}C$ chemical shifts (δ in ppm) for the three species of gramine in aqueous solution by using the B3LYP/6-31G* method.

	Gramine ^a								
C atoms	Free base	Cationic	Hydrochloride	Exp ^b	Exp ^c				
3-C	102.09	86.98	92.10	112.41	111.70				
4-C	114.49	110.09	112.56	127.89	127.70				
5-C	48.10	50.73	45.80	54.31	54.50				
6-C	120.35	121.35	120.29	136.26	136.30				
7-C	109.23	113.05	109.99	124.18	124.00				
8-C	106.98	100.71	110.30	118.99	118.50				
9-C	96.21	100.77	95.57	112.41	111.30				
10-C	35.03	31.80	30.53	45.14	44.90				
11-C	39.76	35.63	35.82	45.14	44.90				
12-C	106.92	111.94	109.92	121.67	121.00				
13-C	108.79	114.78	111.74	119.31	118.90				
RMSD^b	12.3	14.1	13.6						
RMSD ^c	11.9	13.7	13.2						

^aThis work GIAO/B3LYP/6-31G* Ref. to TMS, ^bFrom Ref [50], ^cFrom Ref [51]

CONCLUSIONS

Here, the molecular structures of free base, cationic and hydrochloride species of indol alkaloid, N-(1H-indol-3ylmethyl)-N,N-dimethylamine, known as gramine were theoretically determined in gas phase and in aqueous solution by using hybrid B3LYP/6-31G* method. The structural, electronic, topological and vibrational properties of those three species were predicted in both media and by using the same level of theory. The experimental available infrared, Raman and ¹H-NMR and ¹³C-NMR spectra were compared with the corresponding predicted showing good correlations among them. The properties for the three species in solution were predicted at the same level of theory with the polarized continuum (PCM) model and the universal solvation model was employed to compute the corrected solvation energies by ZPVE. The cationic species of gramine presents a corrected solvation energy of -261.58 kJ/mol slightly higher than the corresponding to cocaine (-255.24 kJ/mol). NBO and AIM studies have evidenced higher stabilities for free base and hydrochloride species while the comparisons of N-CH₃ distances obtained for the three species of gramine with other compounds have evidenced that the hydrochloride species of gramine in solution presents practically the same value than the corresponding species of heroin. The frontier orbitals studies suggest higher reactivities for the hydrochloride species in both media due to its low gap values while the high gap values for cationic species in both media suggest lowest reactivities. Furthermore, the cationic species of gramine shows the global electrophilicity and nucleophilicity indexes closer to cocaine. Probably, these results could justify why the corrected solvation energy value observed for the cationic species is approximately closer than the value corresponding to cocaine. The harmonic force fields, force constants and the complete vibrational assignments for the 75, 78 and 81 normal vibration modes of free base, cationic and hydrochloride species are reported for first time.

Acknowledgements

This work was supported with grants from CIUNT Project N° 26/D608 (Consejo de Investigaciones, Universidad Nacional de Tucumán).The authors would like to thank Prof. Tom Sundius for his permission to use MOLVIB.

References

- Papaseit E, Farré M, Pérez-Mañá C, Torrens M, Ventura M, Pujadas M, de la Torre R, González D. Acute Pharmacological Effects of 2C-B in Humans: An Observational Study. Frontiers in Pharmacology, 2018, 9(206): 1-10.
- Tracy DK., Wood DM, Baumeister D. Novel psychoactive substances: types, mechanisms of action, and effects. BMJ, 2017, 356: i6848. doi: 10.1136/bmj.i6848.
- Kanamori T, Yamamuro T, Kuwayama K, Tsujikawa K, Iwata YT, Inoue H. Synthesis and analysis of glucuronic acid-conjugated metabolites of 4-Bromo-2,5-dimethoxyphenethylamine, J. Forensic Sci., 2017, 62: 488–492. doi: 10.1111/1556-4029.13266.
- Caicedo J, Berrouet MC, Saldarriaga JC. The risk of 2, 5-dimethoxy-4-bromophenylethylamine (2C-B): case. Med. UPB, 2016, 35: 139–143.doi: 10.18566/medupb.v35n2.a08.
- 5. Brandán SA. Why morphine is a molecule chemically powerful. Their comparison with cocaine. Indian Journal of Applied Research, 2017, 7(7): 511-528.
- Rudyk R., Brandán SA. Force field, internal coordinates and vibrational study of alkaloid tropane hydrochloride by using their infrared spectrum and DFT calculations. Paripex A Indian Journal of Research, 2017, 6(8): 616-623.
- 7. Romani D, Brandán SA. Vibrational analyses of alkaloid cocaine as free base, cationic and hydrochloride species based on their internal coordinates and force fields. Paripex A Indian Journal of Research, 2017.6(9): 587-602.
- Iramain MA, Ledesma AE, Brandán SA. Analyzing the effects of halogen on properties of a halogenated series of R and S enantiomers analogues alkaloid cocaine-X, X=F, Cl, Br, I. Paripex A Indian Journal of Research, 2017,6(12): 454-463.
- Brandán SA. Understanding the potency of heroin against to morphine and cocaine. IJSRM, International Journal of Science and Research Methodology, 2018, 12(2): 97-140.

- Rudyk RA, Checa MA, Guzzetti KA, Iramain MA, Brandán SA. Behaviour of N-CH₃ Group in Tropane Alkaloids and correlations in their Properties. IJSRM, International Journal of Science and Research Methodology, 2018; 10 (4): 70-97.
- Rudyk RA, Checa MA, Catalán CAN, Brandán SA. Structural, FT-IR, FT-Raman and ECD spectroscopic studies of free base, cationic and hydrobromide species of scopolamine alkaloid. J. Mol. Struct. , 2019, 1180: 603-617.
- 12. Iramain MA, Brandán SA. Structural and vibrational properties of three species of anti-histaminic diphenhydramine by using DFT calculations and the SQM approach. Journal: To Chemistry Journal, 2018, 1(1): 105-130.
- Márquez MJ, Iramain MA, Brandán SA.*Ab-initio* and Vibrational studies on Free Base, Cationic and Hydrochloride Species Derived from Antihistaminic Cyclizine agent. IJSRM, International Journal of Science and Research Methodology, 2018, 12(2): 97-140.
- 14. Manzur ME, Brandán SA. S(-) and R(+) Species Derived from Antihistaminic Promethazine Agent: Structural and Vibrational Studies, Submitted to Heliyon (2019).
- 15. Manzur ME, Rudyk RA, Brandán SA. Evaluating properties of free base, cationic and hydrochloride Species of potent psychotropic 4-Bromo-2,5dimethoxyphenethylamine drug, International Journal of Current Advanced Research, 8(3) (2019) 17166-17170.
- 16. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev., 1988, A38: 3098-3100.
- 17. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., 1988, B37: 785-789.
- 18. Infrared spectra of N-(1H-indol-3-ylmethyl)-N,Ndimethylamine, gramine available from: http://www.hanhonggroup.com/ir/ir_en/B71226.html.
- Pulay P; Fogarasi G; Pongor G, Boggs JE; Vargha A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J. Am. Chem. Soc., 1983, 105: 7073.
- a) Rauhut G, Pulay P, Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J. Phys. Chem., 1995, 99: 3093-3100. b) *Correction:* Rauhut G, Pulay P. J. Phys. Chem., 1995, 99: 14572.
- 21. Sundius T. Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc., 2002, 29 : 89-95.
- 22. Romani D, Brandán SA, Márquez MJ, Márquez MB. Structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities. J. Mol. Struct., 2015, 1100: 279-289.
- 23. Romani D, Tsuchiya S, Yotsu-Yamashita M, Brandán SA. Spectroscopic and structural investigation on intermediates species structurally associated to the tricyclic bisguanidine compound and to the toxic agent, saxitoxin. J. Mol. Struct., 2016, 1119: 25-38.
- 24. Romano E, Castillo MV, Pergomet JL, Zinczuk J, Brandán SA. Synthesis, structural and vibrational

nalysis of (5,7-Dichloro-quinolin-8-yloxy) acetic acid. J. Mol. Struct., 2012, 1018: 149–155.

- 25. Iramain MA, Davies L, Brandán SA. Structural and spectroscopic differences among the Potassium 5-hydroxypentanoyltrifluoroborate salt and the furoyl and isonicotinoyl salts. J Mol. Struct., 2019, 1176: 718-728.
- 26. Issaoui N, Ghalla H, Brandán SA, Bardak F, Flakus HT, Atac A, Oujia B. Experimental FTIR and FT-Raman and theoretical studies on the molecular structures of monomer and dimer of 3-thiopheneacrylic acid. J. Mol. Struct., 2017, 1135: 209-221.
- Nielsen AB, Holder AJ. Gauss View 3.0. User's Reference, GAUSSIAN Inc., Pittsburgh, PA, 2000– 2003.
- 28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE,. Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz J., Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT, 2009.
- 29. Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. *Chem. Phys*, 1981, 55: 117–129.
- Tomasi J, Persico J. Molecular Interactions in Solution: An Overview of Methods Based on Continous Distributions of the Solvent. Chem. Rev., 1994, 94: 2027-2094.
- 31. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem., 2009, B113: 6378-6396.
- 32. Ugliengo P. Moldraw Program, University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998.
- Glendening E., Badenhoop JK, Reed AD, Carpenter JE, Weinhold F. NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin; Madison, WI, 1996.
- Bader RFW. Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990, ISBN: 0198558651.
- Biegler-Köning F, Schönbohm J, Bayles D. AIM2000; A Program to Analyze and Visualize Atoms in Molecules. J. Comput. Chem., 2001,22: 545.
- Besler BH, Merz Jr KM, Kollman PA. Atomic charges derived from semiempirical methods. J. Comp. Chem., 1990, 11: 431-439.
- Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105: 7512-7516.
- Brédas J-L., Mind the gap! Materials Horizons, 2014, 1: 17–19.

- Keresztury G, Holly S, Besenyei G, Varga J, Wang AY, Durig JR. Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and *ab initio* calculations of *S*methyl-*N*,*N*-dimethylthiocarbamate. Spectrochim. Acta, 1993, 49A: 2007-2026.
- 40. Michalska D, Wysokinski. The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory. Chemical Physics Letters, 2005, 403: 211-217.
- 41. Ditchfield R, Self-consistent perturbation theory of diamagnetism. I. A gage-invariant LCAO (linear combination of atomic orbitals) method for NMR chemical shifts. Mol Phys, 1974, 27: 714–722.
- 42. Wang Q, Fu Z.-Y., Li X, Yu L.-M., [(5-Bromo-1*H*indol-3-yl)methyl]dimethylazanium nitrate, Acta Cryst. 2012, E68: o1758.
- 43. Minteguiaga M, Dellacassa E, Iramain MA, Catalán CAN, Brandán SA. FT-IR, FT-Raman, UV-Vis, NMR and structural studies of Carquejyl Acetate, a component of the essential oil from *Baccharis trimera* (Less.) DC. (Asteraceae). J Mol. Struct. 2018, 1177: 499-510.
- 44. Minteguiaga M, Dellacassa E, Iramain MA, Catalán CAN, Brandán SA. A structural and spectroscopic study on carquejol, a relevant constituent of the medicinal plant Baccharis trimera (Less.) DC. (Asteraceae). J. Mol. Struct. 2017, 1150: 8-20.
- 45. Chain F, Ladetto MF, Grau A, Catalán CAN, Brandán SA. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (*Lepidium meyenii*) combining spectroscopic studies with ONION calculations. J. Mol. Struct. 2016, 1105: 403-414.
- 46. Chain F, Romano E, Leyton P, Paipa C, Catalán CAN, Fortuna MA, Brandán SA. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies. J. Mol. Struct. 2014, 1065-1066: 160-169.
- Minteguiaga M, Dellacassa E, Iramain MA, Catalán CAN, Brandán SA. Synthesis, spectroscopic characterization and structural study of 2-isopropenyl-3-methylphenol, carquejiphenol, a carquejol derivative with potential medicinal use. J Mol. Struct., 2018, 1165: 332-343.
- Raman spectrum of gramine in solid state available from https://epoatrabase.com/epoatrum/10h1Tb0e0He2e=SP.

https://spectrabase.com/spectrum/10h1Tb0g0Hq?a=SP ECTRUM_10h1Tb0g0Hq.

- 1H-NMR spectrum of gramine in DMSO-d6 solution available from https://spectrabase.com/spectrum/JEOjgvcU5n7?a=SPE CTRUM_JEOjgvcU5n7.
- 13C-NMR spectrum gramine in CDCl₃ solution available from: https://www.chemicalbook.com/SpectrumEN_87-52-5 13CNMR.htm.
- 51. 13C-NMR spectrum gramine in CDCl₃ solution available from: https://spectrabase.com/compound/Cz4X6Q5qIjU#GNi CfxHCVI3.