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1. Introduction

Let A be an associative, finite dimensional algebra over an algebraically closed field k. It is well known that there exists
a finite quiver Q such that A is Morita equivalent to kQ /I, where kQ is the path algebra of Q and I is an admissible
two-sided ideal of kQ.

A finite dimensional algebra is called biserial if the radical of every projective indecomposable module is the sum of two
uniserial modules whose intersection is simple or zero, see [11]. These algebras have been studied by several authors and
from different points of view since there are a lot of natural examples of algebras which turn out to be of this kind.

The representation theory of these algebras was first studied by Gel'fand and Ponomarev in [12]: they have provided the
methods in order to classify all their indecomposable representations. This classification shows that special biserial algebras
are always tame, see [21], and tameness of arbitrary biserial algebras was established in [10]. They are an important class
of algebras whose representation theory has been very well described, see [2,6].

The subclass of special biserial algebras was first studied by Skowrofiski and Waschbiisch in [19] where they character-
ize the biserial algebras of finite representation type. A classification of the special biserial algebras which are minimal
representation-infinite has been given by Ringel in [17].

An algebra is called a string algebra if it is Morita equivalent to a monomial special biserial algebra.

The purpose of this paper is to study the Hochschild cohomology groups of a string algebra A and describe its ring
structure. A

Since A is an algebra over a field k, the Hochschild cohomology groups HH' (A, M) with coefficients in an A-bimodule M
can be identified with the groups Ext"A_A(A, M). In particular, if M is the A-bimodule A, we simple write HH!(A).

Even though the computation of the Hochschild cohomology groups HH!(A) is rather complicated, some approaches have
been successful when the algebra A is given by a quiver with relations. For instance, explicit formula for the dimensions
of HH'(A) in terms of those combinatorial data have been found in [4,7-9,15,16]. In particular, Hochschild cohomology of
special biserial algebras has been considered in [5,20].
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In the particular case of monomial algebras, that is, algebras A = KQ /I where I can be chosen as generated by paths,
one has a detailed description of a minimal resolution of the A-bimodule A, see [3]. In general, the computation of the
Hochschild cohomology groups using this resolution may lead to hard combinatoric computations. However, for string alge-
bras the resolution, and the complex associated, are easier to handle.

The paper is organized as follows. In Section 2 we introduce all the necessary terminology. In Section 3 we recall the
resolution given by Bardzell for monomial algebras in [3]. In Section 4 we present all the computations that lead us to
Theorem 4.3 where we present the dimension of all the Hochschild cohomology groups of triangular string algebras. In
Section 5 we describe the ring structure of the Hochschild cohomology of triangular string algebras.

2. Preliminaries
2.1. Quivers and relations

Let Q be a finite quiver with a set of vertices Qg, a set of arrows Q1 and s,t: Q1 — Qg be the maps associating to each
arrow « its source s(o) and its target (). A path w of length [ is a sequence of | arrows ¢ ... such that t(a;) = s(¢j+1)-
We denote by |w| the length of the path w. We put s(w) =s(«q) and t(w) = t(¢g). For any vertex x we consider ey the
trivial path of length zero and we put s(ex) =t(ex) = x. An oriented cycle is a non-trivial path w such that s(w) =t(w). If
Q has no oriented cycles, then A is said a triangular algebra.

We say that a path w divides a path u if u = L(w)wR(w), where L(w) and R(w) are not simultaneously paths of length
zero.

The path algebra kQ is the k-vector space with basis the set of paths in Q ; the product on the basis elements is given
by the concatenation of the sequences of arrows of the paths w and w’ if they form a path (namely, if t(w) =s(w’)) and
zero otherwise. Vertices form a complete set of orthogonal idempotents. Let F be the two-sided ideal of kQ generated by
the arrows of Q. A two-sided ideal I is said to be admissible if there exists an integer m > 2 such that F™ C I C F2. The
pair (Q,I) is called a bound quiver.

It is well known that if A is a basic, connected, finite dimensional algebra over an algebraically closed field k, then there
exists a unique finite quiver Q and a surjective morphism of k-algebras v :kQ — A, which is not unique in general, with
I, = Kerv admissible. The pair (Q,I,) is called a presentation of A. The elements in I are called relations, kQ /I is said a
monomial algebra if the ideal I is generated by paths, and a relation is called quadratic if it is a path of length two.

2.2. String algebras
Recall from [19] that a bound quiver (Q, I) is special biserial if it satisfies the following conditions:

(S1) Each vertex in Q is the source of at most two arrows and the target of at most two arrows;
(S2) For an arrow « in Q there is at most one arrow B and at most one arrow y such that ¢ ¢ I and yo ¢ 1.

If the ideal I is generated by paths, the bound quiver (Q, I) is string.

An algebra is called special biserial (or string) if it is Morita equivalent to a path algebra kQ /I with (Q,I) a special
biserial bound quiver (or a string bound quiver, respectively).

Since Hochschild cohomology is invariant under Morita equivalence, whenever we deal with a string algebra A we will
assume that it is given by a string presentation A =kQ /I with I satisfying the previous conditions. We also assume that
the ideal I is generated by paths of minimal length, and we fix a minimal set R of paths, of minimal length, that generate
the ideal I. Moreover, we fix a set P of paths in Q such that the set {y + 1,y € P} is a basis of A =kQ /I.

3. Bardzell’s resolution

We recall that the Hochschild cohomology groups HH!(A) of an algebra A are the groups Ext"fFA(A, A). Since string al-
gebras are monomial algebras, their Hochschild cohomology groups can be computed using a convenient minimal projective
resolution of A as A-bimodule given in [3].

In order to describe this minimal resolution, we need some definitions and notations.

Recall that we have fix a minimal set R of paths, of minimal length, that generate the ideal I. It is clear that no divisor
of an element in R can belong to R.

The n-concatenations are elements defined inductively as follows: given any directed path T in Q, consider the set of
vertices that are starting and ending points of arrows belonging to T, and consider the natural order < in this set. Let R(T)
be the set of paths in R that are contained in the directed path T. Take p; € R(T) and consider the set

L1 ={p e R(T): s(p1) <s(p) <t(p1)}.

If L1 # ¢, let pp be such that s(py) is minimal with respect to all p € Ly. Now assume that pi, p2,..., p; have been
constructed. Let
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Liv1={p e R(T): t(pj_1) <s(p) <t(pj}.

If Ljyq#9, let pjyq be such that s(pj11) is minimal with respect to all p € Ljyq. Thus (p1, ..., pp—1) is an n-concatenation
and we denote by w(pq,..., ppr—1) the path from s(p1) to t(pn,—1) along the directed path T, and we call it the support of
the concatenation.

These concatenations can be pictured as follows:

P1 P3 ps

b2 1z

Let APp = Qo, AP1 = Q1 and AP, the set of supports of n-concatenations.
The construction of the sets AP, can also be done dually. Given any directed path T in Q take q; € R(T) and consider
the set

LY ={ge R(T): s(@1) <t(@) <t@n}.

If LT # @, let g be such that t(gz) is maximal with respect to all g € L{’. Now assume that gi,qz,...,q; have been
constructed. Let

L ={ae R(M): @) <t@ <s(gj-1)}-
If L%

i #9, let qj41 be such that t(qj4q) is maximal with respect to all g € L?il. Thus (qn—1,...,q1) is an n-op-concatena-
tion, we denote by w°P(qn—1,...,q1) the path from s(gy,—1) to t(qq) along the directed path T, we call it the support of the
concatenation and we denote by APY the set of supports of n-op-concatenations constructed in this dual way. Moreover,
we denote WP (qn_1,...,q1) = wP(q',...,q" D).

For any w € AP, define Sub(w) = {w’ € AP,_1: w’ divides w}.

Example 1. Consider the following relations contained in a directed path T:

P4
P1 3 Pe
b2 b5 b7
Then w = w(p1, p2, P4, P5, P7) is a 6-concatenation, w = w°(p1, p3, P4, Ps, P7) and
Sub(w) = {w(p1. p2. Pa. P5), W(P2, P3, Ps. P6). W(D3, P4, D6, D7)}
Lemma 3.1. (See [3, Lemma 3.1].) If n > 2 then AP, = APP.
The previous lemma says that for any n-concatenation (pi,...,pn—1) there exists a unique n-op-concatenation
(q',...,q"") such that w(p1,...,pn1) = wP(q',...,q""1). We want to remark some facts in this construction that

will be used later. First observe that w(p) = w%(p1) and w(p1, p2) = w°(p1, p2). Assume that n > 3. It is clear that
g ! = pn_1 since they are relations in R contained in the same path and sharing target. When we look for ¢"~2 we can
observe that the maximality of its target implies that t(p,_2) < t(g"~2). Since elements in R are paths of minimal length,
s(Pn—2) <s(q"2). Now t(q"2) < t(q"~") = t(pn—1) says that q"~2  p,_; and the minimality of the starting point of p,_;
says that s(q"~2) < t(ps—3). Then
n—2 n—2
s(Pn-2) <s(q"7°) <t(pn—3) and t(pn—2) <t(q"%) <t(pn-1).

Since s(q"2) < t(pn-3) < s(pn-1) = s(@*1) we can continue this procedure in order to prove that, for j=2,3,...,n—2,
the element ¢"~/ is such that

s(n—j) <s(q"7) <t(pp—j1).  tpn—j) <E(q"Y) <t(Pnjs1)
and
(@) < t(pn—j-1) <S(Pa—jr1) <s(g).

Finally the minimality of the source of p; and the inequality t(p1) < t(q') < t(p2) shows that q' = p;.

Lemma 3.2.Ifn,m > 0,n+m > 2 then any w(p1, ..., Pn+m—1) € APytm can be written in a unique way as
w(p1,..., Pntm—1) = @y y wm
with@w = w(p1, ..., pn_1) € APy, w™ = woP(@"t1 ... q"t™=1) ¢ AP and u a pathin Q. Moreover, p, =aubandq” =a’ ub’

with a,a’, b, b’ non-trivial paths, and hence u € P.
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Proof. From Lemma 3.1 we know that w(p1, ..., Pnem—1) = WoP(q", ..., q"t™ ). It is clear that w(p1, ..., pn—1) € AP, and
woP(@™t1, ..., q"t™m=1)y ¢ AP, In order to prove the existence of a path u we just have to observe that the construction
explained after the previous lemma and the definition of concatenations imply that

t(pn—1) <t(q"") <s(g™).

Finally, the relation of u with p, and q" follows from the inequalities
s(Pn) < t(pn—1) <s(@™1) <t(pn) and s(q") <t(pa—1) <s(@"') <t(q"). O

Now we want to study the sets Sub(w) in some particular cases. Observe that for any w € APy, ¥ = wP(q?,...,q" 1)
and ¥, = w(p1, ..., pp—2) belong to Sub(w) and w = L(y11)¥1 = ¥2R(¥2).

Lemma3.3.Ifw =w(p1,..., Pn_1) € AP, is such that p; has length two for some i with 1 <i<n — 1, then |Sub(w)| = 2.

Proof. Assume that p; = «B. If i =1, then any (n — 1)-concatenation different from (p1,..., pp—2) and corresponding to
an element in Sub(w) must correspond to a divisor of w(ps, ..., pn—1), hence it is equal to (p3, ..., pr—1). The proof for
i=n—11is similar. If 1 <i<n—1 and W € Sub(w) then W also contains the quadratic relation p; and by the previous
lemma we have that

w = Dwye= w = Dwwh-1-1
with t(®@w) = t(P W) and s(w D) = s(w®=1-D). Then W is DWW, or Wow®™ D, where W; is the unique element in

Sub(w™=D) sharing source with w9 and W; is the unique element in Sub(”w) sharing target with Ow. 0O

Lemma 34.If w = w(p1,..., pn_1) = WwP(q',...,q" 1) and g™ has length two for some m such that 1 <m < n then ¢™ = pp,
and "' = pp_1.

Proof. Let g™ = 8. In the construction explained after Lemma 3.1 we have seen that

s(@™) < t(pm—1) <t(g™ ).

Now s(qg™) = s(a) and t(g™ 1) = t(a), s0 t(pm—1) =t(@™ 1) and hence pm—_1 = g™ !. Analogously,

s(@™t) < t(pm) < t(q™),
s(@™t1) =s(B) and t(@™) =t(B), so t(pm) =t(g™) and hence py =q™. O
In some results that will be shown in the following sections, we will need a description of right divisors of paths of the

form wu, for w the support of a concatenation and u € P. Their existence depends on each particular case as we show in
the following example.

Example 2. Let w = w(p1, p2, P3, P4) € AP5, u € P with t(w) = s(u). Observe that the existence of a divisor ¥ € AP, for
n=4,5 such that wu = L(y¥)y depends on the existence of appropriate relations. For instance, if wu is the following path

D1 p3
_— u

b2 Pa

q4

the existence of ¥ = ¥°(q',q?, q°,q* depends on the existence of a relation whose ending point is between s(q?)
and s(q%).

Part of the following lemma has also been proved in [3, Lemma 3.2].
Lemma 3.5. [fnis even let w = w(p1, ..., pn—1) € APy.
(i) Ifv=vP(q%,...,q"" 1) € AP,_q is such that wa = bv ¢ AP, witha, b pathsin Q, a € P then t(p1) < s(q2), and

(i) ifu=u(q',...,q" 1) € AP, is such that wa = bu ¢ AP,,1 with a, b paths in P then there exists z € AP, 1 such that z divides
the path T that contains w and u and t(z) = t(u).
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Proof. (i) The assumption a € P implies that s(py—1) < s(@"~") < t(ps—1), and moreover s(pp—1) < S(¢"~") < t(pn—2) since
otherwise wa € AP,,1 because q"~' would belong to the set considered in order to choose p,. Now q"~2 = p,_1 or
t(pn—1) < t(g""2), and hence

s(pn—1) <s(@" ) <s(@"").
Now ¢"—3 is such that s(pn—3) < s(@"3) < s(g"1). The minimality of s(pn—2) says that s(pn—3) < s(@"3) < t(pn—4). An in-
ductive procedure shows that

s(Pn—2j+1) <s(q"2TT) <t(pp—2j) and ¢ =pp_pjp1 or t(pp_2ji1) <t(g"H).

Hence

s(pn—2j+1) <s(q"2) <s(g"HTT)

for any j such that 1 <2j—1,2j <n— 1. In particular, since n is even we have that

@ =p3 or s(p3) <s(q®) <s(@®)

and hence t(p1) < s(q?).

(ii) In order to prove the existence of z we have to show that there exists q° € R(T) such that z=2z?(q° q',...,q" 1)
belongs to AP,.1, that is, we have to see that the set {qg € R(T): s(q') < t(q) < s(g%)} is not empty. Suppose it is empty.
The assumption b € P implies that s(q%) < t(p1), a contradiction from (i). O

Lemma 3.6. (See [3, Lemma 3.3].) Ifm > 1 and w € APyp41 then | Sub(w)| = 2.
Now we are ready to describe the minimal resolution constructed by Bardzell in [3]:

e AQKAP, ® AT AQKAPy 1 @A —> - —> AQKAPp® A L5 A — 0

where kAPy = kQg, kAP; = kQ and kAP, is the vector space generated by the set of supports of n-concatenations and all
tensor products are taken over E = kQg, the subalgebra of A generated by the vertices.
In order to define the A-A-maps

dn:AQKAP,® A — AQKAP,_1 ® A
we need the following notations: if m > 1, for any w € APy;+1 we have that Sub(w) = {¢1, ¥} where w = L(y1)¢1 =
Y2R(Yr2); and for any w € APy, and ¢ € Sub(w) we denote w = L(¥)¥ R(y). Then

nl®e®1) =e;,

di1@ea®l)=a®eiy) ®1—-18®e5q) ®@a,

bGn(1®@weD= Y LAY RW),

Y eSub(w)
m1(1@WR 1) =L{W1) @Y1 ®1 -1 Y2 ® R(¥2).
The E-A bilinear map c¢: A ® kAP,_1 ® A — A ® kAP, ® A defined by
c@®yel)= > L(w) ® w® R(w)
weAP,
L(w)wR(w)=ayr

is a contracting homotopy, see [18, Theorem 1] for more details.
4. Hochschild cohomology

In this section we compute the dimension of all the Hochschild cohomology groups of triangular string algebras.
The Hochschild complex, obtained by applying Homa_4(—, A) to the Hochschild resolution we described in the previous
section and using the isomorphisms

Homy_4(A ® kAP,®, A) ~ Homg_g (kAP,, A)
is

0 —> Homg_g (kAPg, A) —> Homg_g (KAPy, A) —2> Homg_g (kAP3, A) - - -
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where

Fi(f) (@) =af(erw) — f(es@)a,
Fam(H(w)=" Y LA FARW),

Y eSub(w)
Fomp1(H)(w) =L(¥1) f(¥1) — fF(P2)R(2).

In order to compute its cohomology, we need a manageable description of this complex: we will describe explicit basis of
these k-vector spaces and study the behavior of the maps between them in order to get information about kernels and
images.

Recall that we have fixed a set P of paths in Q such that the set {y +I: y € P} is a basis of A=kQ /I. For any subset
X of paths in Q, we denote (X//P) the set of pairs (p, ¥) € X x P such that p, y are parallel paths in Q, that is

(X//P)={(p.¥) € X x P: s(p) =s(y). t(p) =t(y)}.

Observe that the k-vector spaces Homg_g (kAP,, A) and k(AP,//P) are isomorphic, and from now on we will identify ele-
ments (o, y) € (APy//P) with basis elements f(,, ,) in Homg_g(kAP,, A) defined by

ifw=p,
0 otherwise.

fo.p(w) = { 4

Now we will introduce several subsets of (AP,//P) in order to get a nice description of the kernel and the image of F;,. For
n =0 we have that (APy//P) = (Qo, Qo). For n=1, (AP1//P) =(Q1//P), and we consider the following partition

(Q1//P)=(1,1)1U(0,0)

where

(1, D1 ={(@,0): @€ Q1},
0,0)1 ={(&x,¥) € (Q1//P): a#y}.
For any n > 2 let

(0,0)n = {(p,¥) € (APy//P): p=a1paz and y ¢ a1kQ UkQaa},
(1,000 ={(p,¥) € (APy//P): p=a1pazand y € a1kQ,y ¢ kQaz},
0, Dn={(p,y) € APn//P): p=a1pazand y ¢ a1kQ,y €kQaz},
(1, Dn={(p. ¥) € (AP//P): p=ai1paz and y € a1kQaz}.

Remark 1.

(1) These subsets are a partition of (AP,//P).

(2) Any (p, y) € (AP,//P) verifies that p and y have at most one common first arrow and at most one common last
arrow: if p=ag...as8p0 and y =y ...as8y, with g, different arrows, then asp € I. Since a7 ...«s is a factor of y,
and y belongs to P, then o ...« ¢ I. But the n-concatenation associated to p must start with a relation in R(T), so
s =1, this concatenation starts with the relation o1 8 and the second relation of this concatenation starts in s(g8).

3) If (p,y)e (1,00, p=a1p,y =1y then p € AP,—1 and (p, y) € (0,0),—1. The same construction holds in (0, 1),.
Finally, if (p,y) € (1, Dn, p =102, Yy =1y then p € AP, and (0, P) € (0, 0)p—3.

(4) If (p,y) € (AP2//P) = (R//P), we have already seen that p and y have at most one common first arrow and at
most one common last arrow. Assume that p = o0, ¥ = 18Y. Since A is a string algebra and y ¢ I we have that
ooy € I and hence p = ojay. Since we are dealing with triangular algebras, we also have that p and y cannot have
simultaneously one common first arrow and one common last arrow. Then

(1,12 =90,
(1,02={(p,¥) € (R, P): p=a1a2,y €a1kQ,y ¢ kQaa},
0. D2={(p.¥) €(R.P): p=a102, ¥ ¢ 1kQ,y €kQorz}.

We also have to distinguish elements inside each of the previous sets taking into account the following definitions:

Y (Xx/Py={(p.y) e (X//P): Quy ¢ 1},
“(X//P)={(p.y) € (X//P): Qiy C1}.
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In an analogous way we define (X//P)*, (X//P)~, T(X//P)" =T (X//P)N(X//P)* and so on. Finally we define

(1,0, ={(p.y) € (1,0);: p=aipaz,y =17, 7Q1 C I},
(1,0, " ={(p,y) € (1,00, : p=a1paa,y =17,y Q1 £ 1},
TTO0, D) ={(0.y) € 70, Dz p=01pa2, Y =yoz, Q1y C 1},
0. Dn={(p.y) € (0. Dn: p=01poz,y =pa2, Q1 ¢ 1}

Now we will describe the morphisms F, restricted to the subsets we have just defined.

Lemma 4.1. For any n > 2 we have

(@) 7(0,0),_;U(1,0),_;U™(0,Dp—1 U, 1)1 CKerFy;

(b) the function F; induces a bijection from (0, 0);’_] to ~7(0, 1)p;

(c) the function F, induces a bijection from * (0, 0),_,t0(1,0),7;

(d) there exist bijections ¢ : (1, 0);; — T(0, 1) and ¥m : (1,0);," — (0, 1), such that

(id + (—1)" ' ¢n_1)((1,0);_,) C Ker Fy,

(=D"Fa((1,005_4) = (1, Dn

and
Fa(T(0,0) ) = (id + (=1)"¢n) ((1, 0);) U (id + (= 1)) ((1,0), 7).

Proof. (a) In order to check that (p,y) belongs to Ker F, we have to prove that for any w € AP, such that p divides w,
that is, w = L(p)pR(p) and [L(p)| + [R(p)| > O, then L(p)yR(p) € I.

If (p,y) € 7(0,0),_, then L(p)yR(p) € 1.

If (p,y)€(1,0),_; then yR(p) €I if [R(p)| > 0. On the other hand, if w = L(p)p we can deduce that L(p)y €I using
Remark 1(2): if L(p) ¢ I then the first relation in the n-concatenation corresponding to w has o as it last arrow and
y=oy.

The proof for ~(0, 1),—1 is analogous.

Finally, if (o, y) € (1, 1)5—1, the statement is clear for n=2,3.If n > 3 and p = o1 pay, from Remark 1(2) we get that if
|[L(p)| > 0 then the first relation in the n-concatenation corresponding to w has ¢/ as it last arrow, and if |[R(p)| > 0 then
the last relation has «; as it first arrow. The assertion is clear since ¥ = a1 P a2 and hence L(p)y R(p) = L(p)a1Ya2R(p) € 1.

(b) If (p,y) € (O, 0);:_1 there exists a unique arrow B such that y 8 € P. It is clear that pg € APy, (pB,vB) € (0, 1),

and Fn(f(p,y)) = (_1)nf(;0ﬁv)’ﬁ)'
(c) Analogous to the previous one.

(d) If (@p,ap) € (1,0);; then there exists a unique arrow B such ap g € P. It is clear that p € APn_1, (9, )T (0, 0);;7].
(KB, yYB) €1(0, )y and (@pB,aypB) € (1, 1. The statement is clear if we define ¢ (ap, @p) = (68, 7 B) since
Fmt1(f(58,78) = Fappapp = (=)™ Fryq (Flap.ap))-

In a similar way we can see that if («f, @) € (1,0),;" then there exists a unique arrow g such y 8 € P. Now we have that
P €APp_1, (B, P) € T(0,0)_; and (6B, 7B) € T(0, 1), so it is enough to define Y, (ctp, o) = (HB. P B).
Now if (4, ) € 7(0,0); _, there exist unique arrows «, 8 such that & € P and 8 € P. If app € P then (ap,ay) €

(1,0)f and ¢m(ap,ap) = (6B, YB) € T(0, . If app el then (@p,ap) e (1,0)," and ym(@p,ap) = (6B.VB) €
*7(0, 1);n. In both cases

Fn(f5.9) = fpapy + D" fpppp- O
Lemma 4.2. For any n > 2 we have that

dimgKer Fr = |~(0,0); ;| + |(1, 01| + |~ (0, Dnt| + |1, D]

and

dimy Im Fy = | =7 (0, Dy | + | (1, 0)n| + | (1, D]
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Proof. From the previous lemma we have that

dimgKer Fp = |~(0,0); ;| + |1, 00| + |70, Dn—t| + |1, Dacr | + ] (1,007, |

but

(1. 01| = |1, 004+ (1,004 |-
Moreover

dimgIm Fo = |7 (0, | + |(1, 007 = | + (1, Da| + |1, 00| +](1, 00,5,
but

(1,00 | =](1,00, 7|+ [, 0, 7|+ [1,0]. O

Theorem 4.3. If A is a triangular string algebra, then

1 ifn=0,
dimg HH"(A) = { 1Q1] +17(0,0); | — [Qol +1 ifn=1,
(0, 1)n| +17(0,0);, | ifn>2.

Proof. It is clear that HH?(A) = Ker F; is the center of A, and has dimension 1 since A is triangular. This implies that

dimy Im F = |(Qo//Qo)| — dimy Ker F; =|Qo| — 1.
So
dimy HH' (A) = dimyKer F2 — [Qo| + 1= |(1, 1)1| +|7(0,0); | = [Qol + 1
since (1,0)1 =¥ =(0,1)1, and |(1,1)1| =|Q]. Finally for n > 2
dimy HH" (A) = dimy Ker F;,;1 — dimy Im F;,
= }(1,1)n] + |(1,0)n| + |_(0»1)n’ + |_(0,0)E| - ’(170)n| - |(1, 1)n| - |"(0, 1)n|
=770, |+ |70, 0;,]. ©

The following corollary includes the subclass of gentle algebras, that is, string algebras A =kQ /I such that I is generated
by quadratic relations and for any arrow « € Q there is at most one arrow 8 and at most one arrow y such that ¢ €
and ya el.

Corollary 4.4. If A is a triangular quadratic algebra, then

1 ifn=0,
dimgHH"(A) = { |Q11 +17(0,0); | = 1Qol +1 ifn=1,
|7(0,0), | ifn>2.

As a consequence, we recover |1, Theorem 5.1].

Corollary 4.5. If A is a triangular string algebra, the following conditions are equivalent:

(i) HH'(A) = 0;

(ii) The quiver Q is a tree;
(iii) HHI(A) =0 for i > 0;
(iv) A is simply connected.

Proof. It is well known that for monomial algebras, A is simply connected if and only if Q is a tree. If HH'(A) = 0,
observing that |7(0,0); | > 0 we have that |Q1| — [Qo| + 1 =0. Then the quiver Q is a tree. All the other implications are
clear. O
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Example 3. For n > 1 let A, =kQ /I with

aq 0%} Op

Q:0 2 n—1 n
—_— —_— —_—
b1 B2 Bn

and I = (@i@iy1, BiBi+1){i=1,...n—1}- Then

1 ifi=0, 1 ifi=0,
dimHH (A)) = { 3 ifi=1, dim HH' (Agm) = { 2m ifi=1,
0 otherwise, 0  otherwise
and
1 ifi=0,
dimy HH (Agp o) = | 2T 1 =1,
ifi=2m+1,
0 otherwise.

5. Ring structure

In this section we prove that the product structure on the Hochschild cohomology of a triangular string algebra is trivial.
It is well known that the Hochschild cohomology groups HH'(A) can be identified with the groups Ext), ,(A, A), so

the Yoneda product defines a product in the Hochschild cohomology Zi>0 HH(A) that coincides with the cup product as
defined in [13,14].

Given [f] € HH™(A) and [g] € HH"(A), the cup product [gU f] € HH"™™(A) can be defined as follows: gU f = gf, where
fn is a morphism making the following diagram commutative

dm+n dm+1

A@KAPmin ® A" A @ kAP n_1 @ AZSL L I 4 @ kAP ® A

lfn J/fn_l J/fo !
ARKAP, @ A— "~ AQKAP, 1@ A—"""u i AQKAPyRA— DA 0.

&

A

In particular we are interested in maps f € Homa_a(A ® kAP, ® A, A) such that the associated morphism f €
Homg_g (kAPy, A) defined by f(w) = f(1®w®1) is in the kernel of the morphism Fp4q : Homg_g(kAPy, A) —
Homg_g (kAPr41, A) appearing in the Hochschild complex.

For any m > 0 we will use Lemma 3.2 in order to the define maps f, that complete the previous diagram in a commu-
tative way. Recall that if n >0 any w = w(p1, ..., Pmtn—1) € APm4n can be written in a unique way as

w=®wywm

with @w = w(p1, ..., pn_1) €AP; and w™ = woP (g1 .. g"tm=1) c AP,,. Let
fn: AQKkAP m @ A— AQKAP, ® A

be defined by

1®1® f(w) ifn =0,

(1wl = A ]
g { D APy LY R ()= wy L) @ Y ® R() f(w™) ifn > 0.

Remark 2. From Lemma 3.2 and Lemma 3.6 we can deduce that if n is even then
hAOWeD =10 Pweuf(w™)
because w(pi, ..., pn) = Pwub and hence

Y € Sub(w(p1, ..., pn)) ={¥1. y2=w(P1..... pi-1)}.
But b is a non-trivial path, then L(y)¥R(y) = @ wu implies that ¢ =y, = ®w.
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Proposition 5.1. Let m > 0 and let f € Homa_4(A @ kAP, ® A, A) be such thatf € Ker Fiyq1. Then f = fo and fr_1dmin =dn fn
foranyn>1.

Proof. It is clear that f = u fp since for any w € AP, we have that

pfod@weh=p(1@18 fw)=Ffw =Ffleawal).

Let n > 1 and let w € APp4+m;m. By Lemma 4.1 we have that f is a linear combination of basis elements in ~(0, 0),, (1,0),,

(0, )m, (1, Dy and (id + (—1)™¢m)((1,0);;). The proof will be done in several steps considering f = f(p,y) with (o, )
belonging to each one of the previous sets.

(i) Assume (p,y) € ~(0,0);,. Using that Q1 f(w™) C I we have that

fAl®@we1) = Y ey @RWF(W™)=Lu) @y & f(w™)
W eAP,
L)Y R@)=" wu

if there exists i € AP, such that L(y)y = ™ wu and zero otherwise. In the first case
hfileweh)= Y  LW)L@)®¢R@)[(w™)

APy
L@)oR(®)=y

=LW)L@) ® ¢ ® [(w™)
for ¢ € AP,_1 such that L(¥)L(¢)¢ = L(¥)y¥ = @wu. On the other hand, if n +m is even,

fnqdnm(l@w@l):fnq( > L(w’)®w’®R(w’))=L(w’)fn71(1®w’®1)

¥’ eSub(w)

with ¥/ such that L(y/)y' = w since [y’ ™)R(y") C f('™)Qq C I for any ¥ such that [R(y/)| > 0. In case n+m
is odd we get the same final result. Now Q1 f(¥' ™) c I and ¢/ = @Dy/uw™, then

L) facr (109 ®1) =L(¥)L(#) @ ¢’ ® F(w™)

if there exists ¢’ € AP,_1 such that L(y")L(¢")¢’ = L(y )@~ Dy’u = Mwy and zero otherwise.

The desired equality holds because: if ¥ and ¢’ do not exist, both terms vanish. If v exists, then it is clear that ¢’
also exists, in fact ¢’ = ¢ and L(y/')L(¢") ® ¢’ = L(¥)L(¢p) ® ¢. Finally assume that there is no ¥ € AP, such that
L(y)y¥ = Mwu and that ¢’ exists with L(y")L(¢') € P. If n is even, Lemma 3.5(i) applied on ™w and ¢’ says that
t(p1) < s(¢’) and hence L(y')L(¢") = 0. If n is odd, Lemma 3.5(ii) applied on ®~Dw and ¢’ implies the existence of v,
a contradiction.

(ii) Assume (p,y) € (1,0),,. Then p =ap =ap;---ps, ¥ =ap and ap; € R. Then f(1®@ w® 1) =0 if w™ # p. In this
case fp—1dp+m(1 @ w ® 1) also vanishes: the assertion is clear if p does not divide w and, if it does, w = L(p)pR(p)
with [R(p)| > 0 and f(p)R(p) vanishes. Assume now that w™ = p. This means that w contains the relation g"*! =
apq, by Lemma 3.4 we have that ¢"*! = p,1 and ¢" = p;, and by Lemma 3.3 we have that |Sub(w)| = 2. Then

frc1dnim(1@W R 1) =L(Y1) fic1(1 Q@Y1 @ 1) + (D™ fr_1(1 @ Y2 @ R(Y2)
=L@ i1 y1®1)
since f(l//(m)) =0, and Y1 = woP(q?,...,q" " 1) = =Dy yw™ = =Dy y 5 If n is odd, by Remark 2 we have that

frc1nim(1@w @ 1) =L(Y1) ® " Dyy @ vF(w™) =Ly @ "Dy @ vy,

and if n is even

faadnim(1@w®1) = > L(Y1)L($) ® ¢ ® R(¢)y -
$EAP,_1
L@)¢R@)=""Dyqy

On the other hand, w = ®wuw™ = Mwup and
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fl®we1) = Y. Ly eRW)f(w™)
Y EeAP,
L)Yy RW)="D wu

= > L) ® ¥ ® R(Y)ap.
Y EeAP,
L)Y RW)=D wu

By definition we have that s(ppt1) < t(pn) < t(Pns1), and ppr1 = a1 S0 t(pn) = t(e). Then Mwua = ™Dw and

(¥ € APy, L)Y R(W) = Pwu} = Sub("TVw) \ {v}
where 4 = woP(q?, ...,q") = " Dyyva and "Dw = L(y1)¥. So
AW =di1 (10 ™ Pwe 1)y — ()" 'Ly JT 7,
and hence
dnfr(1®@W®1) =(-D"LY1)dn(1® Y @ 1)P.
If n is odd

di(1®¥ ®1) =L @1 ®1— 1892 ® R(Y2)
with ¥ = @Dy, R(Y2) = va and L(y1)L(1) =0 because

s(L(y1)) =s(p1) <t(p1) =t(q") <s(¢®) = s@r) = t(L(n))
implies that py divides L(y1)L(Yr1). So

dnfrQ@W® 1) =L1) ® V2 @RW2)P =LY1) @ "Dy @ vy.
Finally, if n is even
hfrl@wel)= Y L@)LE$) @¢QR@)P

$eAPr1
L@)PR@)=1

and the desired equality holds since

{6 €APh_1: L(9)pR($) = ""Vyyv} = {¢ € APi_1: L@)PR(P) = ¥} \ (1)

and, as we have already seen, L(tpl)L(%) =0.

(iii) If (p,y) € (1, 1)y then p=apB =0ap;...psf, ¥y =app and apr, psp € R. Then f(1 @ w @ 1) =0 if w™ £ p. In
this case fp_1dp+m(1 ® w ® 1) also vanishes: the assertion is clear if p does not divide w and, if it does, Lemma 3.3
says that |Sub(w)| =2 and then

frc1nm(1@wW R D) =LWY1) fu—1(1 @Y1 @ D+ (=D fr_1(1® ¥2 @ DR(¥Y2).

The first summand vanishes since I/f](m) =w(™ £ p. For the second one, observe that it vanishes if I/fz(m) #p. If 1//2("” =p

then Y = W(p1..... Prim—2) With Pnim—2 = psB and pnym—1 = BR(Y2). Then f(yy™)R(¥2) =P BR(Y2) =0.
Assume now that w™ = p. This means that w contains the relation ¢"t! = ap; and the proof follows exactly as in (ii).
(iv), (v) Similar to the previous ones. 0O

In order to describe the product [gU f] we need to choose convenient representatives of the classes [f] and [g], see [5].
Given f € Homa_x(A Q kAP ® A, A) we define fS and fZ as follows: we start by considering basis elements foo.m

fo.r if (0, ¥) € (0, 0)m,
D™ fpioyy  if (0. y) € (1,00,

S = (D™ fynioyy i (0, ¥) € (1,005,
?r 1o if (0.7) € (1,0);~,
feo.r) if (0,y) €0, D,

0 if (0.7) € (1, Dm



936 M,J. Redondo, L. Romdn / Journal of Pure and Applied Algebra 218 (2014) 925-936

and
S if (0, y) € (0,0)m,
(_1)m_1f¢y;1(p’},) lf(PyV) €+(071)m7

f(>p = D" iy H0Y) €170, D,
’ 0 if (0,7) € 770, D,
fo.r if (0,y) € (1,0)m,
0 if (0,y) e, Dn

and then we extend by linearity. By Lemma 4.1 we have that f — f<, f — f2 e ImFy, for any m > 0, and hence [f] =
[fS1=[fZ]. Moreover, observe that f< is a linear combination of basis elements in (0, 0);; U (0, 1), and fZ is a linear
combination of basis elements in (0, 0);; U (1, 0)p,.

Theorem 5.2. If A is a triangular string algebra and n, m > 0 then HH"(A) UHH™(A) = 0.
Proof. Let [f] e HH™(A) and [g] € HH"(A). We will show that [gS U f>]=0. Let w € APy, w = Pw u w™ then

gSUfPIewel) = > LANESW)IRW) FZ (w™).
Y eAP,
L)Y R@)=Dwu

Since f € Ker F;; and g € Ker F,, we know that f and g are linear combination of basis elements as described in Lemma 4.1.
Moreover, f is a linear combination of basis elements in ~(0,0)~ U(1,0) and g< is a linear combination of basis elements
in =(0,0)~ U (0, 1).

The vanishing of the previous computation is clear if fZ or g< are basis elements associated to pairs in ~(0,0)~
because for n,m > 0 we have that |§S(y)| > 0 and |f>(w(m))| > 0. Finally, if fZ is a basis element associated to a pair
(ap,ay) € (1,0) and g< is a basis element associated to a pair (0’8, y’B) € (0,1) then we only have to consider the
summand with ¥ = p’8 and w™ = ap. In this case w verifies the following conditions: pny1 = ¢"*! = ap;, @wu, and
hence also ™+Dw, contains the quadratic relation p}8, by Lemma 3.3 the element ™*Vw has exactly two divisors, one of
them sharing the ending point with ®*Dw, so ¢ = @w and p, = Buc. Now the summand we are considering is

A

LAESWRW) FZ (W™) = gS(Mw)u 2 (w™)
=y'Buay
=y'pay=0. O
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