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Performance of the spin-dependent Krieger-Li-Iafrate approximation in jellium slabs
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The possible spin-polarized states of metallic jellium slabs have been studied by means of a Krieger-Li-
Iafrate (KLI) approximation for the exchange potential. The stability of the different magnetic states has
been determined by using a fixed-spin-moment method. Notably, in the search for solutions with different
magnetizations, the KLI approximation leads to the sudden filling of electronic states for either majority or
minority spin channels, and also to hysteresis effects, as the system crosses these points of discontinuity.
These effects are completely missed by the local spin-density approximation (LSDA), which exhibits instead a
continuous behavior. Close to the density corresponding to the Bloch instability of the homogeneous 3D electron
gas, different exotic magnetic configurations appear, some of them featuring a spontaneous breaking of inversion
symmetry around the slab center. As compared to the LSDA, the spin-dependent KLI approximation offers a
moderate increase of the stability of a slab antiferromagnetic state.
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I. INTRODUCTION

Most of the codes aimed at the ab initio calculation
of electronic properties of solids contain, in one way or
another, some ingredients coming from density-functional
theory (DFT) [1–3]. Its widespread use is mainly based on
the reasonable balance between accuracy and computational
cost, offered by most of the standard approximations [local
density approximation (LDA), generalized gradient approx-
imation (GGA), meta-GGA, etc.]. While approximations to
the exchange-correlation energy kernel are very common and
in some cases unavoidable (correlation) in DFT, since its very
proposal the search for more accurate approximations has
never stopped [4]. Within this context, the development of
the optimized effective potential (OEP) method [5] within
the Kohn-Sham (KS) formulation of DFT has contributed
in giving precise recipes about how the exchange and cor-
relation potentials should be obtained from the correspond-
ing exchange and correlation energy functionals [6,7]. When
restricted to exchange alone, omitting correlation, the OEP
method has also been denoted as exact-exchange (EXX) or
x-only OEP (x-OEP).

In a previous paper [8], we developed a general DFT-
OEP formal scheme for quasi-two-dimensional electron gas
(Q2DEG) systems, either isolated (closed) or in contact with
a particle bath (open). A typical example of a Q2DEG closed
system is the one of the present paper: a metallic slab with
a jellium approximation for the discrete positive ions [9–12].
On the other side, in DFT-OEP calculations of the electronic
structure of n-doped semiconductor quantum wells, the same

are usually considered as open Q2DEGs [13,14]. In fact, in
Ref. [8] we have shown that both possible representations
(open or closed) of a given Q2DEG system are equivalent,
the choice of one or the other being essentially a question of
convenience. The formalism is flexible enough as to include
the possibility of having spontaneously spin-polarized inho-
mogeneous ground states. The aim of this paper is to provide
numerical examples of this spin-dependent formalism, mea-
suring its performance for the exchange potential, and for the
specific case of a metallic slab, in the jellium approximation
for the discrete positive ions.

Regarding the application of the DFT-EXX method to
“real” insulator and semiconductor slabs, the same has been
mainly developed in the last years by Engel [15–19]. In these
works, the electronic structure of thin slabs of graphene and
Si(111) has been studied in detail, both numerically through
EXX (in the KLI approximation) plane-wave pseudopotential
calculations, and also analytically. Among the main results, he
has proven that the exchange potential behaves like −e2/z in
the asymptotic (vacuum) region also for real slabs [20], and
that the EXX calculations are feasible for these systems, at
least within the widely used and most of the time accurate
KLI-approximation to the full OEP exchange potential [21].

The possible spin-polarized states of thin metallic slabs
have been studied in the past. Okazaki and Teraoka (Ref. [22])
obtained the ground states for this system in the low-density
limit, using the local-spin-density approximation (LSDA) for
the exchange-correlation kernel. Several states, such as non-
magnetic (N), fully polarized ferromagnetic (FPF), partially
polarized ferromagnetic (PPF), and antiferromagnetic (AF)
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were found, depending on the slab width d . The same problem
has been discussed by Sen in Ref. [23], that studied the
electronic and magnetic structures in (100) films of K and Cs,
having thicknesses of one to seven layers. The calculations
for these “real” metallic slabs were inside the plane-wave
projector augmented wave formalism of DFT, using both
LSDA and a GGA. Only a six-layer Cs film was found to
have a ferromagnetic state, degenerate with a paramagnetic
state within the accuracy of the calculations. To extract the
behavior of the spin-dependent exchange potential that we are
proposing here in the cleanest possible way, correlation effects
will be omitted in all of our EXX(KLI) calculations. For
this reason, we also also an extended set of reference x-only
LSDA calculations, useful for comparison with the EXX(KLI)
ones. We have verified that LSDA results including correlation
effects (not shown) compare well with those of Ref. [22].

The rest of the paper is organized as follows: in Sec. II, the
essentials of the spin-dependent KLI exchange potential are
given; Sec. III is devoted to introduce the fixed-spin-moment
(FSM) method and to provide the reference set of x-only
LSDA results; Sec. IV is devoted to the x-only KLI results,
including a ground-state determination. The conclusions are
given in Sec. V.

II. KRIEGER-LI-IAFRATE APPROXIMATION
FOR JELLIUM SLABS

Our calculations are restricted to a jellium-slab model,
where the discrete character of the positive ions inside the
metal is replaced by a uniform distribution of positive charge
(the jellium) [24,25]. If not stated otherwise, Hartree atomic
units are used throughout this work [26]. The positive jellium
density is defined as

n+(z) = n0 θ

(
d

2
− |z|

)
, (1)

where d is the width of the slab with edges at z = − d/2 and
z = d/2 and [27] n0 = 3/(4πr3

s ); θ (x) represents the Heavi-
side step function: θ (x) = 1 if x > 0 and θ (x) = 0 if x < 0.
The positive jellium generates an attractive potential that con-
fines the movement of electrons in the z direction, while they
are free to move along the x − y plane. Defined this way, the
slab has global (but not local) charge neutrality. From a more
general perspective, this jellium-slab model represents also an
example of a Q2DEG [28,29]. In the Q2DEG, the electrons
are also confined in one spatial direction by a confinement
potential, while they are free to move in the perpendicular
direction. In the limit of very wide slabs (d/λF � 1), it also
becomes a model of a metallic surface [24,25].

If translational invariance in the x − y plane is assumed,
and the confinement coordinate is z, the single-particle KS
orbitals can be written as a product of a plane wave along
ρ‖ = (x, y) and a so-called subband orbital in z,

ψkiσ (r) = eik·ρ‖
√

A
ξiσ (z) , (2)

where k = (kx, ky) is the in-plane wave vector, A is the area
of the Q2DEG, i is the subband index (= 1,2,3,...), and σ

the spin index (up or down). The full factorization between
the solution in the x − y plane and the z direction is only

valid for a local potential [30]; since the OEP method lies
within the framework of the KS implementation of DFT,
the factorization implies no lack of generality, owing to the
locality of the KS potential. On the other side, the assumption
of translational invariance in the x − y plane does imply some
lack of generality. According to the results in Ref. [31],
however, the assumption is well justified for the relatively
high 2D densities typically found in Q2DEGs. The energies
Ekiσ = k2/2 + εiσ of the single-particle KS orbitals in Eq. (2)
are the sum of a continuous free-electron spectrum k2/2 cor-
responding to the in-plane movement, and a discrete subband
spectrum εiσ related to the confined motion in the jellium
self-generated quantum well. The subband orbitals ξiσ (z) are
obtained from the self-consistent solution of the KS equation
along the confinement coordinate,

[
−1

2

∂2

∂z2
+ Vsσ (z)

]
ξiσ (z) = εiσ ξiσ (z) , (3)

where the KS potential Vsσ (z) = Ve(z) + VH(z) + Vxcσ (z),
with Ve(z) being the external potential, VH(z) the Hartree po-
tential, and Vxcσ (z) is the exchange-correlation (xc) potential.
The latter may be split in the sum of its exchange and cor-
relation contributions: Vxcσ (z) = Vxσ (z) + Vcσ (z). Since the
Hamiltonian in Eq. (3) is real, the subband wave functions
can be taken to be real without loss of generality [32]. The
main quantity in spin-dependent DFT is the spin-resolved 3D
electronic density, that for our slab geometry is given by

nσ (z) =
∑

i

θiσ niσ ξiσ (z)2 , (4)

where the occupation factors niσ are

niσ = μ − εiσ

2π
, (5)

with θiσ ≡ θ (niσ ) and μ denotes the chemical potential.
The total number of electrons per unit area n (hereafter the

areal density) is given by the integral over all z of Eq. (4),

n =
∑

iσ

θiσ niσ = Ns

2π
μ −

∑
iσ

θiσ

2π
εiσ , (6)

where Ns = ∑
iσ θiσ is the total number of occupied subbands.

By imposing the condition n0 d = n, the slab global charge
neutrality is satisfied, and the chemical potential μ deter-
mined. Let us note that, as given above, n+(z), nσ (z), niσ , and
n are dimensionless densities; to recover the corresponding
dimensions, the right-hand side (rhs) of the corresponding
equations should be multiplied by a−3

0 , a−3
0 , a−2

0 , and a−2
0 ,

respectively. Typically, the areal density is about 1014 − 1015

electrons/cm2 for the case of metallic jellium slabs.
Additional convenient variables for spin-polarized systems

are the spin-density polarization m(z), which relates to the
spin resolved density through

m(z) = n↑(z) − n↓(z) , (7)

and the global relative spin polarization η, given by

η = 1

n

∫ ∞

−∞
m(z) dz. (8)
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An important parameter for the present paper is the slab
magnetic moment per unit area M, defined by

M = η n0 d , (9)

in units of μB, the Bohr magneton. Besides constants, and for
fixed slab size (d), η and M are equivalent physical quantities.

In a previous paper, we have developed a general DFT-
OEP formal scheme valid both for Q2DEG’s either isolated
(closed) or in contact with a particle bath (open) [8]. In the
present case of an isolated jellium-slab, the physical situation
corresponds to a closed system with fixed areal density n.
This imposes the following constraint on the allowed density
perturbations:

∑
σ=↓,↑

∫ ∞

−∞
δnnσ (z) dz = 0 , (10)

where δnnσ (z) denotes a spin-density variation that leaves n
unchanged. That is, in a closed system, the change in the total
number of electrons, as expressed by the integral of Eq. (10),
must be exactly zero. Using this constraint and the fact that
the set of variables {Vsσ (z), n} and {Vsσ (z) + K, n} determine
exactly the same density nσ (z), where K is a spin-independent
constant, it is possible to obtain the complete set of equations
that must satisfy the DFT-OEP scheme [8].

In this context, the Krieger-Li-Iafrate (KLI) [33] approxi-
mation for the exchange potential Vxσ (z) can be written as [8]

Vxσ (z) � V KLI
xσ (z) =

∑
i

θiσ niσ ξiσ (z)2

nσ (z)
[uxiσ (z) + �V xiσ ],

(11)
where uxiσ (z) is the orbital potential given by [34]

uxiσ (z) = 1

2Aniσ

1

ξiσ (z)

δEx

δξiσ (z)
, (12)

and

�V xiσ =
∫ ∞

−∞
ξiσ (z)2

[
V KLI

xσ (z) − uxiσ (z)
]
dz . (13)

In Eq. (12), Ex = Ex↑ + Ex↓ is the OEP exchange energy
functional, defined below.

In addition, an important constraint has to be fulfilled [8],

Cxσ = Cxσ ≡ Cx , (14)

where the overline indicates Cxσ = ∑
i Cxiσ /Nsσ , σ indicates

the spin projection opposite to σ , and the scalars Cxiσ are
defined by [35]

Cxiσ = θiσ

∫ ∞

−∞
ξiσ (z)2V KLI

xσ (z) dz − 1

A

∂Ex

∂niσ

= θiσV
i
xσ − 1

A

∂Ex

∂niσ
. (15)

The constraint of Eq. (14) admits an elegant interpretation
in a representation in which the independent variables n↑(z)
and n↓(z) are replaced by n(z) = ∑

σ nσ (z) and m(z). In this
case, the change in total energy around the equilibrium den-
sities contains the term μB(Cx↑ − Cx↓)δM/2. Thus, Eq. (14)
expresses the stability of the closed interacting system with
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FIG. 1. Asymptotic behavior of the spin-dependent exchange
potential in the x-KLI approximation, for rs = 5.0 and d/λF = 0.8.
Full curves represent V KLI

xσ (z) and V LSDA
xσ (z), with σ = ↑ (σ = ↓)

for the majority (minority) spin component. The dashed curves are
asymptotic approximations for the many-subband x-KLI exchange
potential (see text for more details), and the two arrows on the
right signal the two different asymptotic limits for the ↑ and ↓ KLI
exchange potentials.

respect to changes in the total magnetization. A thorough
derivation of this can be found in Appendix B of Ref. [8].

Since, in the closed system, V KLI
xσ (z) is defined up to

a floating constant, one can choose (either for σ =↑ or
σ =↓, but not for both) that V KLI

xσ (z → ∞) → 0 by imposing
the condition �V xmσ σ = 0, that implies that V xmσ σ = uxmσ σ ,
where mσ is the index of the highest occupied subband [36].
On the other side, the other spin component of the exchange
potential V KLI

xσ (z) is fully determined by the constraint in
Eq. (14), and then has the asymptotic limit V KLI

xσ (z → ∞) →
�V xmσ σ = V xmσ σ − uxmσ σ , which in general will be different
from zero.

As an explicit example of this asymptotic behavior, we
display in Fig. 1 the exchange potential V KLI

xσ (z) for val-
ues of z deep in the vacuum region for the case rs = 5.0
and d/λF = 0.8. The asymptotic limit of the minority spin
component (with just one occupied subband) is given by
V KLI

x↓ (z → ∞) → 0.0065 H − e2/z (1 − 8.932 a0/z). On the
other side, the asymptotic limit for the majority spin com-
ponent (with two occupied subbands) is given by −e2/z (1 −
9.045 a0/z), according to our choice of the floating constant.
In addition, for comparison, Fig. 1 shows, for the same
slab, the decay of the V LSDA

xσ (z). From this comparison, the
much slower decay of the x-KLI exchange potentials becomes
evident, as compared with the x-LSDA. Another explicit ex-
ample of this remarkable asymptotic behavior of the exchange
potential is given in Fig. 3 of Ref. [8], within the framework
of the full EXX approach.

The total energy per unit area, considering the slab geome-
try and neglecting correlation is given by

E (d, η) = Eel(d, η) +
∑

σ

[EKσ (d, η) + Exσ (d, η)] , (16)
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where

EKσ (d, η) =
occ∑

i

niσ

[
2πniσ −

∫ ∞

−∞
ξiσ (z)

∂2ξiσ (z)

∂z2
dz

]

(17)
is the spin-dependent kinetic energy contribution,

Eel(d, η) = 1

2

∫ ∞

−∞
VH(z)[n(z) − n+(z)] dz (18)

is the electrostatic energy due to all noncompensated positive
and negative charge distributions in the slab, and

Exσ (d, η) = −
∑
i, j

θiσ θ jσ

∫ ∞

−∞

∫ ∞

−∞
ξiσ (z)ξ jσ (z)ξiσ (z′)ξ jσ (z′)

× g(
√

4π niσ �z,
√

4π n jσ �z)

4π (�z)3
dz dz′, (19)

is the spin-dependent exchange energy contribution. In the last
equation, �z = |z − z′|, and

g(s, s′) = s s′
∫ ∞

0

J1(s t )J1(s′ t )√
1 + t2

dt

t

is the “universal” function introduced by Kohn and Mattsson
[37], with J1(x) being the first-order cylindrical Bessel func-
tion [38].

In the x-only LSDA, the exchange potential V KLI
xσ (z) is re-

placed by V LSDA
xσ (z) = −[12nσ (z)/π ]1/3, while the exchange

energy is expressed as

ELSDA
xσ (d, η) = −

(
81

32π

)1/3 ∫ ∞

−∞
nσ (z)4/3dz . (20)

The corresponding total energy per unit area for the slab will
be denoted as ELSDA(d, η). Eqs. (19) and (20) are two differ-
ent approximations for the slab exchange energy functional.
The increased computational cost associated with the calcula-
tion of the exchange potential from the OEP expression stems
from the fact that the latter is an implicit functional of the
density, while ELSDA

xσ (d, η) is an explicit functional of same.
Note the nonphysical explicit exponential decay of V LSDA

xσ (z)
for z taking values far in the vacuum region, dictated by the
(physically correct) exponential asymptotic decay of nσ (z).
This should be contrasted with the physically correct decay
of V KLI

xσ (z) discussed above. Both features are clearly seen in
Fig. 1. Regarding the accuracy of the KLI approximation, all
previous evidence in Q2DEG systems point to the fact that
the KLI exchange potential is very close to the full EXX
exchange potential. This has been checked explicitly for the
same particular slab of Fig. 1 (see Fig. 2, top panel, in Ref.
[8]). Besides, the KLI exchange potential becomes the exact
one in the one-subband regime for each spin component [8,9].

III. FIXED-SPIN-MOMENT METHOD AND x-ONLY
LOCAL SPIN DENSITY RESULTS

To find the different magnetic states present in the metallic
jellium slabs, we resort to the FSM method [39–41]. In
the FSM method, the magnetic moment of the system (M)
is constrained to have a fixed value and thus a particular
magnetic solution is forced. Using this constraint, it is possible
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FIG. 2. x-LSDA total energy (top panel) and external magnetic
field (lower panel) as a function of η, for rs = 5 and d/λF = 0.68.
The vertical line at η � 0.31 signals the location of the stable PPF
configuration.

to explore the energy landscape of the system E (d, η) for dif-
ferent values of M and to identify stable magnetic structures.
Two approaches are used to implement this constrained search
in the magnetic moment. In the first approach, the forced
magnetic solution can be achieved through the application
of an external magnetic field H. The main drawback of this
approach is that the function M(H) usually is nonmonotonic
and during the self-consistent process it is difficult to adjust
the value of H to obtain the desired solution. In a different
approach that is more practical, this constraint is accom-
plished by introducing two separate Fermi levels for each spin
electronic state [39,41]. These Fermi levels are varied in the
self-consistent calculation so as to get the desired magnetic
solution.

As mentioned above, it is then possible to detect the
different stable magnetic structures through the study of the
function E (M ) ≡ E (d, η). For a fixed volume, stable solu-
tions are presented by M values corresponding to points where
H = dE/dM = 0 and d2E/dM2 > 0 [39–41]. Therefore,
there are two possible ways of determining the stable mag-
netic states: (i) as the points where the function E (M ) has
minima, and (ii) as the points of the function H(M ), where
H = 0 and its derivative is positive.

Previous results in metallic jellium slabs, based on the spin
DFT within the framework of the LSDA using the Janak-
Moruzzi-Williams exchange-correlation energy [42,43], de-
termined the existence of several stable magnetic states [22].
Magnetic states with symmetrical spin densities (even with
regard to the slab center) such as N (η = 0), PPF (0 < η < 1),
and FPF (η = 1) states, and a state that breaks that symmetry,
the AF state, were reported [22]. In what follows, we will
briefly describe the stable magnetic states obtained through
the FSM method for metallic jellium slabs in the x-only local
spin-density approximation (x-LSDA), as they represent a
good guide for the main study of this paper that is based on
the x-only KLI approach (x-KLI). As in Ref. [22], we will
differentiate states with symmetrical spin densities regarding
the slab center (symmetric states) or without this symmetry
[nonsymmetric (NS) states].
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FIG. 3. x-LSDA spin-density profiles (top panel) and effective
potentials (lower panel), for the configurations at η = 0 (N), η �
0.31 (PPF), and η = 1 (FPF) in the previous figure.

As discussed above, to find efficiently magnetic states
with a given value of η, we introduce two separate chemical
potentials for each set of spin subbands. To obtain final
states with symmetrical spin densities, we started the self-
consistent procedure with initial spin densities that fulfill this
condition. In the same way, final states without that symmetry
were searched with initial NS spin densities. Once the self-
consistent solution is obtained, we compute the total energy
per unit area and the external magnetic field from Eq. (16), and
through the relation H = (μ↑ − μ↓)/2, respectively, where
μ↑(↓) is the chemical potential for a spin-up (-down) set of
subbands. The units of H are [H/μB].

Figure 2(a) shows the calculated total energy E (d, η) as a
function of η obtained for symmetric states in the x-LSDA for
a slab with rs = 5.0 and d/λF = 0.68. Also, the external mag-
netic field H versus η, for the same case, is shown in Fig. 2(b).
From both figures, two stable states can be recognized, the
FPF state (η = 1) [44] and the PPF state with a value of
η � 0.31. The N state at η = 0 is the paramagnetic one
(η∗(z) ≡ 0) and can only be obtained by requiring, in addition
to the spin-densities being symmetrical, the condition of hav-
ing both spin-densities matched. The spin-density profiles and
the effective potentials for these N, FPF, and PPF states are
shown in Figs. 3(a) and 3(b), respectively. The small “bump”
that appears in some of the potentials around the slab center is
a consequence of the occupation of the second subband slab
state, whose wave-function ξ2σ (z) has a node at z = 0.

For symmetric states, the computed E (d, η) and H(d, η)
in metallic jellium slabs up to a slab width d/λF = 2 show,
in addition to the paramagnetic state, the appearance of FPF
states in slabs with rs � 4 (for rs � 3 the FPF state is only
stable on the thinnest slabs), and the stability of PPF states
in some widths of slabs for rs � 4. The case rs = 5.0 is the
one with the greatest variety of PPF states. For this case,
contour plots of E (d, η) and H(d, η) are shown in Figs. 4
and 5, respectively. In Fig. 4, the stable states (energy min-
ima) are indicated with black symbols, the energy maxima
are indicated with red ones, and the absolute extremes are

FIG. 4. x-LSDA rescaled total energy e(d, η) = [E (d, η) −
Emax]/(Emax − Emin) (color scale) in the η vs d plane, for rs = 5.
Minima are indicated with black symbols, maxima with red symbols.
Absolute extremes, either minimum or maximum, are represented
with circles of the corresponding color. Due to the rescaling, e = 0
represents the maximum energy in the whole data set (Emax) while
e = −1 the minimum (Emin).

represented with circles. In Fig. 5, black and red symbols
indicate the points where the external magnetic field are null
with dH/dη > 0 and dH/dη < 0, respectively. Both figures
show the emergence of stable PPF states for slab widths
within the following intervals 0.60 � d/λF � 0.85, 1.10 �
d/λF � 1.30, and 1.60 � d/λF � 1.74. Also, this systematic
study shows that, for rs = 6.0 and d/λF � 1.08, there exist
stable N states which are nonparamagnetic, i.e., η = 0 but
η∗(z) �= 0. This N nonparamagnetic state is of lower energy
than the paramagnetic one and its main characteristic is the

FIG. 5. x-LSDA rescaled external magnetic field h(d, η) =
H(d, η)/(Hmax − Hmin ) (color scale) in the η vs d plane for rs =
5. Points where H(d, η) = 0 (white color in the color map), are
denoted with black symbols for stable magnetic configurations
(dH(d, η)/dη > 0 for η < 1) and with red symbols for unstable ones
(dH(d, η)/dη < 0). Hmax (Hmin) is the maximum (minimum) field
in the data set.
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lines to the N nonparamagnetic state with m(z) �= 0.

presence of opposite spin-density polarization [m(z)] between
the center and the edges of the slab. To exemplify this, the
spin-density profiles and the effective potentials of both N
states (the paramagnetic and nonparamagnetic states) for the
case of rs = 6.0 and d/λF = 1.40 are shown in Figs. 6(a) and
6(b), respectively.

From the range of considered densities, NS states are
only observed in metallic jellium slabs with rs = 5.00 and
rs = 6.00. There are NS states of two different types: states
where nσ (z) = nσ (−z) for which η = 0 (AF state), and states
with η �= 0 (NS-PPF states). The systematic study of E (d, η)
and H(d, η) surfaces shows that the AF states are stable
in slab widths within the interval 0.56 � d/λF � 0.64 for
rs = 5 and, in slab widths 0.52 � d/λF for rs = 6. In all
cases, the AF state has lower energy than the paramagnetic
N state. While the AF state implies necessarily some loss of
kinetic energy by the electrons of a given spin being localized
roughly on half of the slab width, at low enough densities this
is more than compensated by the gain in exchange energy.
Figure 7(a) shows the spin-density profiles of the AF state
for the particular case of rs = 6.0 and d/λF = 1.40. Also,
the effective potentials for the same particular case are shown
in Fig. 7(b). The NS-PPF states only appear in slab widths
0.88 � d/λF for rs = 6. This state has the peculiarity of
presenting an electron density not symmetrical with respect
to the center of the slab. Figure 8 shows the spin-density
profiles of these NS-PPF states for the case of rs = 6.0 and
d/λF = 1.70. In this case, two stable states are observed, a
state of higher energy where η = 0.20 [shown in Fig. 8(a)] and
a state with η = 0.63 [shown in Fig. 8(b)]. The main feature
here is that n(z) �= n(−z). While this is not easy to grasp
directly from the densities, we also display the difference
�n(z) = n(z) − n(−z), that vanishes for a symmetric state,
but is different from zero for an asymmetric state. Note that
the size for �n(z) is given by the right-vertical axis, whose
scale is smaller by a factor of about 10−2 as compared with
the left-vertical axis. In brief, the asymmetry exists, but is
very small (n0 � |�n(z)|). It is important to clarify that this
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NS-PPF state is not a pathological one due to the absence
of correlation. We have found that this same state appears
in LSDA including correlation effects as in Ref. [22] in the
low-density regime (rs = 6.00) for 0.96 � d/λF � 1.04 and
1.28 � d/λF � 1.32.

By comparing the total energy of all possible states, the
ground state can be determined for each rs value and slab
width. Figure 9 shows the magnetic configuration of the
ground states in metallic jellium slabs up to slab widths
d/λF = 2. As expected, in the wider slabs the fundamental
state is of the FPF symmetric type at low electronic densities
(rs = 6) and of the N symmetric paramagnetic type at higher
electronic densities (rs � 4). For sufficiently narrow slabs, the
ground state corresponds to an FPF symmetric state, even for
high electronic densities. The case rs = 5 presents the greatest
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FIG. 9. Jellium slab ground-state configurations as resulting
from x-only total energy LSDA calculations in the rs vs d plane.

variety of fundamental states. In this case, it is observed that
depending on the slab width, the ground state can be the
FPF symmetric, N paramagnetic, PPF symmetric, or AF state.
This is clearly related to the fact that for rs � 5.45 the homo-
geneous 3D electron gas has a paramagnetic–ferromagnetic
instability first suggested by Bloch [45]. In our finite-size slab,
as the density approaches this critical value, one should expect
that the system be close to several possible stable states.

IV. x-ONLY KLI RESULTS AND DISCUSSION

The procedure used with the FSM method to find the stable
magnetic states in the x-KLI approximation is slightly differ-
ent from that used for the x-LSDA case (previous section).

On one side, it is well known that the x-KLI approach
is an approximation to the full EXX approach, which is the
method that seeks for that local potential that minimizes
the total energy of the system when correlation is neglected
and the exchange component of the total energy is given
by the EXX energy functional [33]. For the case of metal
slabs, this component is given by Eq. (19). But in x-KLI, the
approximation is made at the level of the exchange potential,
by appealing to a kind of “mean-field” argument [6,7]. As a
consequence, there is no x-KLI energy functional from where
the x-KLI potential may be obtained, and the stable states
obtained in the x-KLI approach do not have to be states that
minimize the total energy of the system [46]. As a result, a sig-
nificant qualitative difference is expected in the E (d, η) curve
obtained for the x-KLI case with that obtained for the x-LSDA
case. In the case of x-KLI, the total energy of the system at its
minimum does not have to represent stable states. Therefore,
unlike the case x-LSDA considered in the previous section,
the stable magnetic states in the x-KLI approximation can
only be recognized through the curve H(d, η), more precisely
from the points where H = 0 and its derivative is positive.
To illustrate the above, Fig. 10(a) shows the calculated total
energy E (d, η) [Eqs.(16)–(19)] as a function of η obtained
for symmetric states in the x-KLI approximation for the case
rs = 5.0 and d/λF = 0.72 in a range of η values around a
stable PPF state. Also, the external magnetic field H(d, η)
versus η, for the same case, is shown in Fig. 10(b). As can
be seen from the figure, the minimum energy is at η � 0.29
and this value does not match the η value of the stable state
PPF (η � 0.27).
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FIG. 10. x-KLI total energy E (d, η) (top panel) and external
magnetic field H(d, η) (lower panel) as a function of the global
relative spin polarization η, for rs = 5 and d/λF = 0.72. The vertical
line at η � 0.27 signals the stable PPF configuration, that differs
from the point were dE/dη = 0 (η � 0.29).

In addition to this difference in the FSM procedure for
determining stable states between the x-KLI and x-LSDA ap-
proaches, there are also qualitative differences in the H(d, η)
and E (d, η) curves between the two approaches. Figure 11(a)
shows the external magnetic field H versus η obtained for
symmetric states in the x-KLI approximation for the specific
case rs = 2.0 and d/λF = 0.30. The evolution of the occupa-
tion factors for the same case is shown in Fig. 11(b). In both
figures, the calculations are carried out with either increasing
(black squares) and decreasing (red circles) η values. On
the one hand, it can be observed that, in a region close to
η = 0.38, the behavior of H(d, η) is different if the systematic
study is performed by increasing or decreasing the values of
η. As can be seen in Fig. 11(b), in this region the subband
configuration of the system changes. More specifically, there
is a small range of η’s (0.36 � η � 0.38) for which the
occupancy of the second subband with spin up is either null
(for increasing η) or finite (for decreasing η). This dependence
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0.30. In the first case, x-only LSDA results are also displayed.
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of the subband configuration on the history also reflects in
H(d, η), which displays a hysteresis behavior in the same
range of η’s. In the x-LSDA case, this does not happen
because the subband configuration [and then also H(d, η)]
does not depend on its history in the whole range of η. On the
other hand, besides the mentioned hysteresis, discontinuities
in the behavior of the occupation factors and H(d, η) are
observed in the same region for x-KLI. These discontinuities
show another qualitative difference with respect to x-LSDA
results, in which this fact is not observed. These discontinu-
ities, associated with abrupt subband configuration changes,
are also present in other computed quantities. Figure 12 shows
how a discontinuity is also present in the total energy of the
system, for the same case.

These two x-KLI characteristics shown for the case
rs = 2.0 and d/λF = 0.30, the hysteresis and the discontinu-
ities, have been found in all the cases studied in regions where
a change in the subband configuration of the system occurs.
As this particular case, the branch with the lowest energy
in the region of hysteresis corresponds to the configuration
that occupies the smallest number of subbands. The size
of the region of hysteresis, as well as the intensity of the
discontinuities, are very dependent, however, on the value of
rs and the width of the slab studied. More specifically, these
effects are very noticeable in high-density regime (rs = 2 − 3)
and narrow slabs, while they tend to disappear in the opposite
density regime and wide slabs.

A. Magnetic structures in the x-KLI approximation

1. Symmetric states

The thorough study of the H(d, η) values in metallic
jellium slabs up to slab widths d/λF = 2 and rs = 2 − 6
shows, in addition to the paramagnetic state in all cases,
the appearance of FPF states in slabs with rs � 4. As in
x-LSDA, for rs � 3 the FPF state is only stable on the thinnest
slabs. More explicitly, in rs = 2 and rs = 3, the FPF state is
stable for d/λF � 0.24 and d/λF � 0.68, respectively. These
stability regions are larger than in the x-LSDA case, which are
d/λF � 0.16 for rs = 2 and d/λF � 0.52 for rs = 3. Since
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FIG. 13. External magnetic field H(d, η) as a function of η, for
rs = 4.00 and d/λF = 0.60. Both x-only LSDA and KLI results are
displayed.

the FPF state is induced by the exchange interaction, one must
conclude that the x-LSDA underestimates exchange effects, as
compared with x-KLI.

Unlike x-LSDA, where in the region 0.56 � d/λF � 0.64
for rs = 4 the PPF state is stable, in the case of x-KLI no sta-
bility of the PPF state is observed in the whole region studied
for the case rs = 4. Figure 13 shows the external magnetic
field H versus η, obtained for symmetric states in x-LSDA
and x-KLI approximations for a slab width d/λF = 0.60 and
rs = 4.0. As can be seen from the figure, the discontinuity
of H(d, η) caused by the change of system configuration
(the second spin-down subband becomes emptied) is decisive
for the absence of stability of the PPF phase in the case
of x-KLI. The external magnetic field never becomes zero,
unlike x-LSDA where it varies continuously from negative to
positive values when increasing η. For values of rs = 5 and
rs = 6, the PPF state presents stability in some slab widths.
As in the case of x-LSDA, rs = 5 presents the greatest variety
of PPF states for slab widths less than 2 λF . The behavior
of H(d, η) for the case rs = 5 shows the following intervals
where the PPF state is stable: 0.68 � d/λF � 0.84, 1.20 �
d/λF � 1.32, and 1.72 � d/λF � 1.80. These intervals are a
bit smaller than the stability intervals of x-LSDA (see Sec. III).
As for rs = 4, the discontinuities present in the curve H(d, η)
for x-KLI are crucial for the nonoccurrence of stability in
some slab widths and therefore the decrease of these stability
intervals for rs = 5 and rs = 6.

As in x-LSDA, the x-KLI results show the existence of an
N state (η = 0) other than the paramagnetic one for rs = 6.0
and 1.0 � d/λF . Again, as in x-LSDA this N nonparam-
agnetic state is of lower energy than the paramagnetic one
and its main characteristic is to present opposite spin-density
polarization [m(z)] between the center and the edges of the
slab. The spin-density profiles of the N nonparamagnetic state
for the case of rs = 6.0 and d/λF = 1.40 in the x-KLI and
x-LSDA approximations are shown in Fig. 14. In general, both
approximations show very similar spin-density profiles for the
N nonparamagnetic state, as can be seen in the particular case
shown in Fig. 14.
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2. Nonsymmetric states

For the whole range of densities considered, NS states are
only observed in metallic jellium slabs with rs = 5.0 and rs =
6.0, as in x-LSDA.

The AF state, that is characterized by nσ (z) = nσ (−z) and
η = 0, is stable in slab widths within the intervals 0.56 �
d/λF � 0.72, 1.08 � d/λF � 1.16 and 1.56 � d/λF � 1.72
for rs = 5. Unlike what happens in x-LSDA, in this case the
regions of stability of the AF phase extend to wider slab
regions, containing a greater number of occupied subbands.
For x-LSDA, this phase is observed in a range in which the
configuration of the system consists of an occupied subband
in each component of spin, while in x-KLI the first interval in
which this phase appears corresponds to the same configura-
tion, but the following intervals correspond to a configuration
of two and three occupied subbands in each spin component.
As examples, Figs. 15(a) and 15(b) show the spin-density
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ization density m(z) for rs = 5.0 and d/λF = 0.68 (left panel) and
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0.0

0.5

1.0

1.5

D
en

si
ty

 [ 
n 0 ]

n↑
n↓
n

-1 0 1

-1

0

1

m
(z

) [
 n

0 ]

(a)

(b)

FIG. 16. x-KLI spin-density profile (top panel) and spin-
polarization density m(z) (lower panel) for a NS-PPF state with
rs = 6.0 and d/λF = 1.16, and η = 0.32.

profiles for the case d/λF = 0.68 and d/λF = 1.12, respec-
tively. Also, in Figs. 15(c) and 15(d), the spin polarization
corresponding to the same cases are shown. As can be seen
from the figures, a greater overlap between the spin densities
is observed in the case of the wider slab. In general, if a
greater number of occupied subbands for the AF state occurs,
then a greater degree of overlap between the spin densities is
observed. For rs = 6, the AF states are stable in slab widths
0.52 � d/λF , showing characteristics similar to those found
in the x-LSDA results.

The NS-PPF state, that is characterized by η �= 0 and its
electron density not symmetrical with respect to the center of
the slab, is stable in slab widths within the intervals 0.92 �
d/λF � 1.24, 1.32 � d/λF � 1.64 and 1.72 � d/λF � 2.00
for rs = 6. As it happens in symmetric states, the discontinu-
ities in the curve H(d, η) for x-KLI are crucial for the nonoc-
currence of stability in some slab widths. Figure 16(a) shows
typical spin-density profiles of PPF states for the case of
rs = 6.0 and d/λF = 1.16, for η = 0.32. Also, in Fig. 16(b),
the spin-polarization density corresponding to the same case
is shown. As explained in the next section, this configuration
is the slab ground state for this particular value of rs and d .

The results detailed in this section show a great variety of
magnetic structures. By way of summary, Fig. 17 shows all the
stable magnetic configurations (symmetric and NS) obtained
in the approximation x-KLI for the densities and sizes of
systems studied.

B. Ground state

As in the x-LSDA case, by comparing the total energy
of the different states, the ground state of the system is
determined. Figure 18 shows the ground-state configurations
which are found in metallic jellium slabs from the exhaustive
search in the studied region of densities and magnetizations. It
is observed that, as it happens in x-LSDA, the ground state is a
FPF symmetric state for all the slabs narrower than a specific
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FIG. 17. Jellium slab magnetic structures as resulting from x-
only total energy KLI calculations in the rs vs d plane.

width that depends on each value of rs. For wider slabs, we
find different situations for the densities studied. In the cases
rs = 2 and rs = 3, the ground state is an N symmetric state,
as in x-LSDA. The same happens for rs = 4 and this makes a
difference with the x-LSDA results because the ground state is
never a PPF symmetric state. For rs = 5, when increasing the
width of the slab the fundamental state goes from being a N
symmetric state to an AF state and then a PPF symmetric state.
This N-AF-PPF cycle is repeated by increasing the width of
the slab even more. Finally, in the case rs = 6, the ground state
is an FPF symmetric state except in one region where it is the
AF state and in another small region where the ground state is
NS-PPF.

There is a growing amount of literature devoted to the
comparison of the generalized KS hybrids and local or semilo-
cal density approximations [47]; in particular and in con-
nection with the present paper, magnetic ground states have
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FIG. 18. Jellium slab ground-state configurations as resulting
from x-only total energy KLI calculations in the rs vs d plane.

been predicted for bulk systems [48,49] and surface systems
[50]. These hybrid functionals replace a fraction of the local
exchange by a nonlocal Hartree-Fock exchange potential.
On the other side, two of the authors of the present paper
have made, in the past, a direct comparison of the OEP and
HF self-consistent calculations for jellium slabs, assuming
a paramagnetic situation [51]. It is suggested here that it
will be interesting to perform the same comparison for the
present narrow slabs, since this may shed some light about the
performance of hybrid functionals for slabs.

V. CONCLUSIONS

In summary, our systematic study has revealed the dif-
ferent stable magnetic configurations for metallic jellium
slabs, using a spin-dependent x-only KLI approximation for
the exchange potential. This systematic study has been car-
ried out for jellium slabs up to slab widths d/λF = 2 and
2.0 � rs � 6.0. To explore the different magnetic states
present in the metallic jellium slabs, we have resorted to the
FSM method.

As a guide for the main objective of this paper, namely,
the study of metallic jellium slabs using the KLI approxima-
tion, we have first studied these systems using the x-LSDA.
Depending on the density of the metallic jellium slab and
its width, we have found numerous stable magnetic solutions
that can be classified into two groups, states with symmetrical
spin densities regarding the slab center (symmetric states) or
without this symmetry (NS states). Among the states with
symmetrical spin densities, we have found the FPF state,
the PPF, and N states. About N states, we have found the
paramagnetic and the nonparamagnetic ones. The last state
is characterized by having opposite local relative spin po-
larization between the center and the edges of the slab. In
the case of NS states, we have found the AF state and the
NS-PPF state. Finally, we have determined the ground states
in the whole region of values of densities and widths of
slabs studied. Basically, in the wider slabs the fundamental
state is of the FPF symmetric type at low electronic densities
(rs = 6) and of the N paramagnetic type at higher electronic
densities (rs � 4). For sufficiently narrow slabs, the ground
state corresponds to an FPF symmetric state, even for high
electronic densities. In the case rs = 5, it is observed that,
depending on the slab width, the ground state can be the FPF
symmetric, N paramagnetic, PPF symmetric, or AF state.

In the study of metallic jellium slabs using the x-KLI
approximation, we have first identified two qualitative dif-
ferences with the x-LSDA study in the FSM procedure to
find the different magnetic states. First, the fact that the
x-KLI potential is not a functional derivative, and second, the
presence of abrupt changes in the subband occupancies, that
leads to hysteresis in the associated magnetic field curves.
These phenomena of hysteresis and discontinuities, absent in
an x-LSDA study, requires special attention in these regions
to determine the possible magnetic states. Basically, we have
found that in the regions of hysteresis and discontinuities,
no stable states are found. Depending on the density of the
metallic jellium slab and its width, we have found all possible
stable magnetic solutions presented in x-LSDA study. In the
case of symmetrical spin-densities, the FPF state, the PPF
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state, the N paramagnetic state, and the N nonparamagnetic
state are obtained. In the case of NS spin-densities, we have
found the AF state and the NS-PPF, as in x-LSDA. Finally,
we have determined the ground state in the whole region of
values of densities and widths of slabs studied. As it happens
in x-LSDA, the ground-state configuration consists of a FPF
symmetric state for all the slabs narrower than a specific
width that depends on each value of rs. For wider slabs, and
rs = 2 and rs = 3, the ground state is represented by an N
symmetric state. The same happens for rs = 4, and this makes
a difference with the x-LSDA results because the ground state
is never a PPF symmetric state. For rs = 5, we have found,
depending of the slab width, as ground state the N symmetric
state, the AF state, and the PPF symmetric state. Finally, in
the case rs = 6, the ground state is conformed by the FPF
symmetric state except for some widths where it is represented
by the AF state and by the NS-PPF state.

Using the information included in Figs. 9 and 17, the
following estimates can be made. Concerning the x-LSDA, the
ground state is N paramagnetic in the 63.2% of the all possible
configurations, is FPF symmetric in the 30%, PPF in a 6%,
and AF NS in a 0.8%. The same estimates in the x-only KLI

approximation are as follows: N paramagnetic (62.4%), FPF
symmetric (26.8%), AF (6.4%), PPF symmetric (4%), and
NS-PPF (0.4%). Within a general context of similar estimates,
we conclude from here that x-KLI mainly favors the AF state
in comparison with the x-LSDA.

The inclusion of correlation effects compatible with the
spin-dependent EXX approach discussed here is left for future
development. In principle, the same orbital-dependent corre-
lation energy functional as the one used in Refs. [13,14] in
the context of semiconductor quantum wells may be also used
here, at least for the case of narrow slabs with a few occupied
subbands.
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