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The conformational space of the 10–55 fragment of the B-domain
of staphylococcal protein A has been investigated by using the
electrostatically driven Monte Carlo (EDMC) method. The ECEPP�3
(empirical conformational energy program for peptides) force-field
plus two different continuum solvation models, namely SRFOPT
(Solvent Radii Fixed with atomic solvation parameters OPTimized)
and OONS (Ooi, Oobatake, Némethy, and Scheraga solvation
model), were used to describe the conformational energy of the
chain. After an exhaustive search, starting from two different
random conformations, three of four runs led to native-like con-
formations. Boltzmann-averaged root-mean-square deviations
(RMSD) for all of the backbone heavy atoms with respect to the
native structure of 3.35 Å and 4.54 Å were obtained with SRFOPT
and OONS, respectively. These results show that the protein-
folding problem can be solved at the atomic detail level by an ab
initio procedure, starting from random conformations, with no
knowledge except the amino acid sequence. To our knowledge,
the results reported here correspond to the largest protein ever
folded from a random conformation by an initial-value formulation
with a full atomic potential, without resort to knowledge-based
information.

For many years, methods have been developed to compute the
3D structures of polypeptides, based on empirical atomic-

based potential energy functions and global optimization of such
functions. Because of limitations in computer power, these
methods have been confined to small molecules such as the
pentapeptide enkephalin (1–15), the decapeptide gramicidin S
(16–21), and linear fibrous proteins such as collagen-like re-
peating polytripeptides (22–24). Inclusion of explicit or implicit
hydration in the potential function only exacerbated the global
optimization problem. However, with the recent availability of
cost-effective alternatives to large supercomputers, such as
Beowulf class cluster computers (25), it is now possible to extend
the application of such ab initio physics-based methods to larger
molecules.

In this article, we report the results of the global optimization
of the all-atom force field ECEPP�3 (empirical conformational
energy program for peptides) (26–29) plus two implicit hydra-
tion models [SRFOPT (Solvent Radii Fixed with atomic solva-
tion parameters OPTimized; ref. 30) and OONS (Ooi,
Oobatake, Némethy, and Scheraga solvation model; ref. 31)],
using the electrostatically driven Monte Carlo (EDMC) method
(32, 33) to explore the conformational space of the 10–55
fragment of the B-domain of the staphylococcal protein A
molecule, efficiently. The structure of this fragment of the
B-domain of the protein A molecule is known from x-ray (34)
and NMR (35) investigations, and from minimalist and all-atom
simulations (36–46). However, such initial-value-formulated
simulations (except for ref. 46, which is a boundary-value
formulation) were not started from a random conformation.
Therefore, in this work, we attempted to provide an extensive

exploration of the conformational space by starting from two
different randomly chosen conformations, using a Beowulf class
cluster.

Methods
Evaluation of the Conformational Energy. The conformations were
generated with the EDMC method (32, 33). An all-atom rep-
resentation of the chain was used with the ECEPP�3 force field
(26–29). Two alternative forms of the potential energy function
were used to evaluate the total energy, E(rp), as a function of the
coordinates rp, namely,

E(rp) � Eint(rp) � Fsas(rp), [1]

where Eint(rp) is the internal conformational energy of the
molecule in the absence of solvent, assumed to correspond to the
ECEPP�3 energy of the neutral molecule and Fsas(rp) represents
the solvation free energy as defined by Vila et al. (30). Two
different solvation models were used during the simulations,
namely, SRFOPT (30) and OONS (31).

The Starting Point: Generation of the Random Conformation. The N
and C termini of the 10–55 fragment of the B-domain of the
staphylococcal protein A molecule were blocked by amino-
COCH3 and carboxyl-NH2 groups, respectively. The simulations
were started from two different initial random conformations,
i.e., namely rnd�1 and rnd�2. For each of these random confor-
mations, all backbone and side-chain dihedral angles were
chosen randomly between 180.0o and �180.0o, with the excep-
tion of the dihedral angles � of the peptide group, which were
always chosen in the trans (180.0o) conformation. All backbone
and side-chain dihedral angles (including �’s) were allowed to
vary freely during the simulations, with the exception of proline
residues. In the ECEPP�3 fixed geometry approximation, both
up (U) and down (D) puckering conformations of the pyrroli-
dine ring (which pertain to the following: � � �53.0° and �1 �
�28.1° and � � �68.8° and �1 � 27.4° positions, respectively, of
the C� atom of the proline residue) are considered. At the
beginning of a simulation, the puckering of the proline residues
is chosen randomly. However, up and down puckering and cis7
trans isomerization of the peptide group preceding proline
residues were allowed to permute during the course of the
simulations. During the EDMC search, if a proline residue is
selected for a change, an attempt is made to change the
puckering state with a probability of 1�2. In addition, the
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probability of changing the dihedral angles � preceding proline
from trans to cis is 1�3, and the values of � were allowed to vary
around the trans and cis conformations.

The Conformational Search. For each rnd�1 and rnd�2 initial
conformation, an ensemble of conformations was generated by
using the EDMC method, as shown in Table 1 for runs 1–4.
During each of these runs, the energies of the initially generated
and subsequent conformations were minimized by using the
secant unconstrained minimization solver (SUMSL) algorithm
(47) in combination with ECEPP�3 plus a surface accesible
solvation model, either SRFOPT or OONS. Only a small set of
low-energy conformations was retained. This set corresponded
to the accepted conformations from the Monte Carlo path
followed by the EDMC method in each of these runs. It should
be noted that the acceptance rate (see Table 1) is low for all of
the runs in our simulations. However, as was noted previously
(48, 49), this acceptance rate is characteristic of the EDMC
procedure.

Evaluation of the Results: Computation of the Root-Mean-Square
Deviation (RMSD). We chose to compare the results of our
simulations with the minimized-averaged structure of the 10–55
fragment of the B-domain of the staphylococcal protein A
molecule free in solution determined from NMR at 30°C by
Gouda et al. (35), and not with the three-dimensional structure
of the 10–55 fragment of the B-domain of the staphylococcal
protein A molecule bound to the Fc fragment of human poly-
clonal IgG, determined by x-ray crystallographic analysis by
Deisenhofer (34). The reason for this decision was that the
B-domain of the staphylococcal protein A molecule forms
contacts with the Fc fragment in the crystal, and this could be
the main source of the structural differences observed between
the NMR and x-ray structures, i.e., the fragment¶ Ser-42–Ala-55
constitutes helix III of the NMR structure whereas, in the
crystallographic structure, there is no structural information
available for the segment Ala-49–Lys-59, and the portion of the
polypeptide chain from Ser-42–Glu-48 is in an extended con-
formation.

Because all of the NMR constraints used to determine the
most probable conformation in solution represent population-
weighted-averaged measurements, we computed the Boltzmann-
averaged values for the RMSD from the minimized-averaged
structure obtained from the NMR experiment (35), using the
separate ensembles of conformations generated from each of two
different starting random conformations.

Results
Figs. 1 and 2 show a scatter plot of the C� RMSDs from the native
structure for all the accepted conformations listed in Table 1 for
the runs with the SRFOPT and OONS surface area model,
respectively. Table 2 shows the Boltzmann-averaged RMSDs
from the native fold obtained with these solvation models for all
the accepted conformations obtained for each of the simulations

¶Residue numbers correspond to those used for the NMR form in the Protein Data Bank: file
1BDD.

Table 1. Summary of the EDMC runs*

Run Solvent model
No. of energy-minimized

conformations†

No. of accepted
conformations‡

Lowest energy,
kcal�mol

Total computational
time, hr§

1¶ SRFOPT 2,168,453 14,654 �715.5 262
2� SRFOPT 2,199,341 14,539 �720.7 191
3** OONS 815,002 6,546 �651.4 80
4†† OONS 431,214 3,045 �652.9 50
5‡‡ SRFOPT 247,471 1,840 �702.5 47
6§§ OONS 402,627 3,075 �654.3 47

*Using an average of 60 processors for each run.
†Number of generated conformations, using the procedure described in Methods.
‡According to the Metropolis criterion.
§Differences in computational time reflect different starting conformations and different judgments as to when the runs converged.
¶Run 1 was started from random conformation rnd�1.
�Run 2 was started from random conformation rnd�2. The lowest-energy identified with this solvation model is indicated in boldface type
and belongs to a native-like structure.
**Run 3 was started from random conformation rnd�1.
††Run 4 was started from random conformation rnd�2, which led to a mirror image of the native fold. The energy of the mirror-image

conformation is indicated in italics.
‡‡Crosscheck test. Run 5 was started from the lowest energy conformation described in ** and run subsequently with the SRFOPT

solvation model. Energy of the mirror-image conformation is indicated in italics.
§§Crosscheck test. Run 6 was started from the lowest-energy conformation described in ¶ and run subsequently with the OONS solvation

model. The lowest-energy identified with this solvation model is indicated in boldface type and belongs to a native-like structure.

Fig. 1. C� RMSD vs. the total energy, computed by Eq. 1 using the SRFOPT
solvation model, for each of the accepted conformations obtained during runs
1 and 2. The scatter plot does not include those conformations obtained after
the crosscheck (run 5). The lowest-energy identified in the figure belongs to
the lowest-energy structure (�720.7 kcal�mol) identified in all the runs carried
out with the SRFOPT model, namely, runs 1, 2, and 5.
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starting from rnd�1 and rnd�2. The plots in Figs. 1 and 2 pertain
to the C� (rather than the backbone heavy atoms or all of the
heavy atoms) RMSDs from the native structure because there
are very good correlations between these quantities and the C�

RMSDs, with a correlation coefficient of R � 0.997 and 0.980,
respectively. In other words, plots of the RMSDs of the backbone
heavy atoms or all of the heavy atoms, instead of the C� rms
deviations from the native structure, do not add any new
information.

The NMR-determined structure of the 10–55 fragment of the
B-domain of the staphylococcal protein A molecule is composed
of a bundle of three �-helices as shown in Fig. 3b, i.e., helix I
(Gln-10–His-19), helix II (Glu-25–Asp-37), and helix III (Ser-
42–Ala-55). The lowest energy conformation found with SR-
FOPT (�720.7 kcal�mol) exhibits a similar distribution of
helices, i.e., helix I (Gln-11–His-19), helix II (Arg-28–Asp-37),
and helix III (Pro-39–Asp-54). Helices II and III are antiparallel

to each other in both the NMR-derived native fold and in the
lowest-energy conformation found with either SRFOPT or
OONS, as shown in Fig. 3 c and d.

Independent of the starting conformation, the SRFOPT sol-
vation model always led to a native-like structure. Both of the
lowest-energy conformations identified in these runs (�715.5
and �720.7 kcal�mol, respectively) have native-like folds. Anal-
ysis of the runs from Table 1 shows that the potential function
with the OONS solvation parameters led to two broad basins
with similar energies. One of the basins contains the native-like
structure (�651.4 kcal�mol) and the second one contains con-
formations that represent mirror images of the native-like struc-
ture (RMSD vs. Energy is indicated in Fig. 2).

To investigate the depth of the basins containing the native-
and mirror-like conformations, we carried out additional
crosschecking runs. The lowest-energy conformation obtained
with SRFOPT in run 2 (�720.7 kcal�mol) was used as the
starting conformation with the OONS solvation model and,
vice versa, the lowest-energy conformation, i.e., the mirror
image, obtained with OONS in run 4 (�652.9 kcal�mol) was
used as the starting conformation with the SRFOPT solvation
model. The resulting total energy shown in Table 1 for the
mirror image (in italics) indicates that, for both solvation
models, the mirror image is higher in energy than those
belonging to the native-like conformation, after the cross-
checking. It should be noted that no constraints were used to
restrict the search during these runs.

It was found that the potential energy with OONS seems to
distinguish the native-like structure (�654.3 kcal�mol) from the
mirror image (�652.9 kcal�mol); however, the energy difference
between these two basins is quite small. The potential energy
with SRFOPT, on the other hand, shows a bigger difference
between both structures, namely, �720.7 kcal�mol for the
native-like vs. �702.5 kcal�mol for the mirror image structure,
indicating that this solvation model can detect the correct fold.
A summary of these crosschecking runs is shown in Table 1, runs
5 and 6.

The scatter plots shown in Figs. 1 and 2 indicate that the
differences in energy among the few conformations close to the
lowest one are small whereas they display a broad dispersion in
RMSD. This result represents one of the main difficulties in
identifying the native-like structure. On the other hand, this
result means that the total energy, as a scoring function, must be
extremely precise to distinguish the correct folded structure from
wrong ones. This requirement constitutes a challenge for im-
proving existing force fields or for developing new potential
functions. In addition, the small energy gap between basins
containing quite different folds represents a great challenge for
search methods. Regarding this observation, it can be seen from
Table 2 that the EDMC method did find a conformation that is
quite close to the native structure (with an RMSD for the C�

atoms of 2.85 Å). However, this conformation with the lowest
RMSD (�698.3 kcal�mol) is higher in energy than the lowest
energy minimum (�720.7 kcal�mol) found for this solvation
model by �20 kcal�mol. Fig. 4 shows the superposition of this
structure with the native-NMR fold. It should be pointed out, for
comparative purposes only, that the C� RMSD of the fragment
containing helix I, helix II, and part of helix III, i.e., residues�

128–162 of the x-ray (35) and equivalent residues 10–44 of the
NMR (36) structures, is 2.0 Å.

Discussion and Conclusions
There is an ongoing interest about how to represent the unfolded
state of a protein. According to some authors (50), the denatured

�Residue numbers correspond to those used for the crystalline form in the Protein Data
Bank: file 1FC2.

Fig. 2. C� RMSD vs. the total energy, computed by Eq. 1 using the OONS
solvation model, for each of the accepted conformations obtained during runs
3 and 4. The scatter plot does not include those conformations obtained after
the crosscheck (run 6). The mirror image (�652.9 kcal�mol) of the native fold
identified in the figure belongs to the lowest-energy found in runs 3 and 4.
However, this conformation is higher in energy than those obtained after the
crosschecking test in run 6 (�654.3 kcal�mol); the conformation in run 6
belongs to the native-like fold and is indicated by a filled square in the figure
and represents the lowest-energy conformation identified in all the runs
carried out with the OONS solvation model, namely, runs 3, 4, and 6.

Table 2. Boltzmann-averaged RMSD* between native and
generated conformations

Solvent model C� atoms, Å
Backbone heavy

atoms, Å
All heavy
atoms, Å

SRFOPT† 3.96 (2.85) 4.05 (2.92) 5.29 (4.21)
SRFOPT‡ 3.30 (3.24) 3.35 (3.30) 4.69 (4.62)
OONS§ 4.09 (3.31) 4.54 (3.42) 5.46 (4.61)
OONS¶ 7.59 (4.35) 7.59 (4.42) 8.91 (5.42)

*Computed at 30°C by using separate ensembles of conformations generated
in runs 1 to 4, listed in Table I. Values within parentheses belong to the lowest
RMSD computed for a single conformation, i.e., they do not represent
Boltzmann-averaged values.

†Results from run 1, Table 1.
‡Results from run 2, Table 1.
§Results from run 3, Table 1.
¶Results from run 4, Table 1, which led to a mirror image of the native fold.
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states are quite sensitive to their environment and hence they can
span a continuum of conformational states, ranging from struc-
tured intermediates to statistical coils. In other words, it seems
that the residual structure depends on the sequence and the
environment. Correct characterization of the unfolded states
represents a more complex problem than the protein-folding
problem by itself because the unfolded state may not correspond
to a well-defined structure such as that characterizing the native
fold of a protein. For this reason, and also to avoid any bias in
the conformational search, we started from random initial
conformations with no knowledge other than the amino acid
sequence, i.e., an ab initio search. Our results show that folding
of a small protein, such as the 10–55 fragment of the B-domain
of the staphylococcal protein A molecule can be accomplished
with an all-atom potential with a reasonable degree of accuracy,
as shown in Table 2. It is worth noting that other contributions
to the total energy, such as coupling of the conformation with the
state of ionization of the individual amino acids (proton-binding
equilibrium) (51) or an estimation of the conformational entropy
(52), were not taken into account in these simulations. Conceiv-
ably, incorporation of these components as well as a new
parameterization of the existing all-atom force-field (53) should
improve the accuracy of the predictions.

We wrote in 1994 (54), ‘‘With the recent development of
various efficient approaches to overcome the multiple-minima
problem, the problem has been in some sense solved for small
oligopeptides, as well as for regular-repeating structures and
assemblies of fibrous proteins. It can reasonably be expected that
the current extension of these to globular proteins will result in

Fig. 4. Ribbon diagram of the superposition of the native fold (cyan) and the
conformation (red) with the lowest C� RMSD (2.85 Å) from the native fold,
obtained with the SRFOPT solvation model. The energy of this conformation
is �20 kcal�mol above that of the lowest-energy conformation identified with
this solvation model in runs 1, 2, and 5.

Fig. 3. (a) Ribbon diagram of the starting conformation rnd�1. (b) Ribbon diagram of the native fold obtained by NMR. (c) Ribbon diagram of the lowest-energy
(�720.7 kcal�mol) structure identified in this work by using the SRFOPT solvation model. (d) Ribbon diagram of the lowest-energy (�654.3 kcal�mol) structure
identified in this work by using the OONS solvation model.
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efficient searches of their conformational space in the near
future. Advances in computer hardware and software, especially
the wider use of parallelism, will speed up computations, making
practical the application to larger molecules. The point may have
been reached where wider applicability of these techniques is
becoming limited by the accuracy of the potential energy func-
tions used to describe the energetic of polypeptide and protein
structure.’’ Results of this work, in some sense, support this
assertion. The 46-residue fragment of protein A is larger than the
36-residue �-helical protein from the villin headpiece, for which
all-atom simulations starting from an extended structure were
previously carried out (55, 56). It is worth noting that simulations
on the villin headpiece were carried out with explicit solvent (55),
which increases the computing time considerably compared with
the time required for the implicit solvent models used in our
simulations. However, despite the large progress in computer
technology, we still cannot extend the all-atom approach to the
prediction of the folding of globular proteins containing 100–200
residues. For this reason, the use of simpler models based on
physical grounds, such as the hierarchical approach starting with

the united-residue (UNRES) force field and finishing with an
all-atom search (57), is necessary. Also, procedures that combine
knowledge-based information with energy minimization (58–
60) have achieved some measure of success in recent CASP
(critical assessment of techniques for protein structure predic-
tion) blind tests. Hopefully, further improvements will extend the
applicability of all-atom ab initio procedures.
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