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Abstract

Given g ∈ L2(IRn), we consider irregular wavelet systems of the
form {λ

n
2
j g(λjx − kb)}j∈ZZ,k∈ZZn , where λj > 0 and b > 0. Sufficient

conditions for the wavelet system to constitute a frame for L2(IRn)
are given. For a class of functions g ∈ L2(IRn) we prove that certain
growth conditions on {λj} will lead to frames, and that some other
types of sequences exclude the frame property. We also give a sufficient
condition for a Gabor system {e2πib(j,x)g(x − λk}j∈ZZn, k∈ZZ to be a
frame.

1 Introduction

Recall that a family of elements {fi} in a Hilbert space H is a frame if there
exist constants A,B > 0 such that

A‖f‖2 ≤
∑

i

|(f, fi)|2 ≤ B‖f‖2,

for every f ∈ H. The numbers A,B are called frame bounds. If {fi} is
a frame, the frame operator defined on H is given by Sf =

∑
i (f, fi)fi.

∗AMS 2000 subject classification: 42 C 40. Key words and phrases. Wavelet Frames.
Gabor Frames.
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The frame operator is invertible, and every f ∈ H can be represented f =∑
i (f, S−1fi)fi, a fact that makes frames very attractive in signal analysis.

Given a function g ∈ L2(IRn), we consider the sequence of functions {gj,k}
defined by

(i) gj,k(x) = λ
n
2
j g(λjx− kb), j ∈ ZZ, k ∈ ZZn, where {λj}j∈ZZ ⊆ IR+, b > 0,

(ii) gj,k(x) = e2πib(j,x)g(x−λk), j ∈ ZZn, k ∈ ZZ, where {λk}k∈ZZ ⊆ IRn, b > 0.

The purpose of this note is to give sufficient conditions for {gj,k} being a
frame for L2(IRn).

The set of functions {gj,k} defined by (i) will be called an irregular wavelet
system; in the case (ii), we speak about an irregular Gabor system. The
corresponding regular cases are well studied in the literature (see [1], [5],
[8]) and appear as the special cases λj = aj for a certain a > 1 in (i) and
λk = ka for a > 0 (k ∈ ZZn) in (ii). The regular systems are clearly easier to
deal with, but due to finite machine precision or measurement errors, one is
sometimes forced to work with the irregular systems. One approach to the
irregular case is to use perturbation methods, which however forces λj to be
”close” to the regular case. Our approach is rather to give a direct argument,
which is closer in spirit to the original proofs.

2 Wavelet frames

Before we consider the specific wavelet frames we make an observation for
general frames. The elements in a frame {fi} can appear repeatedly. By
deleting all repetitions of the elements in {fi} we obtain a family {gk} for
which gk 6= gl for k 6= l. Let nk denote the number of times gk appear in
{fi}. With this notation we have

Lemma 2.1 Assume that {fi} is a frame with bounds A,B and that ||fi|| is
bounded below by C > 0, for all i. Then

N := sup
k

nk ≤ B

C2
,
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and {gk} is a frame with bounds A
N

, B.

Proof. Given k ∈ ZZ, the element gk appears nk times in {fi}. Thus

nk · ||gk||4 ≤
∑

i

| < gk, fi > |2 ≤ B · ||gk||2,

and therefore nk ≤ B
||gk||2 ≤

B
C2 .

The family of elements consisting of all gk, each of them repeated N times,
clearly contains {fi}. Therefore, for any f we have

N
∑

k

| < f, gk > |2 ≥
∑

i

| < f, fi > |2 ≥ A||f ||2,

showing that {gk} has the lower bound A
N

.

Conversely, it is clear that if {gk} is a frame with bounds A and B and
each element is repeated at most N times in {fi}, then {fi} is a frame
with bounds A and NB. Because of the Lemma above we will only consider
sequences {λk}∞k=1 without repetitions in (i) or (ii) of the introduction.

For f ∈ L1(IRn) the Fourier transform of f is the function f̂ defined by

f̂(x) =

∫
f(t)e−2πi(x,t) dt, x ∈ IRn.

We use frequently the Parseval formula, also called the Plancherel equality,

(f, g) = (f̂ , ĝ), f, g ∈ L2(IRn).

We first generalize a result from [1].

Theorem 2.2 Let {λj}j∈ZZ be a sequence of positive real numbers, b > 0 and
g ∈ L2(IRn). Suppose that

A :=
1

bn
ess infx∈IRn

(∑
j∈ZZ

|ĝ(
x

λj

)|2 −
∑

k 6=0

∑
j∈ZZ

|ĝ(
x

λj

)ĝ(
x

λj

+
k

b
)|
)

> 0,

and

B :=
1

bn
ess supx∈IRn

∑

k,j

|ĝ(
x

λj

)ĝ(
x

λj

+
k

b
)| < ∞.

Then {λ
n
2
j g(λjx− kb)}j∈ZZ,k∈ZZn is a frame with frame bounds A and B.
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Proof. Let f ∈ L2 and b > 0, then by the Parseval formula we get

(1)
∑

j,k

|(f, gj,k)|2 =
∑

j,k

λn
j

∣∣∣∣
∑

l∈ZZn

∫

Ib

f̂(λj(y +
l

b
))ĝ(y +

l

b
)e2πibky dy

∣∣∣∣
2

,

where Ib = [0, 1
b
]n = [0, 1

b
]× [0, 1

b
]× ...× [0, 1

b
].

Assume that f̂ has compact support. By the Parseval identity for multiple
Fourier series (1) is equal to

(2)
∑

j

(
λj

b
)n

∫

Ib

∣∣∣∣
∑

l∈ZZn

f̂(λj(y +
l

b
))ĝ(y +

l

b
)

∣∣∣∣
2

dy.

To see that the integral in (2) is finite we have used the fact that ĝ ∈ L∞(IRn).
We write the function in the above integral as

∑
l∈ZZn Hj(y + l

b
) Gj(y),

where the function Hj(y) = f̂(λjy)ĝ(y) and Gj is the 1
b
-periodic function∑

m∈ZZn f̂(λj(y+ m
b
))ĝ(y+ m

b
). Since f̂ has compact support and ĝ is bounded,

HjGj ∈ L1(IRn). Thus the expression in (2) is equal to

∑
j

(
λj

b
)n

∫
Hj(y)Gj(y) dy

(3) =
∑

j

(
λj

b
)n

∑

l∈ZZn

∫
f̂(λjy)ĝ(y)f̂(λj(y +

l

b
))ĝ(y +

l

b
) dy.

Now, by a change of variables, the expression in (3) is

(4)
1

bn

∑
j

∫
|f̂(x)ĝ(

x

λj

)|2 dx+

1

bn

∑
j

∑

l 6=0

∫
f̂(x)ĝ(

x

λj

)f̂(x +
λjl

b
)ĝ(

x

λj

+
l

b
) dx

By the Cauchy-Schwarz inequality, the second term in (4) is bounded by

1

bn

∑

j, l 6=0

(

∫
|f̂(x)|2|ĝ(

x

λj

)ĝ(
x

λj

+
l

b
)|dx

∫
|f̂(x +

λjl

b
)|2|ĝ(

x

λj

)ĝ(
x

λj

+
l

b
)|dx)

1
2 =
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1

bn

∑
j

∑

l 6=0

(

∫
|f̂(x)|2|ĝ(

x

λj

)ĝ(
x

λj

+
l

b
)|dx)

1
2 (

∫
|f̂(x)|2|ĝ(

x

λj

− l

b
)ĝ(

x

λj

)|dx)
1
2 ≤

1

bn

∑
j

(
∑

l 6=0

∫
|f̂(x)|2|ĝ(

x

λj

)ĝ(
x

λj

+
l

b
)|dx)

1
2 (

∑

l 6=0

∫
|f̂(x+

λjl

b
)|2|ĝ(

x

λj

)ĝ(
x

λj

+
l

b
)|dx)

1
2 =

1

bn

∑
j

∫
|f̂(x)|2

∑

l 6=0

|ĝ(
x

λj

)ĝ(
x

λj

+
l

b
)| dx.

Thus (Sf, f) ≤ B
bn‖f‖2, for all f in a dense class in L2, so S can be continu-

ously extended to L2(IRn) with ‖S‖ ≤ B
bn . This implies that an upper frame

bound is B
bn . Also, by (4) and the inequality above we have

(Sf, f) ≥ 1

bn

∫
|f̂(x)|2(

∑
j

|ĝ(
x

λj

)|2 −
∑

j

∑

l 6=0

|ĝ(
x

λj

)ĝ(
x

λj

+
l

b
)|) dx,

for a dense class in L2(IRn). Thus, by the continuity of the operator S, we
get (Sf, f) ≥ A

bn , for all f ∈ L2(IRn).

The result below is proved in one dimension and for the regular case
λj = aj in [4], but the original proof works in our more general setting.

Lemma 2.3 If {λj}j∈ZZ ⊆ IR+ and {λ
n
2
j g(λjx−kb)}j∈ZZ,k∈ZZn is a frame with

upper bound B, then

1

bn

∑
j

|ĝ(
x

λj

)|2 ≤ B, a.e.x.

We now prove that this Lemma puts restrictions on the sequences {λj}
for which {λ

n
2
j g(λjx − kb)}j∈ZZ,k∈ZZn can be a frame. Following [3], we say

that a a sequence {λj}j∈ZZ of positive numbers is logarithmically separated
by λ > 1 if

| log λj − log λk| ≥ log λ, ∀k 6= j.

If {λj} is ordered increasingly, this is equivalent to
λj+1

λj
≥ λ, ∀j.

Proposition 2.4 Suppose that {λ
n
2
j g(λjx−kb)}j∈ZZ,k∈ZZn is a frame and that

ĝ is continuous in a point x0 where ĝ(x0) 6= 0. Then {λj}j∈ZZ is a finite union
of logarithmically separated sets.
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Proof. For notational convenience, we give the argument for n = 1. Let
sj := 1

λj
. According to Lemma 2.3,

1

bn

∑
j

|ĝ(xsj)|2 ≤ B, a.e.x.

Assume that x0 > 0. Let c := |ĝ(x0)|2 and choose δ > 0 such that for all
x ∈ I0 := [x0, x0 + δ[,

|ĝ(x)|2 ≥ c

2
.

By taking x = 1, it is clear that the number N of elements from {λj} in
the interval I0 satisfies N c

2
≤ Bbn, i.e., N ≤ 2B

c
bn. Now let σ := x0+δ

x0
and

define the intervals
In := [x0σ

n, x0σ
n+1[.

Clearly {In}∞n=−∞ is a disjoint covering of IR+ (IR+ = ∪∞n=−∞In), and for
given n ∈ ZZ, the interval In contains at most N points from {Sj}. Now ob-
serve that each point in I0 is logarithmically separated with each family we
obtain by picking an arbitrary point from each of the intervals I±2, I±4, · · · .
Similarly, a point from I1 is logarithmically separated with each family we ob-
tain by picking an arbitrary point from each of the intervals I−1, I±3, I±5, · · · .
Thus {sj} can be split into at most 2N logarithmically separated subse-
quences, from which the result follows.

Let B(0, r) denote the ball in IRn centered at the origin and with radius r.

Corollary 2.5 Suppose that g ∈ L2(IRn) and that suppĝ ⊆ B(0, 1
2b

) for some
b > 0. Then the following holds:

(i) If
(5)

A =
1

bn
ess infx∈IRn

∑
j∈ZZ

|ĝ(
x

λj

)|2 > 0, B =
1

bn
ess supx∈IRn

∑
j∈ZZ

|ĝ(
x

λj

)|2 < ∞ a.e.,

then {λ
n
2
j g(λjx− kb)}j∈ZZ,k∈ZZn is a frame with bounds A and B.

(ii) Conversely, if {λ
n
2
j g(λjx−kb)}j∈ZZ,k∈ZZn is a frame with frame bounds
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A and B, then we have

A ≤ 1

bn

∑
j∈ZZ

|ĝ(
x

λj

)|2 ≤ B.

Therefore, the frame bounds A and B in (5) are the optimal frame bounds.

Proof. (i) is a consequence of Theorem 2.2. Now assume that the conditions
in (ii) are satisfied. By (4) we have,

A‖f‖2
2 ≤ (Sf, f) =

∫
|f̂(x)|2 1

bn

∑
j

|ĝ(
x

λj

)|2 ≤ B‖f‖2,

for every f ∈ L2. Now let E be any measurable set in IRn such that 0 <
|E| < ∞, where |E| stands for the Lebesgue measure of the set E. Then
A ≤ 1

|E|
∫

E
1
bn

∑
j |ĝ( x

λj
)|2dx ≤ B, thus we have

(6) bnA ≤
∑
j∈ZZ

|ĝ(
x

λj

)|2 ≤ bnB, a.e.x ∈ IRn.

We say that a function f is a radially increasing function in B(0, 1
2b

) if

|x| ≤ |y| < 1

2b
⇒ |f(x)| ≤ |f(y)|.

Since a radially increasing function in B(0, 1
2b

) is indeed a radial function in
B(0, 1

2b
), we will often write f(|x|) for f(x), if x ∈ B(0, 1

2b
).

Given 0 < l ≤ L, a > 1, a real sequence {λj}j∈ZZ is said to be of ex-
ponential type (a, l, L) if λ0 = 1, λj < λj+1 and laj ≤ λj ≤ Laj for all
j ∈ ZZ. Note that if L < la it is enough to select any λj ∈ [laj, Laj] in
order to get a sequence of exponential type (a, l, L); in this case we also have
λj+1

λj
≥ laj+1

Laj = la
L

> 1, i.e., {λj} is logarithmically separated. In case L ≥ la

the intervals [laj, Laj] are overlapped; by selecting an increasing sequence
{λj} such that λj ∈ [laj, Laj], we again have a sequence of exponential type.

For further references we state the next remark.

Remark 2.6 Let {λj}j∈ZZ be a sequence of exponential type (a, l, L). It is
easy to see that the set {j : 2bλk ≤ λj ≤ 2bλk+1} contains at most b 2

log a
log L

l
+

1c+ 1 elements; here bxc denotes the integer part of x.
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In the next Theorem the assumptions on ĝ are closely related with the so
called admissibility condition, i.e.

0 <

∫ |ĝ(x)|2
|x|n dx < ∞.

In fact, let us assume that ĝ is a radially increasing function in B(0, 1
2b

). Since

g ∈ L2(IRn) the above integral is finite if and only if
∑j

−∞ |ĝ(L
l
al)|2 < ∞,

for some j ∈ ZZ. Moreover if ĝ( l
L
aj−1) 6= 0, clearly the integral is positive.

Theorem 2.7 Let {λj}j∈ZZ be a sequence of exponential type (a, l, L) and let
j0 be the greatest integer such that L

l
aj0 < 1

2b
. Let g ∈ L2(IRn), suppose that ĝ

is bounded and supported on B(0, 1
2b

) and radially increasing on it. Assume

ĝ( l
L
aj0−1) 6= 0 and

∑j0
−∞ |ĝ(L

l
al)|2 < ∞, then {λ

n
2
j g(λjx− kb)}j∈ZZ,k∈ZZn is a

frame with frame bounds

1

bn

j0−1∑
j=−∞

|ĝ(
l

L
aj)|2 and

1

bn

j0∑
j=−∞

|ĝ(
L

l
aj)|2 +

2

bn
(b 2

log a
log

L

l
+ 1c+ 1)‖ĝ‖2

∞.

Proof. Given x ∈ IRn there exists k such that λk ≤ |x| < λk+1. Using that
ĝ has support in B(0, 1

2b
) and is radially increasing we have that

∑
j∈ZZ

|ĝ(
x

λj

)|2 =
∑

j, 2bλk≤λj

|ĝ(
x

λj

)|2

≤
∑

j, 2bλk+1<λj

|ĝ(
λk+1

λj

)|2 + ‖ĝ‖2
∞ \{j : 2bλk ≤ λj ≤ 2bλk+1}

The second term is estimated by Remark 2.6 and the first one is bounded
by ∑

j, 2bλk+1<λj

|ĝ(
λk+1

λj

)|2 ≤
∑

j, 2bλk+1<λj , 2bLak+1<laj

|ĝ(
Lak+1

laj
)|2+

‖ĝ‖2
∞\ {j : 2b

l

L
ak+1 < aj ≤ 2b

L

l
ak+1}

≤
j0∑

j=−∞
|ĝ(

L

l
aj)|2 + ‖ĝ‖2

∞\ {j : 2b
l

L
ak+1 < aj ≤ 2b

L

l
ak+1},
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and we get the upper frame estimate by the hypothesis on ĝ and the fact
that \ {j : 2b l

L
ak+1 < aj ≤ 2bL

l
ak+1} ≤ b 2

log a
log L

l
c+ 1.

To get the lower bound, let again x ∈ IRn and choose k such that λk ≤
|x| < λk+1. Then

∑
j∈ZZ

|ĝ(
x

λj

)|2 =
∑

j, 2bλk<λj

|ĝ(
x

λj

)|2 ≥
∑

j, 2bλk+1<λj

|ĝ(
λk

λj

)|2

≥
∑

j, 2bLak+1<laj

|ĝ(
λk

λj

)|2 ≥
∑

j, 2bLak+1<laj

|ĝ(
lak

Laj
)|2 =

j1∑
j=−∞

|ĝ(
l

L
aj)|2,

where j1 is the largest integer j such that L
l
aja < 1

2b
.

Our next results show that certain types of sequences can not yield frames
for the considered class of functions.

Corollary 2.8 Let g be as in Theorem 2.7 and assume that ĝ(x) 6= 0 for
0 < |x| < 1

2b
. Suppose that for j > 0, λj = jα for some α > 0 and that

{λj}0
j=−∞ is an arbitrary decreasing sequence converging to zero as j → −∞.

Then {λ
n
2
j g(λjx− kb)}j∈ZZ, k∈ZZn is not a frame.

Proof. To simplify the notation, assume that 2b ≤ 1. For kα ≤ |x| ≤ kα+1,
we have

∑
j

|ĝ((
x

λj

)α)|2 ≥
∞∑

j=k

|ĝ((
k

j
)α)|2 ≥

∫ ∞

k

|ĝ((
k

x
)α)|2 dx =

k

α

∫ 1

0

|ĝ(t)|2 dt

t
1+α

α

,

where the last expression goes to infinity as k tends to infinity. By Corollary
2.5 we obtain the desired conclusion.

Corollary 2.9 Set λj = 2j2
for j ≥ 0, and λj = 2−j2

, for j ≤ −1 and let g

be as in Theorem 2.7. Then {λ
n
2
j g(λjx− kb)}j∈ZZ, k∈ZZn is not a frame.

Proof. For 2−(k+1)2 ≤ |x| ≤ 2−k2
,

∞∑
j=−∞

|ĝ(
1

2k2λj

)|2 =
k−1∑
j=0

|ĝ(
2j2

2k2 )|2 +
∞∑

j=1

|ĝ(
1

2j2+k2 )|2 ≤
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k−1∑
j=0

|ĝ(
2j2

2k2 )|2 +

∫ ∞

1

|ĝ(
1

2x2+k2 )|2 dx ≤

k−1∑
j=0

|ĝ(
2j2

2k2 )|2 +

∫ 1

2k2+1

0

|ĝ(x)|2
x

dx ≤ |k||ĝ(
2

22|k| )|2 +

∫ 1

2k2+1

0

|ĝ(x)|2
x

dx.

Since
∫∞
0

|ĝ(x)|2
x

dx < ∞ the last integral tends to 0 as |k| tends to ∞. Also

1

2
|ĝ(|x|)|log 1

|x| ≤
∫ √

|x|

|x|

|ĝ(t)|2
t

dt → 0 for|x| → 0.

Since ĝ is a radially increasing function we have that |k||ĝ( 2
22|k| )|2 → 0 as

|k| → ∞, if and only if |ĝ(x)|2 log |x| → 0 as x → 0. By Corollary 2.5 we

conclude that the family {λ
n
2
j g(λjx− kb)}j∈ZZ, k∈ZZn is not a frame.

We now present a sufficient condition for {λ
n
2
j g(λjx− kb)}j∈ZZ,k∈ZZn to be

a frame. We need the following lemma.

Lemma 2.10 1
1+|a+b|2 ≤ 2(1+|a|2

1+|b|2 )ε for any 0 < ε < 1 and a, b ∈ IRn.

Proof. It is clear that 1+ |a+ b|2 ≤ 2(1+ |a|2)(1+ |b|2), for a, b ∈ IRn, which

implies 1
1+|a+b|2 ≤ 21+|a|2

1+|b|2 .

Theorem 2.11 Let g ∈ L2(IRn) and assume that |ĝ(x)| ≤ c|x|α(1 + |x|2)−x
2 ,

with α > 0, γ > α + n and ess infx∈IRn

∑
j∈ZZ |ĝ( x

λj
)|2 > 0. If {λj}j∈ZZ is

a sequence of exponential type (a, l, L), then {λ
n
2
j g(λjx − kb)}j∈ZZ,k∈ZZn is a

frame for all sufficiently small b > 0.

Proof. We apply Theorem 2.2. C will denote a constant not necessarily the
same on each occurrence.

∑

k 6=0

∑
j∈ZZ

|ĝ(
x

λj

)ĝ(
x

λj

+
k

b
)| ≤ C

∑

k 6=0

∑
j∈ZZ

| x
λj
|α

(1 + | x
λj
|2) γ

2

| x
λj

+ k
b
|α

(1 + | x
λj

+ k
b
|2) γ

2

≤
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C
∑

k 6=0

∑
j∈ZZ

| x
λj
|α

(1 + | x
λj
|2) γ

2

1

(1 + | x
λj

+ k
b
|2) γ−α

2

≤ C
∑

k 6=0

∑
j∈ZZ

| x
λj
|α

(1 + | x
λj
|2) γ

2

(1 + | x
λj
|2) ε(γ−α)

2

(1 + |k
b
|2) γ−α

2

,

where we have used Lemma 2.10 in the last inequality. Now, the above sums
are estimated by

Cbε(γ−α)
∑

j

| x
λj
|α

(1 + | x
λj
|2) γ−ε(γ−α)

2

,

since
∑

k∈ZZn, k 6=0
1

(1+| k
b
|2)

ε(γ−α)
2

≤ Cbε(γ−α), where the constant C depends

only on the product ε(γ−α) and on n, here we have used that ε(γ−α) > n.

Let i be such that ai ≤ |x| ≤ ai+1. Then

Cbε(γ−α)
∑

j

| x
λj
|α

(1 + | x
λj
|2) γ−ε(γ−α)

2

≤ Cbε(γ−α)L
γ−ε(γ−α)

lα

∑
j

a(i+1)α

ajα(L2 + a(i−j)2)
γ−ε(γ−α)

2

=

Cbε(γ−α)L
γ−ε(γ−α)aα

lα

∑
j

a(i−j)α 1

(L2 + a(i−j)2)
γ−ε(γ−α)

2

=

Cbε(γ−α)L
γ−ε(γ−α)aα

lα

∑
j

ajα 1

(L2 + aj2)
γ−ε(γ−α)

2

< Cbε(γ−α)L
γ−ε(γ−α)

lα
.

Now, for ai ≤ |x| ≤ ai+1 we have

∑
j∈ZZ

|ĝ(
x

λj

)|2 ≤ C
∑

j

| x
λj
|2α

(1 + | x
λj
|2)γ

≤ C
a2αL2γ

l2α

∑
j

a(i−j)2α

(L2 + a(i−j)2)γ
≤ D

a2αL2γ

l2α
.

Theorem 2.11 is related with Theorem 1 in [9]. In that paper the authors
show that there exists δ > 0 such that for a sequence satisfying (1− δ)aj ≤
λj ≤ (1 + δ)aj there exists b0 such that {λ

1
2
j g(λjx − bk)} is a frame for

0 < b < b0 and for a suitable function g. Theorem 2.11 above shows that a
sequence of the form laj ≤ λj ≤ Laj for any l and L gives irregular frame
sequences for any 0 < b < b0, where b0 is independent on l and L, provided
L ≥ 1.
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3 Gabor Frames

We will use the following result of Casazza and Christensen [2].

Theorem 3.1 Let g ∈ L2(IRn) b > 0 and {λk}k∈ZZ ⊆ IRn. Suppose that

A =
1

bn
essinfy∈IRn(

∑

k

|g(y−λk)|2−
∑

m6=0

|
∑

k∈ZZ

g(y−λk)g(y − λk +
m

b
)|) > 0,

B =
1

bn
esssupy∈IRn

∑

m∈ZZn

|
∑

k∈ZZ

g(y − λk)g(y − λk +
m

b
)| < ∞.

Then {e2πib(j,x)g(x− λk)}j∈ZZn, k∈ZZ is a frame with frame bounds A and B.

A result similarly to Corollary 2.5 holds for Gabor frames. We will
now use Theorem 3.1 to obtain a sufficient condition for {e2πib(j,x)g(x −
λk)}j∈ZZn, k∈ZZ to be a frame. We need a Lemma:

Lemma 3.2 Let {λk}k∈ZZ be a sequence such that |k|
p+1

≤ |λk| ≤ |k|, for
k ∈ ZZ and p ≥ 0. Then

sup
x∈IRn

∑
m∈ZZn

∑

k 6=0

1

(1 + |x− λm|)γ

1

(1 + |x− λm − k
b
|)γ

→ 0, as b → 0,

for γ > n.

Proof. To simplify the notations we shall consider n = 1. Set

Hl(x) =
∑

{m:|x−λm|≥l}

1

(1 + |x− λm|)γ
.

Then supx∈IR Hl(x) → 0 as l → ∞. In fact, for i ≤ x ≤ i + 1, we have
Hl(x) ≤ ∑

c2|i−k|≥l
1

(1+c1|i−k|)γ .
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Now, set Lb(y) =
∑

k 6=0
1

(1+|y− k
b
|)γ . First note that Lb(y) is uniformly

bounded for y ∈ IR and for b bounded. To see that we can consider l
b
≤ y ≤

l+1
b

with l ≥ 0, then

Lb(y) =
∞∑

k=1

1

(1 + |y + k
b
|)γ

+
∞∑

k=1

1

(1 + |y − k
b
|)γ

≤

bγ

∞∑

k=1

1

kγ
+

∞∑

k=1+l

1

(1 + k−l
b

)γ
+

l−1∑

k=1

1

(1 + l−k
b
|)γ

+
1

(1 + y − l
b
)γ
≤ Cγb

γ + 1.

Furthermore sup|y|≤c Lb(y) → 0 if b → 0, since the series defining Lb(y) can be
dominated by a convergent numerical series in the region |y| ≤ c, 0 < b < 1.
Now we get

∑
m∈ZZn

∑

k 6=0

1

(1 + |x− λm|)γ

1

(1 + |x− λm − k
b
|)γ

≤

(Cγb
γ + 1)Hl(x) +

∑

{m:|x−λm|≤l}
Lb(x− λm) ≤ (Cγb

γ + 1)Hl(x) + cl sup
|y|≤l

Lb(y).

The proof is completed taking into account the properties of the functions
Hl and Lb.

Theorem 3.3 Let g ∈ L2(IRn) be such that |g(x)| ≤ C
(1+|x|)γ , with γ > n and

essinfy∈IRn

∑
k |g(y− λk)|2 > 0. Let {λm}m∈ZZ be a sequence in IRn such that

|m|
p+1

≤ |λm| ≤ |m|, with p ≥ 0. Then {e2πib(j,x)g(x−λm)}j∈ZZn, m∈ZZ is a frame
for all b small enough.

Proof. Follows from Theorem 3.1 and Lemma 3.2.
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