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Robust phase recovery in temporal speckle pattern
interferometry using a 3D directional

wavelet transform
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We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions
in temporal speckle pattern interferometry. We show that this approach can effectively recover phase dis-
tributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels.
The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-
of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limita-
tions of this approach are finally discussed. © 2009 Optical Society of America
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Temporal speckle pattern interferometry (TSPI) is a
well-established technique for measuring dynamic
displacement fields produced by diffusely reflecting
objects (see [1] and references therein). In TSPI, the
displacement of the rough object produces intensity
modulations at all pixels belonging to the recorded
time series of speckle interferograms. The sequential
acquisition of a large number of speckle interfero-
grams and its postprocessing facilitate the recovery
of the phase distribution, so that the whole-field dy-
namic displacement field can be determined. In this
framework, the phase distribution is commonly re-
covered using a temporal phase shifting algorithm,
and the unwrapping is performed as a function of
time. As temporal phase unwrapping involves only
1D signals, this procedure is generally much easier to
carry out, and the implementation of more complex
phase unwrapping procedures is avoided. The weak-
ness of TSPI lies in its low tolerance to unwanted ef-
fects, such as nonmodulated pixels, modulation loss,
and noise, which make more difficult the phase recov-
ery process. Therefore one of the key issues in TSPI
is the development of more robust phase recovery ap-
proaches.

Currently, 1D time-frequency phase retrieval
methods based on the application of the continuous
wavelet transform (CWT) are widely used (see [2–4]
and references therein). More recently, techniques
based on a combination of the Fourier transform and
the CWT [5], the empirical mode decomposition and
the Hilbert transform (HT) [6], and the generalized
S-transform (GST) [7] have also been developed. In
[7] it was shown that the GST is better adapted to
the phase recovery problem than the approaches
based on the CWT, the HT, and smooth time-
frequency distributions. However, these time-
frequency analyses fail when a significant number of

sets of adjacent nonmodulated pixels are present in
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the recorded data. Clearly, this problem is extremely
difficult to solve by using these techniques, because
the information is absent in the pixel set.

In this Letter we show that this limitation can be
significantly overcome by considering the informa-
tion in the neighborhood of the modulated pixels
(e.g., see references [1,8]), and that for this purpose
the application of a 3D approach is a valuable tool.
Here we propose the use of a 3D directional wavelet
transform (3DDWT) that is robust and therefore en-
hances the process of phase unwrapping. Thus the
application of commonly used 1D unwrapping tech-
niques are appropriated. Below we briefly discuss the
characteristics of the 3DDWT and also present the
obtained improvements in TSPI when the proposed
technique is applied.

A 3D wavelet is a square-integrable complex-
valued function ��x� with zero mean that is well lo-
calized both in position and in spatial frequency
spaces. The 3D directional wavelet transform
S�a ,� ,� ,b� of the intensity I�x�, x= �x1 ,x2 ,x3��R3,
where R denotes the set of real numbers, is defined as
[9]

S�a,�,�,b� = C�

1

a � d3x�*�1

a
r−���x − b��I�x�, �1�

where �*� denotes complex conjugation, a�0�R is
the dilation parameter, b�R3 is the displacement pa-
rameter, C� is a normalization constant, and r−�� acts
as a rotation operator with � around the x3 axis and �
around the x2 axis. Note that the wavelet ��a ,� ,� ,x�
is translated by b, rotated by �� ,��, and dilated by the
scale a. Equation (1) is a convolution with a zero-
mean function ��a ,� ,� ,x�, so that S�a ,� ,� ,b� acts on
the intensity I�x� as a local filter in all variables: a, �,

�, and b. Therefore S�a ,� ,� ,b� has an appreciable
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value only where it matches the features of the local
intensity.

We consider the TSPI signal as represented by the
intensity I�nx ,ny , tn� that is measured by a CCD de-
tector at a specific pixel �nx ,ny� at time tn. Owing to
the symmetry imposed by the introduction of the
temporal carrier, here we propose �=0, �=0; there-
fore r−�� is the identity operator, and the following
modified Morlet wavelet is the analyzing wavelet:

��x,y,t� = eik0t/�te−��x/�x�2+�y/�y�2+�t/�t�
2�/2, �2�

where ��x ,�y ,�t��R3 are the parameters of aniso-
tropy and k0=2�. Usually, a correction term must be
added in Eq. (2) to enforce the admissibility condi-
tion, although this addition is numerically negligible
for k0�2�. Note that in the Fourier space represen-
tation, the Fourier transform of Eq. (2) is a convex
cone centered at k0. Therefore the angular selectivity
can be incremented with the increase of the aniso-
tropy, and a better performance can be selected. To
obtain a practical insight of the proposed approach,
we can replace Eq. (2) in Eq. (1) and arrange the
terms by identifying the 2D spatial Gaussian depen-
dence �G�x ,y� and the 1D temporal Morlet wavelet
�M�t�. Therefore the 3DDWT can be seen as a spatial
convolution of the temporal intensity frames with a
2D Gaussian function, and the CWT of the temporal
history in each spatially convolved pixel by using the
Morlet wavelet,

S�a,x,y,t� = C�

1

a � dt��M
* �1

a
�t� − t��

�� � dx�dy��G

��1

a
�x� − x,y� − y��I�x�,y�,t��. �3�

This insight also shows the analytical procedure of
the optical phase recovery to be applied. As it is well
known in the stationary phase approximation of the
CWT (see [4] and references therein), the tracking of
the local maxima of �S�a ,b�� allows the specification
of a particular set of data in the space-frequency do-
main, namely, the ridge ar, that has the property to
describe the spatial evolution of the phase distribu-
tion as 	�b�=arctan	Im�S�ar ,b�� /Re�S�ar ,b��
, where
Im[ ] and Re[ ] mean the imaginary and real parts,
respectively. Note that this procedure was adopted by
the CWT in stationary phase approximation for 1D
signals. Finally, as the phase values are wrapped, a
1D phase unwrapping algorithm should be used.

To illustrate the performance of the 3DDWT phase
recovery procedure, we analyzed simulated TSPI
data produced by an out-of-plane interferometer by
following the procedure reported in [6]. This analysis
was performed by introducing a temporal carrier and
by generating interferograms having an average
speckle size s=1, 3, and 5 pixels. The phase corre-
sponding to the simulated dynamic displacement

field was selected as 	�x ,y , t�=	s�x ,y�f�t�,
where 	s�x ,y�=5�1−x2�exp�−x2− �y+1�2�−20�x /2−x3

−y5�exp�−x2−y2�−exp�−�x+1�2−y2�, with −3.5
x, y

3.5 discretized in 200�200 pixels, and f�t�=8
�10−3�t−64� with 1
 t
512, t�N, where N denotes
the set of natural numbers. The edges of the TSPI
data were used in the calculus and removed from the
results, being the effective region of the evaluation:
32
nx, ny
168 and 64
 tn
448. Figure 1(a) shows
the selected phase distribution 	�nx ,ny , tn� corre-
sponding to the maximum deformation �tn=448�.
Note that the phase distribution is a linear function
of time, and its minimum deformation corresponds to
a plane surface �tn=64�. To simulate the modulation
loss and noise, a random variable with a uniform dis-
tribution in �−� /10,� /10� was added in the phase
generation of the TSPI data. We also introduced in
the TSPI data five blocks of zeros: A, B, C, D, and E,
with dimensions �nx=�ny=15 and �tn=33 (7425 ad-
jacent null pixels), temporally centered in tn=256
and spatially centered in the local maxima and
minima of the phase 	. These blocks simulated the
sets of adjacent nonmodulated pixels. Figure 1(b) il-
lustrates the spatial distribution of the blocks in the
frame tn=256 in the case of a time series of speckle
interferograms having an average speckle size of
3 pixels. As a typical example, Fig. 1(c) shows the
temporal evolution of the modulation intensity corre-
sponding to the pixel (93, 88) belonging to the
block C.

The 3DDWT was computationally implemented as
a convolution product in the Fourier space. The
tracking of the local maxima of �S� was carried out by
using a common computational routine. The phase
distribution was retrieved using the arctan equation,
and finally a conventional 1D unwrapping method
along the time axis was applied. We explicitly ex-

Fig. 1. (Color online) (a) Simulated phase distribution cor-
responding to the maximum deformation, (b) spatial distri-
bution of the zero blocks in the frame tn=256 when s
=3 pixels, (c) evolution of the temporal intensity for a pixel

belonging to the block C.
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cluded the application of robust procedures in the
tracking of local maxima and phase unwrapping.

To evaluate quantitatively the retrieved phase dis-
tributions, we used a quality index Q�tn� calculated
at each temporal frame and defined by [10,11]

Q =
�EO

�E�O

2�E��O�

�E�2 + �O�2

2�E�O

�E
2 + �O

2 , �4�

where O and E are the original phase distribution
and the recovered phase, respectively; � � is the mean
value; and � is the standard deviation. Q has a dy-
namic range of �−1,1� and allows to model any dis-
tortion as a product of three different factors: loss of
correlation, luminance distortion, and contrast dis-
tortion. We measured the statistical features of each
frame 	�tn� by combining the three mentioned factors
within local regions using a sliding window with a
size 7�7 pixels. Figure 2(a) shows the temporal evo-
lution of the quality index for the recovered phase ob-
tained when s=1, 3, and 5 pixels, with and without
the application of a common smoothing procedure to
remove the typical outliers produced in the phase re-

Fig. 2. (Color online) (a) Temporal evolution of the quality
index with squares, rhombuses, and upright triangles cor-
responding to s=1, 3, and 5 pixels without smoothing and
with dashes, circles, and inverted triangles corresponding
to s=1, 3, and 5 pixels with smoothing, respectively. (b) Re-
trieved phase distribution at the maximum deformation ob-

tained with smoothing when s=3 pixels.
covery process. The lines with squares, rhombuses,
and upright triangles represent the Q values ob-
tained for s=1, 3, and 5 pixels, respectively. These re-
sults were obtained considering the presence of out-
liers and by using the parameters of anisotropy �t
=6, with �x=�y=0.1, �x=�y=0.4, and �x=�y=0.8, for
s=1, 3, and 5 pixels, respectively. The scale param-
eter a was varied in the range [2,7] with steps �a
=0.15. The lines with dashes, circles, and inverted
triangles represent the Q values obtained using a
smoothing procedure when s=1, 3, and 5 pixels, re-
spectively. Figure 2(b) illustrates the recovered phase
distribution obtained at the maximum deformation
when s=3 pixels and the smoothing procedure was
applied. Note that in the case shown in Fig. 2(b), the
outliers were easily removed and the Q values were
also increased.

An additional evaluation was carried out consider-
ing the integration effect produced by the CCD detec-
tor with three and five speckles per pixel. The ob-
tained results showed greater sensitivity to the
introduction of the blocks of zeros than those found in
the condition of resolved speckle for the same values
of the anisotropy parameters.

To conclude, it is shown that the 3DDWT approach
proposed here is a very efficient technique to retrieve
phase distributions in TSPI when a significant num-
ber of sets of adjacent nonmodulated pixels are
present in the recorded data. The 3DDWT is a very
useful tool and can retrieve phase distributions with
good accuracy where the classical 1D methods fail.
The computational complexity of the 3DDWT method
lies in the memory requirements, and its digital
implementation is fast. New insights and a full
evaluation of this phase retrieval method will be pre-
sented in a future paper.

The authors are grateful to one of the reviewers of
the paper for many useful comments that have
helped to improve its understanding.
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