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Tilt scanning interferometry (TSI) is a novel experimental technique that allows the measurement of
multicomponent displacement fields inside the volume of a sample. In this paper, we present a simulation
model that allows for the evaluation of the speckle fields recorded in TSI when this technique is applied to
the analysis of semitransparent scattering materials. The simulation is based on the convolution of the
optical impulsive response of the optical system and the incident field amplitude. Different sections of the
simulated imaging system are identified and the corresponding optical impulsive responses are deter-
mined. To evaluate the performance of the proposed model, a known internal displacement field as well
as the illumination and detection strategies in a real TSI system are numerically simulated. Then, the
corresponding depth-resolved out-of-plane and in-plane changes of phase are obtained by means of the
data processing algorithm implemented in a TSI system. © 2009 Optical Society of America

OCIS codes: 120.6160, 120.6150, 120.5050, 120.2650, 120.4290, 100.3190.

1. Introduction

There are currently powerful identification ap-
proaches to obtain the constitutive parameters of a
material from 2D full-field strain measurements.
The finite element method can be used to solve the
direct problem, starting with initial guesses of the
unknown parameters and performing simulations
iteratively until the displacements computed at var-
ious nodes of the mesh match their experimental
counterparts. This is known as finite element model
updating (FEMU) [1]. The virtual fields method
(VFM) [2–4] is another approach that solves the in-
verse problem. Given measured strain fields, the
stress fields are expressed as a parameterized func-
tion of the unknown constitutive parameters. The
principle of virtual work is then applied so that

the stress fields verify the global equilibrium of
the structure. Finally, the use of several virtual fields
yields a system of equations that involves the un-
known parameters and which leads to the solution.

Traditionally, digital speckle pattern interferome-
try (DSPI) [5,6] has been a standard technique for
obtaining accurate and fast measurements of shape
[7] and displacement fields over the surface of opti-
cally rough objects [8]. Deflectometry was used to
measure 2D displacements to find the damping ma-
terial properties of isotropic vibrating plates [9]. The
grid method was also used to measure 2D displace-
ments to find stiffness parameters of glass epoxy
beams [10] and 2D digital image correlation and
FEMU were used to measure elasto-visco-plastic
parameters on steel at high strain rates [11]. All
these cases relied on surface measurements to char-
acterize material constitutive parameters under the
assumption that they do not vary from point to point
within the material.
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To map the volumetric distributions of those para-
meters, however, full-field 3D measurements are re-
quired. This is relevant when heterogeneous
materials are studied at a scale in which different
constituents are resolved, e.g., the fibers and the
matrix in a composite material, different structural
biological tissues, or multimaterial structures. Tech-
niques that allow us to measure multicomponent dis-
placement fields inside the volume of the material
will enable us to determine nonuniform distributions
of constitutive parameters, which is essential to ac-
curately predict mechanical behavior.
A broad range of methods to measure internal

structure and displacement fields have been
developed in the last few decades such as neutron
and x-ray diffraction, photoelastic tomography (PT)
[12,13], phase contrast magnetic resonance imaging
(PCMRI) [14,15], and 3D digital image correlation
(DIC) using data acquired with x-ray computed to-
mography (XCT) [16] and optical coherence tomogra-
phy (OCT) [17–20]. These are all complementary
techniques that are appropriate to study different
materials: PT, for example, is suitable only for mate-
rials that exhibit photoelasticity; PCMRI requires
significant water or fat content in the sample, and
neutron diffraction relies on the crystalline structure
of the material.
Recently, Ruiz et al. [21] introduced a different ap-

proach to measure depth-resolved displacements
within semitransparent scattering materials. The
technique, known as tilt scanning interferometry
(TSI), is a form of optical diffraction tomography [22]
and is based on tilting the illuminating beam during
the acquisition of sequences of speckle interfero-
grams. This provides the necessary phase shifts that
encode depth within the material, thus enabling the
reconstruction of the object structure and the evalua-
tion of internal displacements through optical phase
measurements. 3D displacement fields have been
measured with out-of-plane and one in-plane sensi-
tivities, but all three components of the displacement
vector can be achieved.
These features of TSI make it particularly attrac-

tive for providing the necessary 3D data for the
identification of constitutive parameters within
semitransparent scattering materials. Changes in
the optical phase, however, not only arise as a result
of displacement of the scattering centers within the
material. There are other factors that introduce
phase changes: (a) photoelastic coupling, i.e., stress
induced changes of the refractive index; (b) changes
in the curvature of the object surface in response to
the applied loads, which leads to changes in the
shape of the illumination wavefront travelling within
the material; (c) refractive index gradients, which
will have a similar effect and are usually unknown;
(d) and finally, multiple scattering and light absorp-
tion, which will affect the phase noise and therefore
the uncertainties in the measured displacement and
strain fields.

If strain distributions are to be estimated from TSI
phase measurements, then the relative importance
of these other factors in the measured phase need
to be assessed. This could be done experimentally
with a well-controlled, well-known test object (phan-
tom) and using validation techniques to support the
measurements. This is certainly not an easy task,
and results on one material would not be valid for
different materials. Another approach consists in de-
veloping a numerical model in which the object and
the interferometer are simulated. While the object
deformation can be readily modeled using finite ele-
ment analysis by using any available commercial
package, a numerical model of the interferometer
needs to be developed.

The purpose of this paper is, therefore, to present a
numerical model of the TSI technique when it is
applied to the analysis of semitransparent scattering
materials. We start by simulating an incident optical
field scattered within the object and imaged onto a
2D detector array. This is the core contribution of the
paper and is fully described in Section 2. In Section 3
the TSI system is modeled, including image acquisi-
tion and the data processing that leads to the evalua-
tion of phase changes. In Section 4, we test the
models using a simple object geometry and known
internal displacement fields with in-plane and out-
of-plane components. Finally, a discussion of the ad-
vantages and limitations is presented in Section 5,
including comments on further developments.

2. Numerical Simulation of Subjective Speckle Fields
from a Semi-Transparent Scattering Volume

Considering an optical system under the paraxial ap-
proximation, the field amplitude uo detected at its
output plane can be evaluated using the convolution
operation as [23,24]

uo ¼ h ⊗ ui; ð1Þ
where ui is the incident optical field amplitude at the
input plane and h is the optical impulsive response of
the system.

In the spatial frequency domain, Eq. (1) can be re-
written as

Uo ¼ HUi; ð2Þ
whereUi,Uo, andH are the Fourier transforms of ui,
uo, and h, respectively.

Assuming that an arrangement of scattering cen-
ters is placed across the input plane and no depolar-
ization effects occur, ui can be expressed as

ui ¼ exp½jðφd þ φsÞ�; ð3Þ
where φs is a random phase value uniformly distrib-
uted in the interval ½−π; πÞ, which represents the ran-
dom optical path fluctuations introduced by the
scattering centers and due to the light propagation
through a semitransparent scattering material,
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and φd is a deterministic phase value that depends
on the initial phase of the incident wave and also
on the optical path from the light source to the output
plane of the system. In the general case, φd includes
terms introduced by displacement fields produced by
the object upon deformation as well as changes in re-
fractive index of the material, e.g., due to stress-optic
coupling or temperature. Consequently, the optical
field amplitude detected at the output plane of the
optical system can be easily computed in the Fourier
domain as

Uo ¼ FTðuoÞ ¼ HFTfexp½jðφd þ φsÞ�g; ð4Þ
where FT stands for the Fourier transform operator
and j ¼ ð−1Þ12 is the imaginary unit.
In a free space propagation configuration, the op-

tical transfer function Hfs can be expressed as [23]

Hfs ¼ expðjkdf sÞ exp½−jπλdf sðf 2x þ f 2yÞ�; ð5Þ

where df s is the distance separating the input and
output planes, λ is the light wavelength, k ¼ 2π=λ
is the modulus of the wave vector, and ðf x; f yÞ are
the spatial frequencies in a plane perpendicular to
the direction of propagation. In this case, the gener-
ated optical field corresponds to an objective speckle
pattern.
In a 4f system configuration, the optical transfer

function H4f is a circular low pass filter defined as

H4f ¼
�
1 ifðf 2x þ f 2yÞ12 ≤ Ωc

0 otherwise
; ð6Þ

where Ωc is the cutoff frequency of the filter, which
defines the average speckle size [24,25]. As known,
Ωc can be evaluated as [24]

Ωc ¼
DA

4λf ; ð7Þ

where DA is the diameter of the aperture of the ima-
ging system, f is the focal length of the system, and λ
the wavelength of the light. In this case, the gener-
ated optical field corresponds to a subjective speckle
pattern.
In our simulation, we used a combination of both

free space propagation and the 4f configuration to
model a TSI system. The assumptions of the model
are as follows: there is no multiple scattering
present, no absorption, and the refractive index var-
iations are only in a scale smaller than the resolution
volume of the system given by the lateral and depth
resolutions. The latter ensures that scattering is pre-
sent to give back a signal, but then light propagates
as through a medium of uniform refractive index.
Additionally, it is supposed that the whole system
is immersed in a transparent medium of refractive
index n0 ¼ 1.
Figure 1 depicts the simulated imaging system

used to numerically generate the speckle distribu-

tions. The 4f optical configuration is composed by
two lenses Li and Lo, each one with focal length f .
Both lenses are separated by a distance 2f and the
aperture of the imaging system is A. A detector array
D is placed at the output plane of the system. The
optical transfer function H4f associated with this
configuration is defined by Eq. (6). The beam splitter
BS is used to combine the scattered light collected
from the object with a plane wave, which acts as the
reference beam of the interferometer. The sample M
is a semitransparent object of uniform refractive in-
dex nM, positioned at a distance dr behind the input
plane of the 4f system.

The free space propagation system is identified by
the distance separating the scattering surface and
the observation plane. In this case, we can associate
one system with the light propagation through the
sample from each internal scattering layer Sl to
the sample surface S0, and another from S0 up to the
input plane of the 4f optical system.

A rough opaque surface R, called reference surface,
is placed at the input plane of the 4f system and
blocks up a small region of the sample. The reference
surface allows for carrier detection and error correc-
tion in the TSI system, the latter of which is intro-
duced by nonlinearities of the tilting device or
misalignments in the experimental setup.

The optical field amplitude recorded at detector ar-
ray D, which is generated by the light back-scattered
by the sample, can be evaluated by adding the con-
tributions from every scattering layer Sl and the
sample surface S0. Considering thatUiS0

andUiSl
are

the incident optical field amplitudes in the spatial
frequency domain at S0 and Sl, respectively, the
optical field UoM recorded by the detector array is
given by

UoM ¼ H4f Hf s0ðUiS0
þ
X
l

Hf slUiSl
Þ; ð8Þ

where l identifies each internal scattering layer, H4f
is the optical transfer function of the 4f system con-
figuration [see Eq. (6)], Hfsl is the transfer function
associated to the propagation of the light from Sl
through the sample, andHfs0 is the transfer function
of the propagation system from the sample surface

Fig. 1. Imaging system and sample geometry used to simulate
the speckle fields used in TSI to measure depth-resolved displace-
ments inside semitransparent scatteringmaterials:Li and Lo form
a 4f system; D, detector array; A, aperture of the imaging system;
BS, beam splitter; R, reference surface; M, material sample with
refractive index nM .
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up to the input plane of the 4f system. These transfer
functions can be expressed as [see Eq. (5)]

Hfs0 ¼ expðjkdrÞ exp½−jπλdrðf 2x þ f 2yÞ�;
Hfsl ¼ expðjknMdlÞ exp½−jπλnMdlðf 2x þ f 2yÞ�; ð9Þ

where dl is the distance from Sl to S0.
The optical field amplitude UoR recorded by detec-

tor array D and generated by the light scattered by
the reference surface can be evaluated as

UoR ¼ H4f UiR ; ð10Þ

where UiR is the incident optical amplitude over R.
The total optical field UoT recorded at the detector

plane is equal to UoR where the reference surface
blocks up the view of the sample, and to UoM
elsewhere. Finally, a constant term must be added
to UoT to simulate the reference beam of the
interferometer.

3. Simulation of the TSI Illumination System and Data
Processing

A. TSI Illumination and Acquisition System

Figure 2 shows a schematic diagram that is used in
the TSI system to illuminate the sample. The origin
of the defined coordinate system ðx; y; zÞ is placed at
point O, which lies on reference surface R. R is a
rough opaque surface, placed at the region z ¼ 0
and y ≤ 0. Sample M is a semitransparent object of
refractive index nM located at z ¼ dr and illuminated
by a collimated beam of wavelength λ at an angle θ to
the optical axis of the system. In this case, the plane

ðx; zÞ is the plane of incidence of the light. A lens sys-
tem LS is used to image the sample and the reference
surface on detector array D. Beam splitter BS com-
bines the scattered light collected from the object
with a plane wave ir, which acts as the reference
beam of the interferometer. The whole system is
immersed into a transparent medium of refractive
index n0 ¼ 1.

The illumination beam is refracted at the object
surface z ¼ dr, reaching an internal point Q with co-
ordinates ðx; y; zÞ at an angle θr ¼ sin−1ðn0 sin θ=nMÞ
to the optical axis. The phase difference between the
light scattered at Q and the reference beam can be
expressed relative to the phase difference at point
O as [21]

ϕðx; y; zÞ ¼ 2π
λ ½n0x sin θ þ n0drð1þ cos θÞ
þ nMðz − drÞð1þ cos θrÞ�: ð11Þ

The value of ϕðx; y; zÞ represents the deterministic
phase φd obtained when the optical field ui is evalu-
ated at the input plane of an internal layer located at
a distance z − dr from the object front surface
[see Eq. (3)].

It is considered that illumination angle θ changes
linearly with time t about central angle θc as

θðtÞ ¼ θc þ
Δθ
T

t; ð12Þ

where Δθ is the tilt angle and T is the duration of
the image acquisition process. Hence, phase ϕ will
vary as

1
2π

∂ϕ
∂t

¼ f ðx; y; zÞ ¼ n0Δθ
λT ½x cos θ − dr sin θ − ðz − drÞξ�

¼ f xðx; yÞ þ f dr
ðy;drÞ þ f zðy; z − drÞ; ð13Þ

where the parameter ξ is defined by

ξ ¼ ∂θr
∂θ sin θ ¼ χ cos θ sin θ

ð1 − χ2sin2θÞ1=2 ; ð14Þ

and χ ¼ n0=nM .
The phase temporal variation f ðx; y; zÞ represents

the modulation frequency produced by the interfer-
ence between the back-scattered light within the ob-
ject and the reference wavefront coming from beam
splitter BS. Despite the fact that the frequency of
each term in Eq. (13) depends on θ and, consequently,
changes during the acquisition process, it is assumed
that Δθ is small enough so that the resulting fre-
quency changes can be neglected.

At z ¼ dr, f ðx; y; zÞ ¼ f xðx; yÞ þ f dr
ðy;drÞ is the fre-

quency associated with a point positioned on the ob-
ject surface. Considering z ¼ dr ¼ 0, f ðx; y; zÞ ¼
f xðx; yÞ is the frequency associated with a point lying
on the reference surface.

Fig. 2. Schematic diagram of the TSI system: R, reference surface
placed at z ¼ 0 and y ≤ 0; M, material sample with refractive index
nM ; Q, internal point within the sample; LS, lens system used to
image M and R; BS, beam splitter; D, detector array.
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The light intensity iD measured at the detector
plane is given by [21]

iDðx; y; tÞ ¼ irðx; yÞ þ 2
Z

zmax

dr

½irðx; yÞiðx; y; zÞ�1=2

× cos½2πf ðx; y; zÞt�dz

þ 2
Z

zmax

dr

Z
zmax

dr

½iðx; y; zÞiðx; y; z0Þ�1=2

× cosf2π½f ðx; y; zÞ − f ðx; y; z0Þ�tgdzdz0: ð15Þ

The first term in Eq. (15) accounts for the dc
component of the reference beam. The second term
represents the intensity modulation due to the inter-
ference between the reference beam and the light
scattered from the material. The third term corre-
sponds to the cross interference between the light
coming from within the object and contributes to
low-frequency components of the signal. The integra-
tion limit zmax is determined by the object back sur-
face, the maximum penetration depth of the light, or
the depth range of the TSI system, whichever is the
minimum [21].
It should be noticed that the fluctuations into the

optical path of the back-scattered light introduced by
the scattering centers, which are randomly distribu-
ted inside the material, produce a random position-
ing error in the integration variable z in Eq. (15) and
slight variations in the frequencies detected. Thus,
the influence of the speckle noise is implicitly consid-
ered in the evaluation of the intensity at the detector.

B. Data Processing and Depth-Resolved Phase
Evaluation

The Fourier transform of the intensity signal along
the time axis iDðx; y; tÞ gives rise to the spectrum
jIDðx; y; f Þj2. The magnitude of this spectrum repre-
sents the degree of scattering at any point within
sample M or at reference surface R, and the frequen-
cies are related to the position of the scattering cen-
ters by means of Eq. (13). Therefore, jIDj2 can be
associated to the internal structure of the object
and its position relative to the reference surface.
Figure 3(a) schematically shows the mean value of

the spectrum hjIDj2i evaluated along the y axis for a
horizontal position, and Fig. 3(b) depicts the mean
spectrum over the ðx; f Þ plane. It is observed that a
peak appears at f ¼ 0 for every horizontal position,
a peak PR that corresponds to the reference surface,
and a band PM associated with the semitransparent
sample. The low-frequency edge of PM is related to
the front surface of M and usually has the highest
amplitude of the band because of the change in
the refractive index at this surface.
The position dr of the object front surface relative

to R is proportional to the frequency difference f dr
be-

tween the spectral peak due to the scattering at R
and at the object surface [see Eq. (13)]. This
frequency difference can be evaluated from several
pixels located at the same horizontal position by

imaging either the reference or the sample. Then,
the position zðx; yÞ of a scattering point within the
sample can be obtained as

zðx; yÞ ¼ dr −
λTf zðy; z − drÞ

ξn0Δθ ; ð16Þ

and the spectral bandwidth Δf corresponding to a
thickness Δz results

Δf ¼ −
n0jξjΔθ

λT Δz: ð17Þ

When a load is applied to the sample, the scatter-
ing centers will change their positions according to
the mechanical properties of the material, its geome-
try, and boundary conditions, and the phase ϕðx; y; zÞ
will also reflect this variation. To evaluate phase ϕ at
a particular point ðx; y; zÞ, it is necessary to compute
the value of ϕðx; y; f Þ from the imaginary and real
parts of IDðx; y; f Þ and then the ðx; y; f Þ coordinates
are translated into the ðx; y; zÞ coordinate space by
means of Eq. (16).

Even though a single illumination setup as the one
depicted in Fig. 2 is sufficient to detect the internal
structure by evaluating the spectrum jIDj2, two
illumination directions are needed to determine
the horizontal in-plane u and the out-of-plane w
displacement components. For right and left lateral
illumination, the phase change Δϕðx; y; zÞ ¼ ϕðxþ u;
y; zþwÞ − ϕðx; y; zÞ due to the displacement d ¼
ðu; 0;wÞ can be evaluated as [21]

ΔϕRðx;y;zÞ ¼
2π
λ fuðx;y;zÞn0 sinθR

þwðx;y;drÞn0ð1þ cosθRÞ
þ ½wðx;y;zÞ−wðx;y;drÞ�nMð1þ cosθRrÞg;

ΔϕLðx;y;zÞ ¼
2π
λ f−uðx;y;zÞn0 sinθL

þwðx;y;drÞn0ð1þ cosθLÞ
þ ½wðx;y;zÞ−wðx;y;drÞ�nMð1þ cosθLrÞg;

ð18Þ

where θRr and θLr are the refracted angles for right
and left illumination, respectively. By selecting

Fig. 3. Mean value of the spectrum of the interference signal
hjIDj2i evaluated along the y axis for (a) a horizontal position
and (b) over the ðx; f Þ plane. The peak identified as PR corresponds
to the reference surface and the band PM is associated with the
semitransparent sample.
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θR ¼ θL ¼ θ, the out-of-plane Δϕz and in-plane Δϕx
phase changes can be evaluated by adding and sub-
tracting ΔϕR and ΔϕL, respectively. Finally, the dis-
placement components u and w can be computed as

uðx; y; zÞ ¼ λΔϕxðx; y; zÞ
4πn0 sin θ ;

wðx; y; zÞ ¼ λΔϕzðx; y; zÞ
4πnMð1þ cos θrÞ

−
λΔϕzðx; y;drÞ

4π

×
�

1
nMð1þ cos θrÞ

−
1

n0ð1þ cos θrÞ
�
: ð19Þ

The depth resolution δz of the TSI system is de-
fined as the minimum distance between surfaces
whose corresponding interference signals can be
fully resolved in the frequency domain. It can be de-
monstrated that the depth resolution is given by [21]

δz ¼ −
λγ

n0jξjΔθ ; ð20Þ

where the parameter γ is proportional to the spectral
bandwidth of the window function used for evaluat-
ing the Fourier transform. In the case of rectangular
or Hanning windows, γ ¼ 2 and 4, respectively.

4. Results of the Numerical Analysis

The numerical model proposed in Sections 2 and 3
was used to simulate the intensity distribution ob-
tained with the TSI technique. The imaging geome-
try and the illumination setup of the TSI system that
were used in this simulation were similar to the ones
shown in Figs. 1 and 2. For simplicity, it was consid-
ered that only two scattering layers existed in sam-
ple M, the object surface S0 and the internal layer Sl,
and that the scattering centers were uniformly dis-
tributed in both layers.
The simulation parameters were selected in a si-

milar way as in the experimental work presented
by Ruiz et al. in [21]. The refractive index of the semi-
transparent material was chosen as nM ¼ 1:4, a va-
lue that is typical of the epoxy resins that are usually
utilized in the manufacturing of fiber glass compo-
sites. The distance between the sample and the refer-
ence surface was dr ¼ 4mm, the depth of the internal
scattering layer was dl ¼ 2mm, the central illumina-
tion angle was θc ¼ π=4 rad, the tilt angle was Δθ ¼
0:0048 rad, the wavelength was λ ¼ 532nm corre-
sponding to green laser light, the size of the field
of view was 7:2 × 7:2mm2 and its spatial resolution
was 256 × 256, and the intensities were digitized
with 256 gray levels. This simulation was carried out
for 256 simulated frames with an average speckle
size of 2pixels. Finally, the value of θc was chosen
so that jξðθÞj is maximum and almost constant for
the whole simulation [see Eq. (14)]. Consequently,
the depth resolution δz was optimized [see Eq. (20)].
Two sequences of interferograms were generated

considering the left and the right lateral illumina-
tions. Then, a displacement d ¼ ðu; 0;wÞ was intro-

duced. The out-of-plane component w was a rigid
body tilt around the vertical axis y with a maximum
displacement of 2 μm. The in-plane component u was
a linear displacement along the horizontal axis x. In
this last case, the maximum displacement at the
front surface S0 was 3 μm, and the maximum displa-
cement at the internal slice Sl was 2 μm. Finally, the
intensity distribution of each corresponding speckle
interferogram of the sequence was calculated.

Figure 4 shows the mean value of the spectrum of
the interference signal generated for one sequence of
interferograms using the left lateral illumination.
This figure displays the low-frequency peak PR that
is associated with reference surface R and also the

Fig. 4. Mean value of the spectrum of the interference signal
evaluated along the y axis on the ðx; f Þ plane. The peaks identified
as PR, P0, and Pl correspond to the reference surface R, the object
surface S0, and the inner scattering layer Sl, respectively.

Fig. 5. Out-of-plane phase change obtained by a numerical simu-
lation of a TSI system due to a rigid body tilt of the sample about
the y axis. The wrapped phase maps correspond to (a) the front
surface and (b) the slice within the material at a distance dl from
the front surface.
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two consecutive peaks P0 and Pl, which correspond to
each scattering layer of the sample, respectively. The
position of the sample dr is proportional to the band-
width between PR and P0, and the frequency differ-
ence between the peaks P0 and Pl corresponds to the
depth dl of the scattering layer Sl.
The out-of-plane wrapped phase changes due to

the rigid body tilt introduced to the sample, evalu-
ated at the front surface S0 and at the internal scat-
tering layer Sl, are shown in Figs. 5(a) and 5(b),
respectively. The bottom area showing a uniform
phase map corresponds to reference surface R. As ex-
pected, the evaluated phase change is similar for
both layers and varies linearly along the horizontal
direction x due to the simulated rigid body rotation
introduced around the vertical axis y.
Figures 6(a) and 6(b) depict the in-plane wrapped

phase changes due to the linear horizontal displace-
ment introduced in the sample, evaluated at the
front surface S0 and at the internal scattering layer
Sl, respectively. The bottom area showing a uniform
phase map corresponds to reference surface R. As ex-
pected, the evaluated phase change varies linearly
along the horizontal direction x for both layers and

is larger at the front surface than at the inter-
nal layer.

Finally, the internal displacement field compo-
nents were evaluated by unwrapping the phasemaps
displayed in Figs. 5(b) and 6(b) by means of a
minimum L0-norm unwrapping algorithm [26,27].
Figure 7 shows a comparison between the original
out-of-plane displacement component w (line a) and
the displacement obtained at the internal layer Sl
(line b). Similarly, Fig. 8 compares the original in-
plane displacement component u (line a) and the dis-
placement obtained at the internal layer Sl (line b).

5. Conclusions

We have proposed, on the one hand, a linear simula-
tion model to compute an approximation of the
subjective speckle field that is obtained with a 4f
imaging system when a semitransparent scattering
material is illuminated with monochromatic light.
Under assumptions of weak scattering, no absorp-
tion, flat object surface, and uniform average refrac-
tive index in the macroscale, we produced a model
that retains and simulates the fundamental proper-
ties of the speckle fields that are recorded in TSI for
depth-resolved displacement measurements. On the
other hand, we simulated the illumination strategy
used in TSI, i.e., a linearly varying illumination
angle and the interference with a reference beam, to
encode depth in the temporal modulation of the
speckle interferograms recorded in the image plane
of the optical system. The ability of the model to
detect the internal structure of a weakly scattering
material and to simulate depth-resolved displace-
ment measurements was illustrated with simple ex-
amples that included out-of-plane and in-plane
deformations.

The overall model constitutes the first building
block of a more complete simulation in which differ-
ent phenomena could be incorporated, mainly object
nonplanar geometry, material scattering and absorp-
tion, nonuniform refractive index, birefringence, and

Fig. 6. In-plane phase change obtained by a numerical simula-
tion of a TSI system due to a linear horizontal displacement ap-
plied to the sample along the x axis. The wrapped phase maps
correspond to (a) the front surface and (b) the slice within the ma-
terial at a distance dl from the front surface.

Fig. 7. Comparison between the original out-of-plane displace-
ment component w (line a) and the displacement obtained at
the internal layer Sl (line b). An offset of 0:4 μm was added to
the original displacement (line a) for the sake of clarity.

Fig. 8. Comparison between the original in-plane displacement
component u (line a) and the displacement obtained at the internal
layer Sl (line b). An offset of 0:4 μm was added to the original dis-
placement (line a) for the sake of clarity.
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speckle decorrelation. It will allow us to study the re-
lative importance of these effects on the performance
of the TSI technique and their associated errors.

The authors thank A. Federico for his valuable
comments.
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