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We evaluate a data-driven technique to perform bias suppression andmodulation normalization of fringe
patterns. The proposed technique uses a bidimensional empirical mode decomposition method to decom-
pose a fringe pattern in a set of intrinsic frequency modes and the partial Hilbert transform to charac-
terize the local amplitude of the modes in order to perform the normalization. The performance of the
technique is tested using computer simulated fringe patterns of different fringe densities and illu-
mination defects with high local variations of the modulation, and its advantages and limitations
are discussed. Finally, the performance of the normalization approach in processing real data is also
illustrated. © 2009 Optical Society of America

OCIS codes: 120.2650, 120.3180.

1. Introduction

Optical interferometry is a widely known technique
in scientific and industrial applications, and its use
has been increased since the introduction of auto-
mated methods of fringe patterns analysis [1]. The
aim of fringe pattern analysis is the extraction of
some physical quantities from the optical phase dis-
tribution coded in one or several fringe patterns. Op-
tical phase recovery techniques, especially in those
measurement systems where the whole physical in-
formation is contained in a single fringe pattern, are
very sensitive to modulation defects that are mostly
due to nonuniform illumination. Consequently, the
fringe pattern to be analyzed must be usually nor-
malized before the phase map is extracted in order

to avoid the introduction of large errors in the phase
demodulation process.

Recently, several fringe normalization techniques
have been proposed. In Ref. [2], two orthogonal band-
pass filters are combined to obtain an estimate of the
normalized modulation intensity. This method has
been successfully applied in fringe normalization,
although its efficiency is reduced in images with very
low modulation regions or stepped contrast changes.
More recently, a technique based on a quadrature op-
erator using one-dimensional (1D) Reisz filters was
presented [3]. This technique is especially designed
for n-dimensional fringe patterns and needs to pre-
process the fringe pattern to remove the bias term.
In phase recovering processes from a single fringe
pattern the application of the regularized phase
tracking (RPT) technique is also known. In Ref. [4],
a normalization step was added to this technique
consisting of the addition of one term to the RPT
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function that models the fringe pattern modulation.
This approach is quite useful in fringe patterns with
high frequency noise, although it is necessary to pre-
process the fringes to remove the bias term, and it
also requires a long processing time.
Digital speckle pattern interferometry (DSPI) is an

important coherent optical technique widely used for
whole-field measurement of displacements, strain
fields, and contours in rough objects [5]. Fringe pat-
terns generated in DSPI are usually produced by the
correlation of two or more speckle interferograms
created by different deformation states of the object
under study. Phase extraction procedures from single
DSPI fringe patterns is a complex task, usually due
to the residual speckle noise [6–9]. Therefore, a
speckle denoising technique to smooth the DSPI
fringes must be previously applied to phase extrac-
tion [10,11]. However, the use of a smoothing prepro-
cess usually reduces fringe visibility or can introduce
oversmoothing, so that a normalization technique
must be applied before the phase distribution is re-
trieved. Recently, a technique was presented for fil-
tering and normalizing a fringe pattern by means of
an iterative procedure based on the construction of
an adaptive filter as a linear combination of isotropic
bandpass filters [12]. With the same purpose, in an-
other recently introduced approach an expression of
the cosine profile of the fringe pattern is formulated
and based on the use of directional derivatives [13].
However, it was observed that the obtained results
can be severely affected if the analyzed fringe pat-
tern contains very lowmodulation regions or stepped
contrast changes as in the case of the technique pre-
sented in Ref. [2].
In this paper we evaluate a data-driven approach

to normalize fringe patterns containing very low
noise levels or previously denoised fringes and also
to remove its bias term using the bidimensional em-
pirical mode decomposition (BEMD) method, similar
to the one described in Ref. [14], and the partial Hil-
bert transform (PHT). BEMD is a two-dimensional
(2D) extension of the empirical mode decomposition
(EMD) method first introduced by Huang [15]. EMD
is an adaptive technique that decomposes nonsta-
tionary and nonlinear 1D signals in a finite number
of fast and slow oscillations of zero mean called in-
trinsic mode functions (IMFs). BEMD is used to de-
compose images in a small group of 2D IMFs and a
residual image. This decomposition is carried out
through a fully data-driven sifting process, so that
no basis functions need to be fixed.
The technique proposed in this paper performs

bias removal and modulation normalization of fringe
patterns in a single process. In addition, the compu-
tational time is not demanding. In this approach, a
fringe pattern is first decomposed by using the
BEMD technique, then the amplitudes of the first
significative 2D IMFs are calculated by using the
PHT. The normalized fringe pattern is finally ob-
tained by adding the significative 2D IMFs divided
by its respective amplitude. The rest of the decompo-

sition contains the bias component that is automati-
cally removed.

In the following sections we briefly explain the the-
oretical concepts of BEMD and the PHT. We also de-
scribe the proposed normalization technique and test
its performance on computer-simulated fringe pat-
terns by using a quality index. Finally, an application
of the proposed technique to normalize an experi-
mental DSPI fringe pattern is presented, and the ob-
tained results are also compared with those given by
the approach presented in Ref. [2].

2. Theoretical Concepts

A. BEMD Method

The BEMD method is an adaptive and data-driven
technique that decomposes an image into a small
set of subimages called 2D IMFs, representing the
high and low frequency components of the original
image and a residue. There are some conditions that
a bidimensional function must meet to be a 2D IMF:
(1) the mean value between the envelopes defined by
the local maxima and minima of a 2D IMF is close to
zero everywhere; (2) the number of extrema and zero
crossings must be approximately the same. The resi-
due is a bidimensional function that has less than
three extrema. The 2D IMFs are defined by the
fringe pattern itself using a sifting process defined
as follows:

1. Initialization: h ¼ I, where I is the fringe pat-
tern to be analyzed (input image).

2. Find all local maxima and minima of image h.
3. Generate the upper and lower 2D envelopes by

connecting all local extrema.
4. Calculate the mean function Envmean of the

upper and lower 2D envelopes.
5.. Subtract Envmean from the input image

and h≡ h − Envmean.
6. Repeat the process until the stop criterion is

met and h is a 2D IMF.

The next step of the decomposition process consists
of subtracting the obtained h from the input image.
The residue of this subtraction is used as the new in-
put image, and all the sifting process is repeated un-
til no more 2D IMFs can be obtained. The process is
ended when the number of extreme points is less
than three. The last input data of the algorithm do
not meet the conditions to be a 2D IMFand are called
the residue. Once the decomposition is completed,
the input image I is reconstructed as the sum of
all the 2D IMFs and the residue.

The procedures utilized for extrema detection and
the interpolation to generate the upper and the lower
2D envelopes used in this work are similar to those
applied in Ref. [14]. Local maxima and minima were
extracted using the 4-connected neighbors method.
According to thismethod, a value Iðx; yÞ is a localmax-
ima (or minima) of the image I if is larger (or
lower) than its 4-connected neighbors [16]. The
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technique selected formaxima andminima interpola-
tion was a triangle-based cubic spline interpolation.
This method is based on the Delauney triangulation
of the maxima andminima and piecewise cubic inter-
polation on triangles [17]. This interpolation techni-
que is usually applied due to its low computational
cost when images with a large number of extreme
points need to be processed [16,18]. The interpolated
surface must connect every data point and the second
derivative must be continuous everywhere, so that
the surface is smooth enough. For this reason, the
BEMDmethod strongly depends on the interpolation
technique used to generate the envelopes.
The criterion adopted to stop the sifting process

was the normalized standard deviation SD used in
Ref. [14], being

SD ¼
P

x¼X
x¼1

Py¼Y
y¼1 jhik−1ðx; yÞ − hikðx; yÞj2P
x¼X
x¼1

Py¼Y
y¼1 h2

ik−1ðx; yÞ
< ε; ð1Þ

where X × Y is the number of samples of the image, i
is the index corresponding to the ith 2D IMF, and k is
the step number of the sifting process. After carrying
out numerous tests, it was verified that a value of ε
between 0.02 and 0.08 was suitable for the type of
fringe patterns analyzed in this work.
The errors generated in the boundaries during the

sifting process can be spread inwards through the 2D
IMFs causing severe drawbacks. Several authors
have addressed this issue in EMD [15,19,20] and
BEMD [18,21,22] using diverse approaches, such
as by adding data in the borders by reflection and
also by symmetrization through the edges of the im-
age. However, there are no standard solutions to deal
with this issue. Here, we introduced a boundary ex-
tension of the fringe patterns to be normalized in
order to avoid the error propagation inwards the
2D IMFs. A linear predictive extrapolation method
was used in order to perform this preprocessing, in
which the phase and frequency of the signal are
maintained [23]. Linear prediction consists of esti-
mating new values from a signal as a linear function
of previously known ones. In this case, we extrapo-
late the values of the boundaries using the values
of each line of the image to generate the extended
border. The length of the used extension in each di-
rection is half of the fringe pattern. After the decom-
position, only the central parts of the extended 2D
IMFs that correspond to the original size of the fringe
pattern were used.

B. Normalization Method

As previously mentioned, the technique proposed in
this paper performs both bias suppression and mod-
ulation normalization in a single process. The mod-
ulation normalization is performed by decomposing a
fringe pattern with the BEMD method in order to
obtain the first significant 2D IMFs. Then, the ampli-
tude of the selected 2D IMFs is calculated using
the PHT.

The PHT of a 2D IMF (or a set of added 2D IMFs),
named IIMFðx; yÞ, is defined as the Hilbert transform
with respect to each of the coordinates [24]. The par-
tial Hilbert transform of IIMFðx; yÞ with respect to the
coordinate x is defined by

Hxðx; yÞ ¼
1
π PV

Z þ∞

−∞

dνx
IIMFðνx; yÞ
ðx� νxÞ

; ð2Þ

and with respect to the coordinate y,

Hyðx; yÞ ¼
1
π PV

Z þ∞

−∞

dνy
IIMFðx; νyÞ
ðy − νyÞ

: ð3Þ

The PHTwas applied to each rowand column of the
selected set of 2D IMFs as it is described in Eqs. (2)
and (3), and the amplitude of each of these images
was calculated using the absolute value of its partial
analytic image. The full amplitude image Aðx; yÞ was
reconstructed by averaging the previously obtained
partial absolute values as

Aðx;yÞ¼ jIIMFðx;yÞþ iHxðx;yÞjþjIIMFðx;yÞþ iHyðx;yÞj
2

:

ð4Þ
The reason for using the PHT in this work instead

of other 2D transforms, such as the spiral quadrature
transform, was based on the consideration that
the modulation amplitude and not the phase was
under computation. Therefore, the mentioned x
and y Hilbert transforms worked very well for our
purpose.

Once the amplitude Aðx; yÞ of the representative
group of 2D IMFs was calculated, the normalized
pattern was obtained by dividing IIMFðx; yÞ by its cor-
responding amplitude Aðx; yÞ. The bias suppression
was achieved keeping only the significant 2D IMFs,
since the bias component information lies in the last
modes of the decomposition. The number of signifi-
cant 2D IMFs to be selected was the only step of
the normalization procedure that needed external
supervision. This number can vary depending on
the fringe patterns to be normalized. In most cases,
the first 2D IMF was enough to perform the normal-
ization. However, when the fringe patterns contained
a wide range of frequency information, it could be ne-
cessary to use the second, and sometimes the third,
2D IMF as well.

3. Numerical Evaluation

The computer simulated fringe patterns used to eval-
uate the normalization technique were generated
with added illumination defects in the form of Gaus-
sian shaped bias components and modulation distor-
tions. The Gaussian defects had different variance
and were centered at various regions of the fringe
patterns to simulate different types of distortions.
The fringes were generated for a resolution of 128 ×
128 pixels with 256 gray levels. This approach allows
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one to know precisely the original fringe pattern and
the introduced distortions, so that a figure of merit
can be used to evaluate the proposed normalization
technique.
The performance of the normalization technique

was obtained by calculating a figure of merit, named
the quality index Q, to avoid the weak performance
that exhibits the mean-square-error criterion com-
monly accepted in the literature. The index Q com-
pares the normalized fringe patterns with the
defect-free ones, and it is defined as [25]

Q≡

4σEO �E�O

ðσ2E þ σ2OÞ½�E2 þ �O2� ; ð5Þ

whereO is the defect-free image and E is the normal-
ized fringe pattern. �E, σE and �O, σO are the means
and the standard deviations of the normalized fringe
pattern and the defect-free image, respectively,
and σEO is the covariance between E and O. The Q
index allows one to model distortions of any kind
as a combination of loss of correlation and luminance
and contrast distortions as it can be deduced from
Eq. (5),

Q ¼ σEO
σEσO

2 �E �O

ð�EÞ2 þ ð�OÞ2
2σEσO
σ2E þ σ2O

: ð6Þ

The dynamic range of the Q index is ½−1; 1�, and Q ¼
1 is the best value that could be achieved. The index
was calculated using a sliding window of 5 × 5 pixels
that was displaced pixel by pixel across the horizon-
tal and vertical directions of the image, and the final
result was obtained as the mean of the previously
computed values.
It should be noted that the processing time re-

quired by the proposed normalization algorithm is
quite limited. It takes between approximately 1
and 2 min to normalize a fringe pattern with a reso-
lution of 512 × 512 pixels using MatLab version 7.0
with a 1:8GHz Intel Core 2 Duo personal computer.
As a typical example, Fig. 1(a) shows a very simple

computer-simulated fringe pattern with a low fringe
density, and a Gaussian bias and modulation defects.
Figure 1(b) displays the normalized image obtained
with the technique proposed in this paper by using
only the first 2D IMF of the decomposition process.
The value of the Q index calculated for this fringe
pattern was Q ¼ 0:764. Figure 2(a) shows a more
complex example with the same modulation defects
as in Fig. 1(a). The normalized fringes are shown in
Fig. 2(b) with a Q index value of 0.898. In this exam-
ple, the first 2D IMF in the normalization process
was also used. Figures 1(b) and 2(b) clearly show
the effectiveness of the proposed normalization
approach.
The results of normalizing fringe patterns using

BEMD and the PHT were also compared with those
obtained by the application of the technique pro-
posed in Ref. [2]. Figure 3(a) shows a computer-

simulated fringe pattern similar to the one depicted
in Fig. 2(a), although with a higher fringe density
and a higher modulation variation. Figures 3(b)
and 3(c) display the results of applying the BEMD
and the PHT approach and the two orthogonal band-
pass filter method of Ref. [2], respectively. It is ob-
served that Fig. 3(c) presents defects in the low
modulation area of the image, while the normalized
fringe pattern obtained from the BEMD and PHT
techniques is free of defects [Q ¼ 0:845 for Fig. 3(b)
and Q ¼ 0:160 for Fig. 3(c)].

To illustrate the performance of the proposed
technique, Figs. 4(a)–4(c) also display the intensity
profile along the middle row corresponding to
Figs. 3(a)–3(c), respectively. Figure 4(b) shows the
normalization effect produced by the use of the pro-
posed technique, which can also remove the excessive

Fig. 1. Normalization of a low frequency computer-generated
fringe pattern: (a) fringe pattern containing a bias component
and a modulation defect, (b) normalized fringe pattern obtained
using the first 2D IMF (Q ¼ 0:764).
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bias depicted in Fig. 4(a). Note that the bias was
removed in Fig. 4(c), although the normalization
process could not be completed.
Figure 5 presents an example of bias removal and

modulation normalization applied to a computer-
simulated DPSI fringe pattern generated using the
method presented in Ref. [26]. Figure 5(a) shows
the original DSPI fringe pattern, which contains high
levels of speckle noise, and Fig. 5(b) displays the
smoothed pattern obtained by applying the wave
atoms speckle reduction method proposed in
Ref. [11]. It can be seen that the denoised image pre-
sents modulation defects introduced by the denoising
procedure. Figure 5(c) shows the result of applying
the proposed normalization technique to the fringe
pattern of Fig. 5(b) with a Q index value of 0.842.

4. Experimental Results

To illustrate the performance of the proposed nor-
malization method when experimental data are pro-
cessed, we analyzed real DSPI fringes recorded from
the study of a metal plate subjected to a thermal load

Fig. 2. Normalization of a more complex computer-generated
fringe pattern: (a) fringe pattern containing a bias component
and a modulation defect, (b) normalized fringe pattern obtained
using the first 2D IMF (Q ¼ 0:898).

Fig. 3. Comparison between the proposed technique and another
normalization method: (a) fringe pattern containing a bias compo-
nent and a modulation defect, (b) normalized fringe pattern ob-
tained using the first 2D IMF (Q ¼ 0:845), (c) fringe pattern
normalized using the two orthogonal bandpass filter method of
Ref. [2] (Q ¼ 0:160).
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[27]. Figure 6(a) shows a typical fringe pattern,
which represents the out-of-plane displacement field
generated by the plate when it was heated with an
infrared lamp from its back surface. The deforma-
tions of the fringes displayed at the top and bottom
of the image correspond to the presence of two flat-
bottomed holes that were milled into the back sur-
face to simulate internal flaws. This figure clearly
shows the defect displayed in the fringe pattern
caused by the nonuniform illumination.
Figure 6(b) displays the denoised fringe pattern

generated with the speckle smoothing technique pre-
sented in Ref. [14], which contains modulation de-
fects generated by the denoising procedure. The
normalized image obtained from Fig. 6(b) by the ap-
plication of the proposed normalization technique
when the first two 2D IMFs were used, is shown

in Fig. 6(c). As a comparison, Fig. 6(d) depicts the
result of applying the two orthogonal bandpass filter
method of Ref. [2] to the denoised image of Fig. 6(b).
Figure 6(c) shows that the modulation defects are

Fig. 4. (Color online) Intensity profiles along the middle row of
the fringe patterns depicted in Fig. 3: (a) original fringe pattern,
(b) fringe pattern normalized with the proposed method, (c) fringe
pattern normalized with the two orthogonal bandpass filter tech-
nique of Ref. [2].

Fig. 5. Computer-generated DSPI fringe pattern: (a) original
fringe pattern, (b) smoothed fringe pattern obtained using the
wave atoms technique of Ref. [11] containing modulation defects
introduced by the denoising procedure, (c) fringe pattern normal-
ized with the proposed method using the first 2D IMF (Q ¼ 0:842).
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removed while the structure of the fringes is pre-
served. In addition, the deformation of the fringes
due to the two flaws are still clearly observable.

5. Conclusions

This paper evaluates a bias removal and a normal-
ization data-driven technique to be used in fringe
pattern analysis. The proposed technique is based
on the BEMDmethod and the PHT. The performance
of the normalization technique was tested in compu-
ter-simulated fringe patterns with low and high
fringe densities and also in real data. Illumination
defects of varying intensities were added at different
locations of the fringe patterns to evaluate the bias
removal and the modulation normalization. The per-
formance of the technique was evaluated using a
quality index Q. Good results were obtained in all
the evaluated cases, even in fringe patterns with
very low modulation regions and stepped contrast
changes. It was also noted that the proposed techni-
que is more accurate when it is applied to fringe pat-
terns with high fringe densities. As the last 2D IMFs
of the decomposition contain the bias component, it
can be removed automatically without using any
other preprocessing. Moreover, as BEMD is an adap-
tive technique that allows the decomposition of
complex fringe patterns with nonlinear and non-
stationary data in simpler components, the normal-
ization of fringe patterns having a wide range of
frequency information and varying geometry is facili-
tated. Besides, since BEMD is based on local charac-
teristics of the data, the proposed normalization
technique presents no difficulties in the normaliza-

tion of fringes with extremely low modulation areas
or contrast changes presenting a high variation.
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cial support provided by Fundación Josefina Prats of
Argentina.
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