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ing. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups
previously established, still remains unsolved. In this work we evaluate the performance of several state-
of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize
heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a
valuable complement to traditional breeding programs.
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upervised learning
eterotic groups

. Introduction

Since the first maize hybrid was bred and produced in USA,
ybrid breeding has become one of the primary goals in any maize
reeding programs (Hallauer and Miranda, 1988); however, vari-
tal development has become more competitive and costly. For
xample, in USA, development of one variety of maize or soy-
ean requires 0.5–7.0 million dollar. The lifetime of a variety is
sually 3–6 years before it succumbs to the challenges of the pro-
uction environment (biotic and abiotic stress) and demands of
onsumers (Lee, 1998). Consequently, grouping parent lines into
eterotic groups is fundamental in both private and public breeding
rograms in order to reduce the number of crosses, and therefore
eld tests, necessary to evaluate potential high-yielding hybrids
Hallauer and Miranda, 1988). By heterotic groups we mean a pop-
lation of genotypes that, when crossed with individuals from
nother heterotic group or population, consistently outperform
ntra-population crosses (Hallauer and Miranda, 1988). Molecular

arkers, such as RAPD (random amplified polymorphic DNA), AFLP
amplified fragment length polymorphism) and microsatellites,
mong others, have facilitated the development of new varieties
y reducing the time required for the detection of specific traits in

rogeny plants and the identification of disease resistance genes
Korzun, 2003). Even though they have been proposed to assign
ew inbred to heterotic groups previously established (dos Santos
ias et al., 2004; Xia et al., 2004), their usefulness in this task still

∗ Corresponding author. Tel.: +54 341 4821771x104; fax: +54 341 4821772.
E-mail address: ornella@cifasis-conicet.gov.ar (L. Ornella).

168-1699/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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remains uncertain (dos Santos Dias et al., 2004). Machine-learning
techniques, such as decision trees and artificial neural networks,
are increasingly used in agriculture to deal with classification, pre-
diction, and modeling problems (Mitchell et al., 1996; Kirchner et
al., 2004); however, we found no reports about machine learning
algorithms (Witten and Frank, 2005; Kotsiantis, 2007) and heterotic
group assignment using molecular marker data. We conjecture
that traditional distance-based methods (Reif et al., 2005) currently
available for assigning new inbreds to heterotic groups in corn do
not capture the possible non-linear relation between parental data
and progeny performance (dos Santos Dias et al., 2004; Springer
and Stupar, 2007) and that such type of non-linearity may be easily
captured by supervised machine learning models.

In this paper, we evaluate the performance of several state-
of-art supervised learning algorithms on molecular marker data
for heterotic assignation, and delineate perspectives for further
research.

2. Multiclass classifiers

The goal of supervised learning is to build a concise model of
the distribution of class labels in terms of predictor features, the
resulting classifier is then used to assign class labels to the testing
instances where the values of the predictor features are known, but
the value of the class label is unknown (Kotsiantis, 2007). There

are numerous learning algorithms reported in the bibliography
(Kotsiantis, 2007; Witten and Frank, 2005), for this introductory
work we considered four well-known supervised learning algo-
rithms implemented in Weka workbench (Hall et al., 2009): (i)
Naive Bayes (John and Langley, 1995), (ii) Bayes Net (Friedman et

dx.doi.org/10.1016/j.compag.2010.08.013
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
mailto:ornella@cifasis-conicet.gov.ar
dx.doi.org/10.1016/j.compag.2010.08.013
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l., 1997), (iii) Simple Logistic (Landwehr et al., 2005) and (iv) Sup-
ort Vector Machines (SVMs) with linear and radial basis function
ernels (Burges, 1998).

.1. Simple logistic

Landwehr et al. (2005) proposed Logistic Model Trees or LMT:
rees that contain linear logistic regression functions at the leaves.
n that work they report that at low number of training instances
n ≤ 100) Simple Logistic (logistic model tree of size one) performs
s well as more complex LMT and better than decision tree C4.5
Quinlan, 1993), with less computational requirements (Landwehr
t al., 2005).

Linear logistic regression models the posterior class probabil-
ties Pr(C = c | X = X) for the J classes via functions linear in x and
nsures that they sum to one and remain in [0, 1] (Sumner et al.,
005). The model is:

(C = c|X = x) = eFc(x)

C∑
k=1

eFk(x)

(1)

here Fj(x) =
∑M

m=1fmj(x) = ˇT
j

· x. Estimates of ˇT
j

are obtained by
umeric optimization algorithms that approach the maximum like-

ihood solution iteratively (Sumner et al., 2005). In Simple Logistic
uch iterative method is the LogitBoost algorithm (Landwehr et
l., 2005). In each iteration, it fits a least-squares regressor to a
eighted version of the input data with a transformed target vari-

ble. y∗
ij

are the binary pseudo-response variables which indicate
roup membership of an observation like this:

∗
ij =

{
1 if yi = j
0 if yi /= j

(2)

By constraining fmj to be a linear function of only the attribute
hat results in the lowest squared error arrives at an algorithm that
erforms automatic attribute selection (Sumner et al., 2005); also,
y using cross-validation (5-folds) to determine the best number
f LogitBoost iterations, only those attributes that improve the per-
ormance on unseen instances are included (Landwehr et al., 2005;
umner et al., 2005).

.2. Naive Bayes

NB learns from training data the conditional probability of each
ttribute Ai given the class label C. Classification is then done by
pplying Bayes rule to compute the probability of C given the par-
icular instance of A1, . . ., An; and then predicting the class with the
ighest posterior probability. This computation is rendered feasible
y making a strong independence assumption: all the attributes Ai
re conditionally independent given the value of the class C. Inde-
endence means probabilistic independence, i.e, A is independent
f B given C whenever P(A | B, C) = P(A | C) for all possible values of
, B and C, wheneverP(C) > 0 (Friedman et al., 1997). Even though
he above assumption is clearly unrealistic, its predictive perfor-

ance is competitive with state-of-the-art classifiers (Friedman et
l., 1997; Kohonen et al., 2008).

.3. Bayes Net
A Bayesian network is an annotated directed acyclic graph that
ncodes a joint probability distribution over a set of random vari-
bles U (Friedman et al., 1997). The graph G encodes independence
ssumptions: each variable Xi is independent of its nondescendants
ics in Agriculture 74 (2010) 250–257 251

given its parents in G(�xi
):

p(x1, x2, · · · , xn) =
n∏

i=1

p(xi|�xi
) (3)

To use a BN as classifier, a search algorithm find a network B, PB(A1,
A. . . . , An, C), that best matches a training set D according to some
scoring function (Friedman et al., 1997; Cooper and Herskovits,
1992). Once a network is learned, B returns the label c that max-
imizes the posterior probability PB(c/a1, . . ., an) (Friedman et al.,
1997; Cooper and Herskovits, 1992). Naive Bayes can be consid-
ered a Bayes Net in where the structure of the graph is constrained
(Friedman et al., 1997).

2.4. Support vector machines

The support vector machine (SVM) algorithm is based on
the statistical learning theory and the Vapnik–Chervonenkis (VC)
dimension introduced by Vladimir Vapnik and Alexey Chervo-
nenkis (Cortes and Vapnik, 1995); the underlying idea is to calculate
a maximal margin hyperplane (the decision function) separating
two classes of the data (Cortes and Vapnik, 1995), such decision
function is fully specified by a usually small subset of the data (the
support vectors) which defines the position of the separator. New
samples are classified according to the side of the hyperplane they
belong to (Cortes and Vapnik, 1995; Devos et al., 2009).

In the case of non-separable data, the “ideal boundary” must be
adapted to tolerate errors for some objects i:

minimize
1
2

|w|2 + C

n∑
i=1

�i (4)

under the constraints �i ≥ 0, �i + yi(w · xi + b) − 1 ≥ 0, w and b are
respectively the normal vector and the bias of the hyperplane, and
each �i corresponds to the distance between the object i and the
corresponding margin hyperplane (Devos et al., 2009).

The parameter C is a regularization meta-parameter, when C
is small, margin maximization is emphasized whereas when C is
large, the error minimization is predominant (Cortes and Vapnik,
1995; Devos et al., 2009).

To learn non-linearly separable functions, data are implic-
itly mapped to a higher dimensional space by means of mercer
kernels which can be decomposed into a dot product, K(xi,
xj) = �(xi) · �(xj) (Burges, 1998). Examples of kernels are the lin-
ear kernel K = (xi · xj − 1)p=1 and the radial basis function kernel

K = e−�(xi−xj)
2
.

2.5. ECOC codes

SVMs have particular high generalization abilities and have
become very popular in the recent years; nevertheless, they are
inherently binary classifiers and a combination scheme is neces-
sary to extend SVMs for problems with more than two classes
(Rifkin and Klautau, 2004). In this work, the One Against All (OAA)
(Rifkin and Klautau, 2004) and the Error Correcting Output Cod-
ing (ECOC) (Dietterich and Bakiri, 1995) combination schemes are
used.

Briefly, OAA classifiers rely on the discrimination of individual
classes against the others while ECOC codes are defined by a more

general decomposition or “‘coding matrix”’ M ∈
{

0, 1
}L×N

, which
converts a L-multiclass problem into N binary tasks (Dietterich

and Bakiri, 1995). There are several coding matrices reported in
the bibliography (Dietterich and Bakiri, 1995; Allwein et al., 2000;
Rifkin and Klautau, 2004). In particular we worked with random
codes, where each entry of the matrix is chosen to be 0 or 1 with
equal probability, N is limited by the maximum number of different
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repeatedly sampling an instance and considering the value of the
given attribute for the nearest instance of the same and differ-
ent class (Kononenko, 1994). In other words, Relief assigns more
52 L. Ornella, E. Tapia / Computers and El

nd non-complementary binary vectors that can be generated for
ichotomization (Dietterich and Bakiri, 1995).

The original approach to ECOCs predicts the class whose corre-
ponding row vector has minimum Hamming distance to the vector
f 0/1 predictions obtained from the N classifiers (Dietterich and
akiri, 1995). Allwein et al. (2000) presented an alternative, loss-
ased decoding, which notices the magnitude of the predictions,
ometimes interpreted as a measure of “confidence” of a predic-
ion. Several authors verified that Loss-decoding indeed produces

ore accurate classifiers than the Hamming distance (Allwein et
l., 2000; Rifkin and Klautau, 2004; Frank and Kramer, 2004).

. Materials and methods

.1. Datasets

We compiled three molecular marker datasets representing
broad spectrum of temperate and tropical germplasm. The

iu data (Liu et al., 2003) comprises 197 inbreeds (instances)
f both temperate and tropical germplasm characterized by 188
ttributes derived from 94 microsatellites. The number of distinct
alues per attribute ranges from 4 to 48 with a mean of 18.18.
issing data represents a 4.75 % of the total, ranging from 0%

o 25.38%, depending on the attribute. Instances are distributed
nto 10 heterotic groups (classes) and the number of instances
er group is

{
61, 13, 11, 8, 9, 13, 28, 17, 29, 8

}
. The Morales data

Morales Yokobori et al., 2005) comprises 26 temperate inbreeds
f germoplasm characterized by 42 attributes derived from 21
icrosatellites. The number of distinct values per attribute ranges

rom 2 to 13 with a mean of 4.72. Missing data represents a 8.60%
f a total, ranging from 0% to 42% of missing data per attribute.
nstances are distributed into 4 heterotic groups and the num-
er of instances per group is

{
4, 8, 6, 8

}
. The Xia data (Xia et al.,

004) comprises 73 inbreeds of tropical germplasm characterized
y 166 attributes derived from 83 microsatellites. The number of
istinct values per attribute ranges from 2 to 14 with a mean of
.93. Missing data represents the 8.02% from the total, ranging from
% to 43.84% of missing data per attribute. Instances are grouped

nto 8 heterotic groups and the number of instances per group is
22, 17, 7, 5, 5, 5, 5, 7

}
.

.1.1. Classifiers
Simple Logistic, Naive Bayes and Bayes Nets were all imple-

ented with defaults parameters of Weka (Witten and Frank,
005). SVMs were evaluated using lineal kernel and radial basis
unction (RBF) kernel, both also with default parameters (C = 1 for
inear kernel and C = 1, � = 0.01 for radial basis function kernel). In
oth SVM alternatives we choose the option “to fit Logistic regres-
ion models” of Weka’s SMO (Sequential Minimal Optimization)
lgorithm for SVMs, which allows to emit an estimate of the confi-
ence for the binary prediction instead of (0,1) hard outputs.

Concerning the implementation of ECOC classifiers, in a prelim-
nary research we evaluated the data with variable length codes
nd we did observed a positive correlation between ECOC accuracy
nd code length. As a trade off between classifier’s performance and
omputational complexity we choose random codes of length N = 6
or Morales data, N = 55 for Xia data and N = 75 for Liu data. There-
ore, 75 SVMs were used for the ECOC classification of Liu data,
5 for Xia data, and 6 for Morales data. The multiclass schemes
ere implemented as a new WEKA classifier and integrated into

he original package (Witten and Frank, 2005).
.1.2. Evaluation of classifier’s performance
The predictive power of supervised learning algorithms on

olecular marker data was evaluated by means of the error rate
Borra and Ciaccio, 2005) and the Cohen’s Kappa coefficient (Cohen,
ics in Agriculture 74 (2010) 250–257

1960) exhibited across 30 Montecarlo runs of stratified 10-fold
Cross Validation (CV) experiments (Kohavi, 1995; Kirchner et al.,
2004). At each Montecarlo run, the data was split into 10 different
segments of almost the same size and containing approximately
the same proportion of categories as the original dataset. For each
segment, classifiers were respectively trained and evaluated on the
samples derived by omitting the selected segment and on selected
segment. At the end of this procedure, the average classification
error and the average Kappa coefficient were reported. The choice
of the Kappa coefficient was motivated by its ability to better
measure the agreement between binary inter-annotators than the
traditional classification error. In particular, the Kappa coefficient
takes into account chance agreements (Cohen, 1960; Kirchner et al.,
2004) and it is well suited for unequal class distribution datasets.

Two main classification scenarios were considered: (i) NB, BN,
SL, OAA-rbf (SVM with radial basis function), ECOC-rbf, OAA-lineal
(SVM with lineal kernel) and ECOC lineal classifiers on full molec-
ular marker data, and (ii) the same classifiers evaluated on CFS
reduced data.

3.1.3. Missing data
Regarding missing data, all associated to nominal attributes,

imputation depends on the classifier evaluated (Su et al., 2008). In
Weka, Naive Bayes ignores the missing values whereas SMO glob-
ally replaces all missing values by a default value, e.g., “unknown”
(Su et al., 2008). Finally, in Bayes Net and Simple Logistic classifi-
cation, missing values of training and test set are filled in using the
mode of the corresponding attribute valuated on the training data
(Bouckaert, 2008; Landwehr et al., 2005).

3.1.4. Statistical comparison among classifiers
It is important to assess whether the observed difference in

classification performance is statistically significant or simply due
to chance (Luengo et al., 2009). Comparisons of arithmetic means
and visual inspection of Kappa boxplots was supplemented with
Kolmogorov–Smirnov (KS-test) provided by the R1 environment
(stats package). KS is a nonparametric test and it has the advantage
of making no assumption about the distribution of data (Luengo et
al., 2009). For each dataset and condition evaluated (Full and CFS
reduced data), all possible pairs of (A,B) Kappa coefficients distribu-
tions were assessed under the alternative hypothesis “distribution
B is greater than distribution A” (The R Development Core Team,
2009).

3.2. Feature Selection

Reducing the feature space to non-redundant features results
in improved classification accuracy and helps avoid overfitting of
the classifiers. In this study, we experimented with Correlation-
based Feature Subset selection (CFS) (Hall, 2000). The CFS strategy
uses a correlation-based heuristic to evaluate the merit of feature
subsets with respect to classification categories and the correla-
tion between features. CFS selection implemented in WEKA is fully
automatic and does not require a priori specification of the num-
ber of features to be included in the final subset (Hall, 2000). We
apply a second feature selection method, Relief (Kononenko, 1994),
on Morales data. This method ranks the worth of an attribute by
weight to those attributes that have the same value for instances
from the same class and differentiate between instances from dif-

1 http://www.rproject.org/.

http://www.rproject.org/
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BN

ECOC−lin

ECOC−rbf

NB

OAA−lin

OAA−rbf

SL

0.800.750.700.650.600.550.50

Full data

BN

ECOC−lin

ECOC−rbf

NB

OAA−lin

OAA−rbf

SL

0.800.750.700.650.600.550.50

CFS reduced data

Fig. 1. Liu data. Boxplots of the Cohen’s Kappa coefficient in 30 Montecarlo runs of
10-fold CV experiments. Native multiclass classifiers: Bayes Network (BN), Naive
Bayes (NB), and Simple Logistic (SL). Multiclass extensions of Support Vector
L. Ornella, E. Tapia / Computers and El

erent classes (Witten and Frank, 2005). Filtering algorithm was
alibrated in order to retain 25, 50 and 75% of the original number
f attributes.

.2.1. SVM parameters optimization
Optimization of the meta-parameters, C (regularization param-

ter) of linear kernel and C and � (RBF kernel), is the key step in
VM performance (Devos et al., 2009). Globally, when C is small
he margin maximization is emphasized leading to large margin
nd smooth boundary. The number of support vectors included in
he solution depends on this parameter and, usually, if the number
f support vectors is high the solution is unstable and leads to lower
lassifications rates (Forman and Cohen, 2004; Devos et al., 2009).
lso, when the value of � is large, the separating boundary has a

arge number of support vectors and can become tortuous. Again,
his risks overfitting the training set data to yield an SVM model that
s not robust. In contrast, a small value of � can lead to separating
oundaries described with a small number of support vectors but
hat may be too smooth to classify the training set examples with
ufficient accuracy (Jorissen and Gilson, 2005; Devos et al., 2009).
n RBF kernels it has been reported that different combinations of C
nd � lead to similar classification rates (Devos et al., 2009). To per-
orm the optimization we implemented an exhaustive grid search:
0 points (C = 0.25, 0.5, 1, 2, 4 and G = 0.0001, 0.001, 0.01, 0.1, 1,
0) for radial basis function kernel and 5 points (C = 0.25, 0.5, 1, 2,
) for the linear kernel. This approach enables to visualize directly
he effect of both parameters and provides useful information of
ase classifiers performance. In order to minimize the risk of over-
tting all parameters were estimated by external leaving out one
ross Validation (Morales) or 10-fold Cross Validation (Liu and Xia
atasets) over the training data (Ambroise and McLachlan, 2002).

. Results and discussion

Three native multiclass classifiers plus Support Vector Machines
lassifiers under the OAA (Rifkin and Klautau, 2004) and ECOC
rameshifts (Dietterich and Bakiri, 1995) were evaluated on three

olecular marker datasets representing a broad spectrum of maize
eterotic patterns. Generalization error of classifiers in this domain
as estimated by means of the error-rate and the Kappa Cohen’s
oefficient. Error-rate, defined as the ratio between the number
f misclassified cases and the total number of cases examined, is
he common measure used in nonparametric classification mod-
ls (Borra and Ciaccio, 2005). However, it does not compensate
or classifications that might have been due to chance. Hence, we
lso used the Cohen’s Kappa as a statistically robust alternative,
specially in datasets with an unequal distribution of classes. Both
tatistics were determined by 30 runs of Montecarlo 10-fold CV
xperiments. Arithmetic means of these statistics, with and with-
ut feature selection, are shown in Table 2. It can be observed
hat results according to mean error-rate and Kappa values do not
lways agree. For example, in Liu Full data, SL and NB display iden-
ical error rates and different Kappa values; in Liu CFS reduced
ata the four SVM ensembles rank different either we consider
appa or error rate values; also in Xia CFS data OAA schemes rank
ifferent whatever we choose error rate or Kappa (Table 2). Over-
ll, classification results seem to be problem-dependent, indefinite
nd not always normal. Therefore arithmetics means may be not
lways provide representative measures of classification perfor-

ance. Consequently, comparison of means and visual inspection

f Kappa boxplots was supplemented with Kolmogorov–Smirnov
KS) tests (Luengo et al., 2009). We recall that KS is a nonparametric
est which does not rely on an assumption of normality (Luengo et
l., 2009).
Machines (SVM): One Against All (OAA) and Error Correcting Output Coding (ECOC).
Base classifiers: lin - SVM with linear kernel, rbf - SVM with radial basis function
kernel. Results on full (top) and Correlation-based Feature Selection (CFS) reduced
data (bottom) are shown.

4.1. Results on full data

Bayes Net exhibited the best mean performance on full Liu data
(Table 2). Visual inspection of Kappa boxplots and KS test agreed
with this result. All KS tests were significant when comparing the
rest of classifiers to BN, for example; p-value = 6.55e − 05 when
comparing ECOC-rbf and OAA-rbf, the closest classifiers according
to Kappa coefficient, to BN.

In Xia data, ECOC-rbf significantly exceeds the rest of classifiers
(Table 2 and Fig. 2). In all KS test (any classifier vs. ECOC-rbf) the
null hypothesis was rejected, as an example; p-value = 0.0015 when
comparing ECOC-linear (the second ranked classifier) against this
ensemble.

Finally, Simple Logistic exhibited the best mean performance on
full Morales data (Table 2), a fact that was confirmed by correspond-
ing Kappa boxplots (Fig. 3). Moreover, when comparing the rest of
the classifiers with Simple Logistic using KS, the highest p-value
obtained was 0.0006, i.e., all null hypothesis was rejected.

Concerning SL, our results are in agreement with Landwehr et al.
(2005). When evaluating Liu and Xia data, which are more complex
respect to a number of classes, number of attributes and number of
instances; the classifier displays the worst performance (Figs. 1 and
2). Even though, we included this classifier in the analysis because
of its good performance on Morales data, and this dataset is simi-
lar, with regard to number of instances and/or attributes, to most
works reported in the literature, specially those from development
countries (dos Santos Dias et al., 2004).

4.2. Impact of feature selection
The genetic basis of heterosis has been debated for nearly a
century without a clear resolution. The two main hypotheses that
advanced to explain this phenomenon are dominance and over-
dominance (Hallauer and Miranda, 1988; Springer and Stupar,
2007). It is also well documented that not all markers will be linkage
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CFS reduced data

Fig. 2. Xia data. Boxplots of the Cohen’s Kappa coefficient in 30 Montecarlo runs of
10-fold CV experiments. Native multiclass classifiers: Bayes Network (BN), Naive
Bayes (NB), and Simple Logistic (SL). Multiclass extensions of Support Vector
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Table 1
Number of features preserved by Correlation-based Feature Selection (CFS). Liu, Xia,
and Morales are the original molecular marker datasets. Full data denotes the initial
number of features of each dataset. Min and Max are respectively the arithmetic
means of the maximum and minimum number of features selected during the 30
Montecarlo runs of 10-fold CV experiments.

Dataset

Liu Xia Morales

Full data 188 166 42
Min 26 29 8
Max 50 42 20

BN

ECOC−lin

ECOC−rbf

NB

OAA−lin

OAA−rbf

SL

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Full data

BN

ECOC−lin

ECOC−rbf

NB

OAA−lin

OAA−rbf

SL

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

CFS reduced data

Fig. 3. Morales data. Boxplots of the Kappa coefficient in 30 Montecarlo runs of 10-
fold CV experiments. Native multiclass classifiers: Bayes Network (BN), Naive Bayes
(NB), and Simple Logistic (SL). Multiclass extensions of Support Vector Machines

T
M
(
a

achines (SVM): One Against All (OAA) and Error Correcting Output Coding (ECOC).
ase classifiers: lin - SVM with linear kernel, rbf - SVM with radial basis function
ernel. Results on full (top) and Correlation-based Feature Selection (CFS) reduced
ata (bottom) are shown.

o genes or QTL (quantitative trait locus) associated with hetero-
is (Austin et al., 2000). Moreover, the diploid nature of data and
he characteristics of the instances (homozygous lines) allow us to
nfer the existence of some redundancy in attributes. Therefore, we
mplemented CFS (Correlation-based Feature Selection) in order
o remove attributes not related to the class. The number of CFS
elected attributes was variable, depending on the dataset; extreme
alues ranged from 13.83 to 47.62 % of the initial number of features
Table 1).

Almost none of the classifiers improve their performance with
ltered data (Table 2 and boxplots). The only exception was Naive
ayes and Bayes net evaluated on Xia data (Fig. 2). Even though,
COC-rbf was still the best classifier. All KS tests were statistically
ignificant when comparing the rest of classifiers to this ensem-
le.
In Morales reduced data and according to arithmetic means
Table 2 and boxplot of Fig. 3) SL was still the best classifier but;
hen ECOC lineal was compared to SL, the p-value was 0.0672. The

est of classifiers did show significant p-values in KS test. Finally, in
iu data, thought Naive Bayes degraded its performance with CFS

able 2
eans of the error rate and Kappa values in 30 Montecarlo runs of 10-fold CV experiments

SL). Multiclass extensions of Support Vector Machines: One Against All (OAA) and Error C
nd Morales, are considered. Results on full and Correlation-based Feature Selection (CFS)

Classifier Full data

Liu Xia Morales

Error Kappa Error Kappa Error Ka

BN 0.205 0.749 0.475 0.368 0.715 0.0
NB 0.345 0.685 0.472 0.372 0.751 0.0
ECOC lineal 0.252 0.701 0.435 0.469 0.660 0.0
ECOC rbf 0.223 0.730 0.385 0.523 0.681 0.0
OAA lineal 0.245 0.706 0.415 0.465 0.645 0.1
OAA rbf 0.223 0.730 0.429 0.442 0.690 0.0
SL 0.345 0.576 0.436 0.433 0.572 0.
(SVM): One Against All (OAA) and Error Correcting Output Coding (ECOC). Base
classifiers: lin - SVM with linear kernel, rbf - SVM with radial basis function ker-
nel. Results on full (top) and Correlation-based Feature Selection (CFS) reduced data
(bottom) are shown.

filtering, like the rest of the classifiers; it ranked second after Bayes
Net (p-value < 0.05).

Theory suggests that interactions between genes associated

with molecular markers could play an important role in the gen-
eration of the observed heterosis (Dudley and Johnson, 2009), so it
would be possible that using filters that contemplate interactions
between attributes would contribute the classification improve-
ments.

. Native multiclass classifiers: Bayes Net (BN), Naive Bayes (NB), and Simple Logistic
orrecting Output Coding (ECOC). Three molecular marker datasets, namely Liu, Xia,
reduced data are reported. Best results are shown in boldface.

CFS reduced data

Liu Xia Morales

ppa Error Kappa Error Kappa Error Kappa

39 0.280 0.658 0.428 0.455 0.755 −0.032
00 0.294 0.638 0.432 0.439 0.772 −0.057
87 0.341 0.598 0.459 0.436 0.753 −0.039
78 0.320 0.613 0.402 0.500 0.786 −0.078
16 0.348 0.571 0.460 0.424 0.768 −0.059
43 0.357 0.579 0.462 0.433 0.819 −0.127

210 0.367 0.552 0.537 0.326 0.703 0.033
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.3. Data complexity

Molecular marker data showed to be complex enough to require
he careful exploration of non-trivial multiclass classifiers: the
ttribute-class relationship is possibly non-linear (dos Santos Dias
t al., 2004; Springer and Stupar, 2007) and datasets present noisy
nd/or missing features (Jones et al., 1997). Also, the dimension-
lity of molecular marker data is between that of the classic
achine Learning setting (n/p > 10) (Kohavi, 1995; Asuncion and
ewman, 2007) and that posed by recent challenging microar-

ay data classification problems (n/p < < 1) (Mukherjee et al., 2003),
here n is the number of instances and p the number of attributes.
ctually, the number of classes ranges from 4 to 10 and the num-
er of instances per class is generally less than 30, which is a
ery low number of training instances (Liu et al., 2003; Xia et
l., 2004; Morales Yokobori et al., 2005; dos Santos Dias et al.,
004).

When comparing classifiers performance on full data scenar-
os we did observe significative differences between Liu, Xia and

orales data results (Table 2). Kappa values ranging between 0.61
nd 0.80 indicate a substantial agreement between observed and
redicted data whereas values below 0.20 indicate only a slight
greement (Landis and Koch, 1977).

From a genetic point of view, differences of methods used to
stablished the heterotic groups could be reflecting differences
etween mechanisms relating attributes (molecular markers) with
lasses (heterotic groups): heterotic groups of Xia and Morales data
ere established on the basis of field essays (topcross or diallel)

nd, according to Xia et al. (2004), the mixed genetic constitution
f the populations and pools of Cymmit germplasm (Xia data) made
he task of assigning them to genetically diverse and complemen-
ary heterotic groups difficult. A similar situation was reported for

orales data (Eyhérabide et al., 2006). Liu data clusters, on the other
ide, were established on the basis of genetic origin (Liu et al., 2003)
o it was easy to assign new lines to groups solely on molecular data.

From a Machine Learning point of view, these differences could
e due to a challenging ratio between the number of instances (n)
nd the number of attributes (p) of training data (Mukherjee et al.,

003; Kohavi, 1995). For example, for microarray data (extremely

ow n/p ratios) achieving error rates around 0.1–0.2% requires in the
rder of 75–100 training samples (Mukherjee et al., 2003), whereas
ohavi (1995) reported error rates from 5.8 to 53.2% when working
ith datasets comprising a number of instances and a number of

able 3
eans of the error rate and Kappa values in 30 Montecarlo runs of 10-fold CV experiment

nd ECOC).

Classifier One Against All

Error Kappa KS test (Kapp

Morales data 0.6308 0.1338 p-Value = 0.11
Xia data 0.4160 0.4631 p-Value = 0.58
Liu data 0.2302 0.7160 p-Value = 0.95

a Kolmogorov–Smirnov test was performed between outputs of classifier with default
n Section 3.

able 4
eans of the error rate and Kappa values in 30 Montecarlo runs of 10-fold CV experiment

chemes (OAA and ECOC).

Classifier One Against All

Error Kappa KS test (Kappa

Morales data 0.6795 0.0509 p-Value = 0.07
Xia data 0.4201 0.4550 p-Value = 0.03
Liu data 0.2200 0.7350 p-Value = 0.90

a Kolmogorov–Smirnov test was performed between outputs of classifier with default
s stated in Section 3.
Correcting Output Coding (ECOC). Base classifiers: lin - SVM with linear kernel, rbf
- SVM with radial basis function kernel. 42, 33, 21 and 12 indicate the number of
attributes retained after filtering.

attributes similar to those used in this work. However, if the bad
classification performance for Morales and Xia data bases is only
due to the n/p ratios (specially for Morales data set), a good feature
selection method should improve the results. It can be seen from
Figs. 2 and 3 that attribute CFS selection did not improve the accu-
racy of the classifiers. We performed an additional experiment on
Morales dataset using another filter method implemented in Weka,
Relief (Kononenko, 1994), and selecting 25, 50 and 75% of the orig-
inal number of attributes. Filtered data was evaluated with Simple

Logistic and the four SVM ensembles and as stated in Materials
and Methods. It can be see from Fig. 4 that, except a few and non-
significant exceptions, all classifiers degrades their performance
with higher n/p ratios.

s of optimized SVM with lineal kernel and under two decomposition schemes (OAA

Random code

a) a Kappa Error KS test (Kappa) a

84 0.6500 0.1021 p-Value = 0.3012
66 0.4438 0.4576 p-Value = 0.9672
60 0.2330 0.721 p-Value = 0.9354

parameter (C = 1) and outputs of classifier with optimized parameter and as stated

s of optimized SVM with radial basis function kernel and under two decomposition

Random code

) a Kappa Error KS test (Kappa) a

61 0.7556 −0.0410 p-Value = 1.0000
57 0.3583 0.5540 p-Value = 0.0327
30 0.2430 0.7500 p-Value = 0.9350

parameter (C = 1, � = 0.01) and outputs of classifier with optimized parameters and
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It has been reported SVM classification is quite sensitive to
eta-parameters (Rifkin and Klautau, 2004; Devos et al., 2009).
owever, we could not observe a significative enhancement
f ensembles performance with the optimization of the meta-
arameters (C in linear kernel and C and � in radial basis function
ernel). None of the optimized lineal SVM-ensembles significant
utperformed their standard counterparts (Table 3). In Xia data
oth, OAA and ECOC, optimized RBF ensembles outperform clas-
ifiers with default values provided by Weka (Table 4). In Morales
ata, only OAA-RBF shows a significant improvement with opti-
ized parameters (Table 4) with respect to Morales data, this

s reasonable because with small training sets optimization of
arameters, even by cross-validation, may only lead to over fit-
ing the training set (Forman and Cohen, 2004). Surprisingly, in
iu data none of the optimized SVM ensembles (significantly) out-
erformed their counterparts with default parameters. This could
e attributed to the number of missing data and the imputa-
ion technique of SMO (Su et al., 2008), or to the robustness of
nsembles to base classifier error (Dietterich and Bakiri, 1995).
ast but not least, classification accuracy not only depend on
he number of instances and or attributes but also on the rela-
ionships between the attributes and classes so; if we apply the
ncorrect model, the expected performance will be poor. Classi-
ers were selected upon their reported performance on similar
ata and because they used different approaches to classify the
ata. However, remains to explore new algorithms from the
ibliography.

. Summary and conclusions

The information on germplasm diversity and relationships
mong elite materials is a fundamental importance in crop
mprovement (Hallauer and Miranda, 1988). Assigning lines to
ifferent heterotic groups would avoid the development and
valuation of many of the crosses that would eventually be dis-
arded (Terron et al., 1997). Our proposal was to complement
raditional breeding using molecular markers information and
upervised learning algorithms. Three well-known multiclassi-
ers and support vector machine (a binary classifier) with linear
nd radial basis function kernels and under two decomposition
chemes were evaluated using three molecular datasets represent-
ng a broad spectrum of maize heterotic patterns. Morales dataset
ncludes 26 lines, mostly derived from orange flint (temperate)
ermplasm, clustered in four heterotic groups by topcross field
ssays (Eyhérabide et al., 2006), Liu data includes 248 inbred lines
f importance to temperate breeding and many important tropical
nd subtropical lines (Liu et al., 2003) and Xia data 73 inbreds of
ropical germplasm grouped mainly by diallel (Xia et al., 2004). We
lso used CFS filtering to improve classifiers performance, but we
nly obtained a slight improvement in Xia data. We also evaluated
elief filtering on Morales data, with negative results. However,
FS removes noisy attributes non-correlated between them and
heory suggests that interactions between genes associated with

olecular markers could play an important role in the generation
f the observed heterosis (Pea et al., 2008) so filters that con-
emplates this situation remain to be explored. Finally, although
esults obtained with heterotic groups established by field essays
top cross or diallel) are relatively poor, there is a strong evidence
hat using data with more training instances could generate suc-
essful classifiers. Also it is necessary to evaluate other algorithms;
he potential impact, in time and money, on crop sustainability
akes our research worth to try: while traditional genetic breed-
ng requires expensive fields test and a time scale in the order
f years for obtaining an heterotic assignment, in our proposed
ramework costs are significantly lower and the time scale is in the
rder of weeks, two weeks for growing an small plant plus a week
ics in Agriculture 74 (2010) 250–257

to obtain molecular data and a couple of days for computational
analysis.
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