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• We develop a criterion to determine optimal fitting regions in DFA and MF-DFA.
• We use it on several artificial series and find good agreement with known parameters.
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• We also examine monthly sunspot data and confirm previous scaling results.

a r t i c l e i n f o

Article history:
Received 27 May 2013
Received in revised form 22 October 2013
Available online 6 December 2013

Keywords:
Scaling range
Scaling exponent
Detrended Fluctuation Analysis
Multifractal Detrended Fluctuation Analysis
Crossover time scales
Time series analysis

a b s t r a c t

We develop a criterion based on a brute-force algorithm to systematically determine
optimal fitting regions for fluctuation functions in Detrended Fluctuation Analysis (DFA)
and Multifractal Detrended Fluctuation Analysis (MF-DFA). We analyze and compare
resultswith several artificially generated time serieswith known parameters as illustrative
examples of this technique. We show that crossover time scales can also be objectively
and efficiently estimated using the introduced algorithm. Finally, we employ the proposed
methodology to study the scaling behavior of a natural time series: monthly sunspot data
previously filtered with empirical mode decomposition (EMD); in this case we find results
comparable with those found in the literature.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work on Detrended Fluctuation Analysis (DFA) by Peng et al. [1] and its multifractal generalization
(MF-DFA) by Kantelhardt et al. [2] these techniques have been widely used in time series analysis. Both of them have
been implemented in such diverse fields as econophysics [3,4], seismology [5], biology [1], medicine [6,7], cosmology [8],
condensed matter [9], and music [10–14] among others. There are more than 1400 papers related to DFA and more than
600 on MF-DFA,1 and these numbers are indeed growing.

Several papers have tried to shed some light on the performance of these techniques on short time series (finite-size
effect) [15,16]. Actually, W.-X. Zhou [17] has introduced the concept of effective multifractality, defined as the apparent
multifractality after removing the finite-size effect. Also, the spurious effects due to the presence of noise, short-term
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memory andperiodicities in the data have been carefully analyzed [18,19]. Bothmethodologies, i.e. DFA andMF-DFA, require
the identification of power-lawbehaviors in a range of scales in order to estimate the associated scaling exponents. However,
fitting regions are sometimes very hard to determine without a theoretical model for scaling behaviors; even with a model
the determination of such regions is subjective and therefore results derived from different analysis of the same series are
difficult to compare. As stated by Shao et al. [20]: ‘‘there is no consensus on an objective determination approach of the
scaling range, which plays a crucial role in the estimation of the scaling exponents’’. This is also a subtle issue when dealing
with series which have more than one scaling behavior. Multi-scaling behaviors are often found in natural and man-made
systems [21].

It is therefore necessary to develop a user-independent criterion to estimate the optimal fitting regions of fluctuation
functions. One possibility is to study the local exponents by means of the log derivative plot (d(log(Fq(s)))/d(log(s))
versus log(s)), as suggested by Govindan et al. [22], Bashan et al. [23] and Lopez et al. [16], looking for constant value
regions. However, experimental series very usually have log-derivative discontinuities for small q when dealing with
MF-DFA, making this method very hard to apply in such cases. Michalski [24] has identified the optimal minimal and
maximal scale sizes for persistent processes (fractional Brownian motion and fractional Gaussian noise) through a number
of extensive Monte Carlo simulations. The scaling region for DFA of artificial correlated and uncorrelated series as a
function of series length, Hurst exponent and goodness of fluctuation function linear fit (R2) at given confidence levels
has been studied by Grech et al. [25]. The same study has been very recently extended with success to other techniques
of fluctuation analysis [26]. Following a related approach, we propose to use R2 as a way to locate optimal scaling regions.
This criterion based on goodness of linear fit may be naturally extended to other techniques requiring linear fits. In fact,
modified detrending methods, such as the Detrended Moving Average (DMA) [27], Centering Moving Average (CMA) [28],
Modified Detrended Fluctuation Analysis (MDFA) [29], continuous DFA (CDFA) [30], Detrended Cross-Correlation Analysis
(DCCA) [31], Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) [32], Multifractal Detrending Moving Average
(MF-DMA) [33], Multifractal DetrendingMoving-Average Cross-Correlation Analysis (MFXDMA) [34], DFAmethod based on
varying polynomial order [35], and EMD-based MF-DFA [36], might be actually benefited from its implementation. As will
be discussed in detail below, crossover phenomena, i.e. the presence of crossover scales separating regimes with different
scaling exponents, can also be efficiently unveiled by applying this methodology. The identification of these characteristic
scales is relevant for a complete understanding of the underlying multiscale dynamics [21].

The remainder of thiswork is organized as follows: in Section 2we briefly describe the fractal andmultifractal detrending
techniques used. In Section 3 we introduce the proposed criterion for DFA and then we generalize it for MF-DFA also
discussing the identification of crossover scales. Some illustrative examples are included in Section 4. In Section 5we employ
the proposed algorithm for the analysis of a natural time series: the monthly sunspot time series. Finally, the conclusions of
this work are detailed in Section 6.

2. Theoretical backgrounds

MF-DFA [2] is based on the traditional DFA [1]. It may be briefly summarized as follows2:
1. Let x1, x2, . . . , xN be a series of N equidistant measurements. Given its mean value ⟨x⟩ we determine a new series of

Y (1) , . . . , Y (N) values given by Y (i) =
i

k=1 (xk − ⟨x⟩).
2. We split the series of Y (1) , . . . , Y (N) into Ns non-overlapping windows of s data points where Ns = ⌊N/s⌋.3 If N is not

divisible by s, there will be some remaining r values (r = N − Nss) at the end of the series. To solve this, we take other
Ns segments but starting from Y (r + 1). In this way we get 2Ns windows of s values.

3. Let ν be the index of the 2Ns windows (ν = 1, 2, . . . , 2Ns). For each one of the windows we shall take the polynomial
yν (i) of degree m that best fits the data in the window where i is the data index. Then we find the Ns local variances for
ν = 1, . . . ,Ns:

F 2 (ν, s) =
1
s

s
i=1

{Y [(ν − 1) s + i] − yν (i)}2 ,

m is the same for every step of this technique and determines the detrending polynomial order of the analysis, hence
MF-DFA1 means m = 1, etc.4 If N is not divisible by s, then we also have to find the variances of the other Ns windows
(ν = (Ns + 1), . . . , 2Ns) according to

F 2 (ν, s) =
1
s

s
i=1

{Y [N − (ν − Ns) s + i] − yν (i)}2 .

Since N not divisible by s is the most usual situation, if N is divisible by s we simply repeat the Ns values of F 2 (ν, s) so
that we shall always work with 2Ns values of F 2 (ν, s).

2 We refer the interested readers to Ref. [37] for further details.
3 Where ⌊w⌋ = floor (w) is the largest integer not greater than w.
4 It has been recently shown that the choice of a suitable detrending polynomial order is crucial to avoid spurious findings [38].
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4. We calculate the fluctuation functions Fq (s) where

Fq (s) =




1

2Ns

2Ns
ν=1


F 2 (ν, s)

q/21/q

, q ≠ 0

exp


1

4Ns

2Ns
ν=1

ln

F 2 (ν, s)


, q = 0.

These functions are only defined for s ≥ m + 2. As a note, q = 2 yields the traditional DFA.
5. We repeat steps 2–4 for different values of s, usually in the [10, ⌊N/4⌋] range and chosen to be equally spaced in a log

scale (this will be necessary for step 6).
6. We finally determine the scaling behavior of the fluctuation functions analyzing the log–log plot of all the Fq (s) versus

s. If the original series of xi values has long range correlations, there exists a range of scales, smin < s < smax, in which
Fq (s) ∼ sh(q) where h (q) is the generalized Hurst exponent; it can be estimated as the slope of the log–log plot of Fq (s).
If the series is monofractal and stationary, then h(q) is constantly equal to the Hurst exponent H , i.e. independent of
q. Otherwise, for a multifractal time series, the generalized Hurst exponent is a decreasing function of q and the Hurst
exponent can be estimated from the second moment (q = 2).

3. Criterion based on goodness of linear fit

3.1. DFA case

Suppose xt is a time series and we haveM given scales5 s : s ≡ {s1, s2, . . . , sM} for which we have already calculated the
fluctuation function F (s) ≡ {F (sk)} (1 ≤ k ≤ M). We have chosen M = 100 for all examples in this work. The following
algorithm determines the optimum scale fitting range for the fluctuation function associated with the series:

1. Define a minimum number of data points δ. In practice, this parameter should be no less than 10 so that a linear fit
makes statistical sense; we have found that values of δ between ⌊M/4⌋ and ⌊M/3⌋ will discriminate regions of at least
that number of data points, which is a reasonable partition of the data points domain.

2. Calculate the logarithmic series6 Ls = {log (sk)} and LF = {log (F (sk))} (1 ≤ k ≤ M).
3. Define a matrix rM×M of default values equal to 0.
4. Compute all non-zero elements of r according to

rij = R2 
si, sj


(1)

where R2

si, sj


is the coefficient of determination (R2) of the linear fit of LF versus Ls between (and including) log (si)

and log

sj

. Also 1 ≤ i ≤ (M − δ + 1) and (i + δ − 1) ≤ j ≤ M . By definition, every rij ≤ 1 and non-zero values are in

the diagonal superior region of the matrix.
5. Sort all non-zero values rij in decreasing order while keeping a record of their original subindices.
6. If there are repeated values in r , sorting requires an extra criterion; based on length of interval choose first the longest

one (in amount of data points).

The first element of this list will then provide the best linear fit interval (‘Dominant ’) and the rest will follow it in decreasing
quality. Since the slope of linear fit in the range estimates the scaling exponent h (F ∼ sh), we have found the best estimation
range for this parameter (this will be further discussed in Section 3.3).

This algorithm is brute force in nature since it actually performs all possible fits of at least δ data points between scales
s1 and sM ; this is not computationally prohibitive since we are dealing with relatively few points (please see the Appendix
for a detailed analysis). MATLAB implementation for this algorithm is available upon request. If interested, please contact
Damián Gulich (e-mail: dgulich@ciop.unlp.edu.ar).

3.2. Generalization to MF-DFA

In MF-DFA [2] fluctuation functions depend on exponent q =

q1, . . . , qQ


: Fq (s) (thus having Q fluctuation functions).

The previous algorithm may be generalized as follows:

5 Equally log spaced.
6 log ≡ log10 in this work.
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1. Define a minimum number of points δ as in step 1 of the DFA case. This δ will remain constant in the following steps.
2. Repeat steps 2–5 of the previous subsection for each Fq (s) obtaining the generalized version of Eq. (1):

r (n)
ij ≡ R2

qn


si, sj


(2)

with 1 ≤ n ≤ Q .
3. With Eq. (2) compute the mean matrix ⟨r⟩:

⟨r⟩ ≡ ⟨r⟩ij =
1
Q

Q
n=1

r (n)
ij . (3)

4. Apply the sorting described in step 5 of the previous subsection to ⟨r⟩.
5. If there are repeated values in ⟨r⟩, sorting requires an extra criterion; based on length of interval choose first the longest

interval (in number of data points).

Note that this generalization will produce the same output for DFA. Another possibility is to calculate fluctuation functions
for many values


q1, . . . , qQ


and apply this technique only to a subset


q′

1, . . . , q
′

Z


⊆


q1, . . . , qQ


(Z ≤ Q ).

3.3. Different scaling behaviors

In several situations the correlations of data do not follow the same scaling law for all considered scales s, and different
scaling regimes with one or more crossover scales are observed [39]. For example, the presence of long-range correlations
on small scales (s < sx, sx being the crossover scale) and a practically uncorrelated behavior on larger scales (s > sx) has
been shown (please see Fig. 11 in Ref. [40]). Moreover, a multifractal to monofractal transition at a well-defined crossover
scale in traffic speed fluctuations has been verified [41]. Undoubtedly, the identification of these crossover scales can provide
very useful information about the underlying dynamics. Indeed, differences in scaling for short and long time scales can be
employed as potential indicators for distinguishing normal frompathological time series [6]. It should be remarked here that
Ge and Leung [21] have very recently introduced a rigorous statistical approach, called the scaling-identification regression
model, that is able to identify crossover time scales with confidence intervals.

It is interesting to note that the determination of good quality non-overlapping intervals implies different scaling
behaviors: F ∼ sh1 , sh2 , . . . for the DFA case and Fq (s) ∼ sh1(q), sh2(q), . . . for theMF-DFA case. Themethodology proposed in
this paper will give first the best fitting range for both DFA and MF-DFA; nearby different regimes may be found searching
for the closest intervals on the list that (including border elements)
• end before the optimal interval’s beginning
• begin after the optimal interval’s end.

This process may be iterated to cover all scales involved, thus discriminating regions of well-defined power-law behavior.
The first interval to the right (left) will be called ‘Next ’ (‘Previous’). Other regions may exist to the right (left) of ‘Next’
(‘Previous’) regions as long as they satisfy the δ condition (⌊M/4⌋ ≤ δ ≤ ⌊M/3⌋).

4. Illustrative examples

4.1. DFA of simple artificial series

We generated 99 equally spaced points uk in the [1, 4] interval and added point 3 to have 100 points in total. Then we
calculated

vk =


0.95 · uk uk ≤ 3

1.35 + 0.5 · uk uk > 3.

We also generated a set of 100 uniform random numbers ek in the interval [−0.035, 0.035] to be used as additive noise,
generating a seriesvk = vk + ek (1 ≤ k ≤ 100). Then we generated the artificial fluctuation functions F (s) with series yk
andyk and scales s according to:

sk = 10uk

yk = 10vkyk = 10vk
(1 ≤ k ≤ 100). A log–log plot of (sk, yk) shows straight lines of slope 0.95 for scales ≤ 103 and slope 0.5 for scales greater
than 103 respectively (Fig. 1(a)), while both regimes are not so clear for (sk,yk) (Fig. 2(a)). Figs. 1 and 2 show results of the
algorithm applied to both series (δ = 25). Obtained results are compared in Table 1.

It is interesting to note that in both cases detected regions will remain the same for δ values greater than 25 and smaller
than the width of the ‘Next’ region in data points. When the width of the ‘Next’ region (34 data points without noise and
31 with noise) becomes smaller than δ the criterion reestimates that region. In these cases, ‘Dominant’ regions will be
unaffected up to δ = 67 (without noise) and δ = 69 (with noise). Both ‘Dominant’ and ‘Next’ regions remain approximately
unchanged in the range of δ between ⌊N/4⌋ and ⌊N/3⌋.



Author's personal copy

D. Gulich, L. Zunino / Physica A 397 (2014) 17–30 21

(a) Series without noise.

(b) R2 array—non-zero values.

(c) h fit from si , 67 data points wide.

(d) R2 fit from si , 67 data points wide.

Fig. 1. Simulated fluctuation functions studied with the algorithm (DFA approach), δ = ⌊100/4⌋ = 25. (a) Simulated fluctuation function without noise.
(b) Contour plot of the ⟨r⟩matrix. The ‘Dominant’ region was found to be


10, 103 , R2

= 1 (67 data points wide); the ‘Next’ region was

103, 104, R2

= 1
(34 data points wide). (c) Estimated h fitting 67 consecutive data points and starting at si; error bars increase as the fitting interval gets more data from
the ‘Next’ region. (d) R2 of fits calculated as (c); quality of fit decreases. Best fit is in the ‘Dominant’ region and estimates h = 0.950 . . . ± 4.238 · 10−17

(expected value is h = 0.95); and for the ‘Next’ region h = 0.50 . . . ± 2.20 · 10−16 (expected value is h = 0.5).

4.2. Systematic analysis of fractional Gaussian noises

We have performed a systematic analysis of fractional Gaussian noises (fGns) with the criterion introduced in this work.
It is well known that the long-range correlations associatedwith thesemonofractal Gaussian stationary stochastic processes
are fully characterized by theHurst exponentH . For this purposewe have generated 100 independent numerical realizations
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(a) Series with noise.

(b) R2 array—non-zero values.

(c) h fit from si , 69 data points wide.

(d) R2 fit from si , 69 data points wide.

Fig. 2. Simulated fluctuation functions studied with the algorithm (DFA approach), δ = ⌊100/4⌋ = 25. (a) Simulated fluctuation function with additive
noise. (b) Contour plot of the ⟨r⟩ matrix. The ‘Dominant’ region was found to be [10, 1124.658] , R2

= 0.999 (69 data points wide); the ‘Next’ region was
[1124.658, 9319.396] , R2

= 0.980 (31 data points wide). (c) Estimated h fitting 69 consecutive data points and starting at si; error bars increase as the
fitting interval gets more data from the ‘Next’ region. (d) R2 of fits calculated as (c); quality of fit decreases. The best fit is in the ‘Dominant’ region and
estimates h = 0.947 ± 0.004 (expected value is h = 0.95); and for the ‘Next’ region h = 0.511 ± 0.014 (expected value is h = 0.5).

of fGns with H ∈ {0.3, 0.5, 0.7} of length N = 104 datapoints by using the MATLABwfbm function.7 The results obtained of
this automated study by implementing DFA with a detrending polynomial orderm = 1,M = 100 and δ = 25 are shown in
Fig. 3. The quality of fit (R2) increases with H while it decreases in dispersion (Fig. 3(b)).

7 This function simulates fractional Brownian motion (fBms) following the algorithm proposed by Abry and Sellan [42]. FGns were obtained through
successive differences of the generated fBms.
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Table 1
Summary of results derived from Fig. 1.

Parameter Theoretical (no noise) Without noise (algorithm) With noise (algorithm)

‘Dominant’ region

10, 103 

10, 103 [10, 1124.658]
R2 (‘Dominant’) – 1 0.999
h (‘Dominant’) 0.95 0.950 . . . ± 4.24 · 10−17 0.947 ± 0.004
Data points (‘Dominant’) 67 67 69
‘Next’ region


103, 104 

103, 104 [1124.658, 9319.396]
R2 (‘Next’) – 1 0.980
h (‘Next’) 0.5 0.50 . . . ± 2.20 · 10−16 0.511 ± 0.014
Data points (‘Next’) 34 34 31

(a) H DFA1 boxplot – fGn – (M = 100 − δ = 25 − Dom.). (b) R2 boxplot—fGn.

Fig. 3. Automated study of fGns. (a) Boxplot of estimated H values calculated in the ‘Dominant’ regions versus expected H . (b) R2 boxplot for expected H
values: quality of fit increases with H .

4.3. Identification of crossover time scales

An analysis of the performance of the proposed criterion regarding the estimation of crossovers follows. With this aim in
mind artificial time series with two well-localized crossovers at scales s1 and s2 are generated. These testbed records can be
easily simulated following the recipe described by Schumann and Kantelhardt in Ref. [43]. Segmentation of the original time
series into non-overlapping boxes of length su and the subsequent random shuffling of these boxes allows us to destroy long-
range correlations on scales above the scale su [23]. In such a way, generated surrogate data is monofractal and uncorrelated
(h(q) = 1/2) for s > su. Analogously, correlations on short scales s < sv can be eliminated after random shuffling of the
data within blocks of size sv while the order of the blocks are kept unchanged. Consequently, h(q) = 1/2 for s < sv .

We have generated 20 numerical independent realizations of fGns with H = 0.6 and N = 105 by using the same
algorithm as described in Section 4.2. On the one hand, the underlying correlation is eliminated for shorter scales (s <
s1 = 102) by shuffling the original data within blocks of this size. On the other hand, an uncorrelated behavior is simulated
for larger scales (s > s2 = 103) shuffling whole blocks of this length. Thus, original correlation is only preserved for an
intermediate scale range, i.e. s1 < s < s2.

Crossover scales are estimated from the intersections of the linear fits in the different regions. Please see Fig. 4 where
results obtained for the estimated crossovers by implementing DFA with a detrending polynomial orderm = 1 and δ = 25
are depicted. The three different scaling regimes are identified. The first crossover (‘Dominant–Next1’) has a lower dispersion
than the second one (‘Next1–Next2’); this may be explained by considering that there is a lower number of windows for
larger scales (this has a noise-like effect in fluctuation functions for large s).

4.4. Binomial multifractal series

Following Ref. [2] we generated a series of 216 values calculated with

xk = an(k−1) (1 − a)nmax−n(k−1)
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Fig. 4. Results of the criterion applied to 20 series with theoretical crossover scales at s1 = 102 and s2 = 103 . All observed crossover points are of the type
‘Dominant–Next1’ and ‘Next1–Next2’.

where 1 ≤ k ≤ 216 and n (k) is the number of digits equal to 1 in the binary representation of k. This series has a theoretical
multifractal spectrum given by

h (q) =
1
q

−
ln


aq + (1 − a)q


q ln (2)

.

Fig. 5 shows results of the algorithm applied to the series with a = 0.75 (we used MF-DFA3). The ‘Dominant’ region
10, 214


has a better agreement with theoretical values than other regions (Fig. 5(d1)). We have also confirmed a good

agreement with theoretical curves for a = 0.6 and a = 0.9.

5. Application to sunspot time series analysis

The analysis of natural time series represents a harder challenge than previous examples in this work because they are
inherentlymuchmore complex. In this sectionwe apply the proposed criterion for characterizing the fractal andmultifractal
structure associated with the sunspot number fluctuations.

Although sunspots have been observed for millennia [44,45], only telescopic observation since 1610 allowed the
systematic study of this phenomenon [44]. The number of these spots of relatively lower temperature on the surface of
the sun during a given period of time is a good indicator of its activity [46]. The link between solar dynamical activity and
Earth climate has been extensively investigated [46–50], therefore making this area of research very active. General cycles
have been identified [46,51], while more recent efforts have been focused on the characterization of the ‘noise’ in the time
series mounted on these general cycles [52,53].

We have analyzed the monthly International Sunspot Number series publicly available at the SIDC’s website
(http://sidc.oma.be/sunspot-data/). This dataset begins in January of 1749 and is regularly updated. It has been studied with
DFA (and MF-DFA) in the past: up to the year 2006 by Movahed et al. [54], by Hu et al. [52] (until 2008), and more recently
by Zhou et al. [53] (until 2009). The monthly dataset used in this article spans the January 1749–November 2012 period
(3167 months).

It is well known that trends notably affect the estimation of the real correlation nature related to the intrinsic
fluctuations [55]. Consequently, for a reliable detection of the scaling behavior in data series, it is essential to separate
trends, usually due to external effects and not a priori known, from intrinsic fluctuations. DFA andMF-DFA allow a systematic
elimination of polynomial trends of different order [23]. On the other hand, oscillatory trends, e.g. seasonal cycles inweather
and climate series [56],may strongly disturb the correlation analysis and deserve a special treatment [57,18].More precisely,
extrinsic periodicities induce the presence of spurious crossovers in the associated fluctuation functions; this prevents a
reliable estimation of the intrinsic scaling behavior.

Taking into consideration the presence of thewell-known 11 year period in solar dynamics, we have filtered themonthly
sunspot record by implementing empirical mode decomposition (EMD) [58]. This technique has proven to be effective to
deal with periodic trends [53]. Given a signal x (t), the EMD algorithm decomposes the original series into a set of basic
components called intrinsic mode functions (IMFk) (a detailed description can be found in Refs. [58,59]). The series was
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(a) MF-DFA3 fluctuation function binomial cascade
(a = 0.75).

(b) ⟨r⟩ array, non-zero values.

(c) MF-DFA3 multifractal spectrum.

(d1) MF-DFA3 (estimated spectrum—theoretical).

(d2) MF-DFA3—error magnitude.

(e) MF-DFA3—⟨r⟩, si = 10.

Fig. 5. MF-DFA3 for the binomialmultifractal (a = 0.75). (a) Fluctuation functions, q = −20, −19.5, . . . , 20. (b) Contour plot of the ⟨r⟩matrix of the series
(non-zero values, δ = 25). (c) Theoretical multifractal spectrum and spectra estimated: ‘Dominant’ region ([10, 214

])—100 data points fit (⟨r⟩ ≃ 0.996); a
mid-range example [50, 500]—31 data points fit (⟨r⟩ ≃ 0.976), and [10, 99]—31 data points fit (⟨r⟩ ≃ 0.968). (d1) Quality of the three spectra in (c) shown
as the difference between estimated and theoretical h (q). (d2) Estimated error magnitude of the three spectra. (e) A section of contour plot of the ⟨r⟩
matrix (subfigure (b)): values of multifractal spectrum estimation fit between si = 10 and ending at sf (variable); the final value is the absolute maximum
of ⟨r⟩ ≃ 0.996 and indicates the ‘Dominant’ region (red dashed vertical line) also depicted in (a):


10, 214


.

filtered using the MATLAB empirical mode decomposition toolbox by Rilling and Flandrin from Laboratoire de Physique
CNRS and ENS Lyon (France) [60], downloaded from http://perso.ens-lyon.fr/patrick.flandrin/emd.html, and following the
analysis performedbyZhouet al. [53] (including the iteration stop criterion). The EMDdecomposition of the originalmonthly
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Fig. 6. EMD decomposition of monthly sunspot time series. IMF1 to IMF8 are depicted from top to bottom; the residual is considered as IMF9 .

sunspot time series is depicted in Fig. 6. Partial sums of reconstruction are S (i, j) according to

S (i, j) =

j
k=i

IMFk.

In Fig. 7(a) we plot DFA fluctuation functions for S (1, j) (1 ≤ j ≤ 9). An abrupt transition can be easily observed between
the scaling obtained for S (1, 4) and S (1, 5). These results are comparable with those reported by Zhou et al. [53]. Scaling
exponents and crossover scales are estimated from S (1, 4) (Fig. 7(b)) since all cycles longer than 11 years are filtered in this
reconstruction. The ‘Dominant’ region was found to be [10, 56] with h = 0.702 ± 0.007 (R2

= 0.996, 34 data points); the
‘Next’ regionwas found to be [56, 581] with h = 0.306±0.008 (R2

= 0.969, 54 data points). The crossover scale is therefore
estimated to be sc = 57.441 months in complete agreement with the position of the crossover point (sc = 57.544 months)
given in Ref. [53].

MF-DFA results for S (1, 4) (MF-DFA1 to MF-DFA4) are shown in Fig. 8. At the top we plot the fluctuation functions and
show the ‘Dominant’ interval determined by the MF-DFA generalization of the criterion; below we plot the multifractal
spectrum of each ‘Dominant’ region. Results confirm a multifractal behavior of the series for negative q and a monofractal
behavior for positive values of q; this general behavior does not change much fromMF-DFA2 on. It is worth remarking here
that this finding is in line with the multifractal spectrum obtained by Hu et al. (please compare with Fig. 12 of Ref. [52]).

6. Conclusions

We have proposed and employed a conceptually simple criterion to systematically determine optimal fitting regions for
fluctuation functions in DFA; and generalized it for MF-DFA. This method provides a classification for such optimal scaling
regions (‘Previous’, ‘Dominant’, ‘Next’) based on the quality of a linear fit of the fluctuation function in a log–log plot. When
used in DFA, this technique helps to identify crossover scales between different power law regimes. When used in MF-DFA,
it estimates the fitting range of the multifractal spectrum with the smallest error bars.
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(a) DFA1 versus level of reconstruction.

(b) S(1, 4)-DFA1.

Fig. 7. (a) DFA fluctuation functions for S (1, j) (1 ≤ j ≤ 9). Note the transition between the scaling obtained for S (1, 4) and S (1, 5). (b) DFA fluctuation
function for S (1, 4). The ‘Dominant’ region is [10, 56] with h = 0.702 ± 0.007 (R2

= 0.996, 34 data points); the ‘Next’ region is [56, 581] with
h = 0.306 ± 0.008 (R2

= 0.969, 54 data points). Crossover scale is sc = 57.441 months.

Fit regions are a critical point in DFA and MF-DFA and their optimal identification is a crucial task for a genuine
determination of the underlying scaling phenomenon. Bothmono- andmultifractal cases are often scale-size dependent; the
criterion proposed in this work helps to identify scaling andmulti-scaling behaviors in amore precise, reliable and objective
way. Moreover, crossover scales that separate two or more regimes can be easily estimated.

This criterion can be automated for the analysis of large sets of time series since it does not require any previous
knowledge about the raw data. Furthermore, real-time variants of the DFA introduced for monitoring and forecasting
dynamically changing signals (medical, meteorological, stock market, etc.) [61] and local DFA and MF-DFA analysis
devised to follow the fractal and multifractal time evolution properties in data [62] can be particularly benefited from its
implementation. Even though it is brute force in nature, the number of calculations involved renders it computationally
practical.

In a future work, we plan to analyze in depth a potential link between the optimal fit region derived from the proposed
algorithm and the range of temporal correlation present in the system under study. As Drożdż et al. [63] andW.-X. Zhou [17]
have shown, genuine multifractality only originates from nonlinear temporal correlations. Consequently, a significant
correlation between these two ranges is expected. The confirmation of this hypothesis could help to shed some light on
the reasons behind scaling range and the presence of cutoffs in empirical fractals [64–66].
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Fig. 8. Above: fluctuation functions ofmonthly sunspot data based onMF-DFAwith growingdetrending polynomial order; ‘Dominant’ ranges are indicated.
Below: multifractal spectra calculated in those ranges.

Fig. 9. Time performance of algorithm implementation in MATLAB.

Appendix. Benchmark

We have tested the performance of the implementation of the algorithm used in this paper by means of the MF-DFA3
analysis of a binomial multifractal series as described in Section 4.4 (we chose MF-DFA to study the most computationally
intensive version of the analysis). We generated a series of 216 values with a = 0.75 in a desktop PC.8 We then calculated
fluctuation functions (q = −20, −19.5, . . . , 20) withM = 8, 16, 32, . . . , 1024 scales and ran theMATLAB implementation
using δ = M/4 in every case.

8 Processor AMD FX(tm)-8350 eight-core processor, 4013 MHz, four cores, eight logical processors; total physical memory 15.9 GB; available physical
memory 11.7 GB; total virtual memory 31.8 GB; available virtual memory 27.0 GB. Only one core (out of eight) was charged during the test.
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We have found that (for this implementation) the computing time t (measured in seconds) in the tested system (please
see Fig. 9) may be approximated by

t (M,#C) ≃ 0.0316 s
M2

#C
,

where #C is the number of active cores. This inverse proportionality is due to the fact that elements in the ⟨r⟩ matrix are
independent of each other, therefore enabling the possibility to split the processing task.
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