
sensors

Article

A Role-Based Software Architecture to Support Mobile
Service Computing in IoT Scenarios

Mariano Finochietto 1,2,†, Gabriel M. Eggly 3,†,‡ ID , Rodrigo Santos 3,*,†,‡ ID , Javier Orozco 3,†,
Sergio F. Ochoa 4,† ID and Roc Meseguer 5,† ID

1 GIDI, Department of Information Technology, Universidad Nacional de Mar del Plata, Mar del Plata 7600,
Argentina; mariano.fino@fi.mdp.edu.ar

2 SpinalCom, 91400 Orsay, France
3 Department of Electrical and Computers, Universidad Nacional del Sur, ICIC-CONICET, Bahía Blanca 8000,

Argentina; gmeggly@gmail.com (G.M.E.); jadorozco@gmail.com (J.O.)
4 Computer Science Department, Universidad de Chile, Santiago 8370456, Chile; sochoa@dcc.uchile.cl
5 Department of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain;

meseguer@ac.upc.edu
* Correspondence: ierms@uns.edu.ar; Tel.: +54-291-459-5101 (ext. 3304)
† These authors contributed equally to this work.
‡ Current address: ICIC, UNS-CONICET, Alem 1253, Bahía Blanca 8000, Argentina.

Received: 26 September 2019; Accepted: 31 October 2019; Published: 5 November 2019
����������
�������

Abstract: The interaction among components of an IoT-based system usually requires using low latency or
real time for message delivery, depending on the application needs and the quality of the communication
links among the components. Moreover, in some cases, this interaction should consider the use of
communication links with poor or uncertain Quality of Service (QoS). Research efforts in communication
support for IoT scenarios have overlooked the challenge of providing real-time interaction support in
unstable links, making these systems use dedicated networks that are expensive and usually limited
in terms of physical coverage and robustness. This paper presents an alternative to address such a
communication challenge, through the use of a model that allows soft real-time interaction among
components of an IoT-based system. The behavior of the proposed model was validated using state
machine theory, opening an opportunity to explore a whole new branch of smart distributed solutions
and to extend the state-of-the-art and the-state-of-the-practice in this particular IoT study scenario.

Keywords: IoT-based systems; soft real-time interaction; communication model

1. Introduction

Mobile service computing (MSC) is a new paradigm that merges the service computing and mobile
computing paradigms. Deng et al. [1] identify three macro-scenarios (or deployment patterns) to provide
and consume software services: cloud-to-mobile (C2M), mobile-to-mobile (M2M), and a combination of
the previous ones (hybrid). In the first scenario, the services are deployed in the cloud or in servers and
consumed by mobile users. The cloud acts as an intermediary that stores and processes data and also
provides services that allow mobile users both to update and consume such data. Examples of applications
that use this deployment pattern are Waze and Foursquare. This pattern is widely used today since it has
several benefits, e.g., its simplicity to structure applications, but it requires a stable communication link
between the cloud and the mobile units.

Sensors 2019, 19, 4801; doi:10.3390/s19214801 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4328-0183
https://orcid.org/0000-0003-0382-477X
https://orcid.org/0000-0002-0431-8767
https://orcid.org/0000-0002-9414-646X
http://www.mdpi.com/1424-8220/19/21/4801?type=check_update&version=1
http://dx.doi.org/10.3390/s19214801
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4801 2 of 27

In the second scenario (M2M), each mobile device performs point-to-point interactions with others
devices without using mandatory interim units like servers or the cloud. In this scenario, the devices
consume and provide data and services in an ad hoc manner, typically using opportunistic networks.
Examples of applications that use the M2M deployment pattern are those that interact with digital
assistants, like Amazon Echo or Google Home, where the communication between the devices is ad hoc
and peer-to-peer. Provided that, in M2M scenarios, the communication support does not depend on having
available communication infrastructure (e.g., 4G or Wi-Fi networks), the applications using this deployment
pattern tend to be more robust in terms of ad hoc interaction capability. This pattern takes advantage
of stable communication links, but it does not necessarily require them to provide or consume services.
For that reason, M2M approaches are frequently used by applications that support emergency response
processes or collaboration activities in areas without infrastructure-based communication.

Finally, hybrid scenarios are those in which parts of the system use C2M interactions and other
parts use M2M settings. This heterogeneous scenario is the most representative of the Internet of Things
(IoT) operating environments. For instance, in a home surveillance system, the sensors and actuators
regularly use a M2M approach to interact with the control unit that detects unauthorized entry attempts.
Typically, this control unit uses a C2M scenario to deliver alerts to police, security companies, and the
inhabitants of that house.

Several challenges have been identified in implementing mobile service computing in hybrid
environments, for instance, security, communication, efficiency, and context-awareness [1]. Particularly, for an
ample variety of IoT-based applications, interaction support and data analysis in real time is required,
since they usually involve monitoring, autonomous decision-making, and delivery of early notifications that
represent time-constrained activities [2–5]. If the system does not react on time, its effectiveness is under risk.
This requirement becomes evident in IoT systems that detect falls of older adults living alone or those that
deliver early warning of natural hazards.

The real-time interaction support has been addressed by several research works, but the current
proposals assume availability and stability of the link among the system components. Although that is
fine for many applications domains, it is not for others where the communication support is uncertain,
for instance, in natural hazard early-warning systems that usually involve several public and private
networks to detect and notify extreme event to the population (e.g., floods, wildfires, landslides, tsunamis,
and volcano eruptions). Provided that these actions should be done as quick as possible, soft real-time
interaction support on a network with uncertain stability is required [6,7].

This article addresses the real-time interaction support for devices participating in a service-oriented
IoT system that uses unstable communication links. This communication challenge has been poorly
addressed in the literature, particularly when the service provider and consumer interact through a
communication link with uncertain stability. In IoT environments, this type of interaction scheme
is frequent due to several reasons, like the wide variety of network interfaces used to support these
interactions or the number of autonomous solutions that coexist and interoperate in the same environment.
After an extensive literature review, we have found no communication model able to support real-time
interactions among components of an IoT scenario that considers unstable communication links.

The main contribution of this paper is the introduction of an MSC architecture, named Software
Real-Time Interaction (SRTI), that involves the roles played by the different participating devices
(publishers, subscribers, and brokers) and also a dynamic among roles to provide and consume these
software services within time constraints. This architecture facilitates the inclusion of timestamps to handle
soft real-time traffic, even under unstable networks conditions. A library extending the Mosca project [8]
is presented to prove the concept, which also includes a graphical interface to define the aggregating and
processing functions of the publishers. This proposal was evaluated using simulations, and the obtained
results are highly promising.



Sensors 2019, 19, 4801 3 of 27

The rest of the paper is organized as follows. Section 2 presents and discusses the previous works
focusing the discussion on the capability to provide real-time QoS in the study scenario. Section 3 describes
the structure and dynamics of the SRTI model at the architectural level; it also presents and justifies
the main design decisions behind the model. Section 4 specifies the behavior of the model components,
considering a publish–subscribe interaction scheme. Section 5 proposes modifications to the MQTT
(Message Queue Telemetry Transport) protocol in order to translate the SRTI model into a messaging
system for IoT-based application development. Section 6 presents three different experiments that illustrate
the way in which the system works. Section 7 shows an application scenario based on precision agriculture,
and Section 8 discusses the proposed architectural model considering the current literature in such a
study domain. Finally, Section 9 summarizes the contributions of this proposal and specifies some lines of
future work.

2. Related Work

As discussed before, most IoT solutions involve time constraints to gather and process information,
to make decisions, and to deliver actions that system components must perform. When time restrictions
are present, the system is said to be real-time if at least one of the tasks to be performed must be executed
before a certain deadline. This constraint is difficult to comply with when the communication links are
unstable or if they are subject to huge throughput variations due to traffic load.

Next, we present a review of the related work considering time constraints in the three aspects
involved in this proposal: IoT structural models, IoT applications, and data processing technologies and
models to support the applications.

2.1. IoT Structural Models

In their seminal paper, Deng et al. [1] present and discuss the opportunities and challenges to
provide mobile service computing (MSC) in three scenarios, but particularly in those adhering to hybrid
deployment patterns, which have a structure similar to IoT scenarios. Among these challenges, the authors
raise the need to study the communication aspects that affect service provision and consumption,
particularly when the communication link is unstable or uncertain, since it impacts the availability
of these services. In such a paper, the authors present three interaction scenarios: C2M, M2M, and a mixed
of them named hybrid. The need to keep the connection alive, even when some of the participating devices
are on the move, is a common problem in these interaction settings since it determines the real capability
of the system to support real-time interactions.

Most IoT interaction models are based on two interaction approaches. One of them involves
a publish–subscribe mechanism in which some devices act as data providers by publishing specific
topics in special nodes named brokers, while others act as consumers of those topics by subscribing to
services provided by the brokers. This approach is implemented by protocols like Message Queuing
Telemetry Transport (MQTT) [9]. The other approach is related to a more classical client–server structure
in which certain nodes request data, while others respond to the request, using a very simple and
lightweight protocol like the Constrained Application Protocol (CoAP) [10]. None of these strategies
support real-time interactions.

The definition of architectures or infrastructures to support interactions in IoT scenarios follows
the same line as the previous works. For instance, a scalable distributed architecture for IoT is reported
in [11], where the authors propose a comprehensive communication model that does not contemplate
time constraints. Similarly, in [12], the authors introduce a process calculus approach to formalize an IoT
communication infrastructure. Although this proposal addresses several aspects of the message exchange,
real-time considerations are not taken into account.



Sensors 2019, 19, 4801 4 of 27

A cognitive machine-to-machine communication for IoT systems using a stack perspective is
introduced in [13]; however, time is not included as a critical variable within the analysis of the proposal.
In [14], the authors use the BIP (behavior, interaction, and priority) component framework [15] to model
and reinforce the correctness of resource-constrained IoT applications. Similar to the previous works, time
constraints are not considered as a critical value within the evaluation.

Following a different approach, Aziz [16] proposes a formal method for representing and analyzing
an IoT communication infrastructure. The correctness of the communication model representation is
evaluated using formal methods, and the implementation of the system uses a publish–subscribe paradigm
analyzed based on the MQTT protocol [9]. Although in this proposal the time constraints are considered
as a variable, the author does not provide a mechanism to validate the time requirements of the system.

In [17], the authors proposed an extension to MQTT for running on top of opportunistic networks
or disrupted networks for IoT applications. Under this situation, the nodes use the store-and-forward
mechanism as the transmission is only possible at the moment in which there is a connection between the
nodes. The authors do not analyze the behavior of the system from a real-time point of view.

2.2. IoT-Based Applications

Several researchers highlight the need to extend our knowledge of wireless sensor networks
and cloud computing, as instruments that support IoT software applications, and to understand the
role played by big data, information sharing, and collaboration for IoT-based service provision [1,18].
Particularly, information sharing and collaboration on these infrastructures impose several challenges
to the systems designers. Depending on the service to be provided, real-time interaction support can
be required.

In [19], the authors present several IoT-aided robotics applications that operate under time constraints.
However, these systems use dedicated or local area networks; therefore, its proposal to provide
real-time interaction support among system components does not consider the potential instability of the
communication links. In this case, delays in communication links are analyzed with traditional real-time
instruments, as the network is dedicated to the application. A similar work is reported in [20], where the
authors propose a low-cost wireless marshalling module for industrial environments, also based on
dedicated networks.

In [21], the authors introduce the concept of the sensing cloud, where the Internet is used as the main
communication network and the cloud represents the place where data can be stored and retrieved for its
processing and use. Although this proposal presents a generic architecture and shows an implementation
of it, there is no real-time consideration in the model; therefore, it cannot be used to support interaction in
the studied scenario.

A similar proposal is described in [22], where the authors present a ubiquitous monitoring method
to support IoT-based Emergency Medical Services. In this scenario, the information retrieved from the
sensing devices is shared across the Internet, but the proposal does not consider real-time guarantees
in the interaction process. For the same application domain, Koley and Ghosal propose an emergency
communication and location tracking system that helps reduce damages in vehicular emergencies [23].
Although this system addresses real-time interactions, it does not formally consider the possibility to have
unstable communication links among its components.

Precision farming (or agronomic) is also an area in which soft real-time communication is required.
In [24,25], the authors describe the use of information technologies to improve the productivity of farms
using decision support systems that are fed with data coming from sensors.

The introduction of new functionalities in long-term evolution (LTE) cellular technology promotes
the development of new applications in the field of machine-to-machine communications. In this sense,



Sensors 2019, 19, 4801 5 of 27

in [26,27], the authors analyze the performance of a Long-Term Evolution Advanced (LTE-A) network for
applications in Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication. Moreover,
they propose a mechanism to offload vehicles with low signal-to-interference-plus-noise ratio (SINR) to be
served by other vehicles, which have much higher quality link.

In [28], the authors implemented a simulator called LTEV2Vsim, which allows managing vehicles
mobility and performs communication packet allocation following different algorithms that are both
network controlled and autonomous. The tool is interesting to represent IoT scenarios with high mobility
but considers stable communication links among the nodes.

Concerning the way in which IoT devices connect to the Internet, it can be done in several manners.
Many times, these devices are part of private networks that have access to open networks through
a gateway. In these cases, there are several options at the link layer protocol. For instance, for 802.11,
it is possible to use LoRa [29], Sigfox [30], and the one devised for vehicular networks like 802.11p [31].
Other times, the devices may be connected to the Internet using a 4G network. In the near future, there is
an open discussion about the role that the next 5G protocol will have in relation to vehicular networks [32]
and how they will interact with other devices [33]. The discussion is centered around the latency in the
communication and the way in which messages are actually forwarded among the nodes participating in
the network [28,34].

All these proposals are representative of many others that share similar strengths but, particularly,
weaknesses to support real-time interactions in unstable networks. Therefore, a first question that is
raised is how are the current systems addressing these interaction scenarios? The answer is simple:
by relaxing one of these conditions. If real-time communication is mandatory, then the network should be
stable (e.g., dedicated). In other cases, the current proposals cannot ensure a real-time QoS; therefore, no
critical service should be provided through such an infrastructure. If we need to address both conditions
simultaneously (as in many remote monitoring systems), a new communication model should be defined
to support the interactions among the system components.

2.3. Real-Time Communication in IoT-Based Scenarios

After conducting an extensive survey on real-time data processing technologies and models to support
IoT applications, Yasumoto et al. [35] found no protocol or implementation capable of providing real-time
QoS when working with open Internet (or unstable networks). However, the literature reports several
interesting works that can be used to support the definition or analysis of communication proposals in
such a study domain. For instance, in [36,37], the authors introduce a temporal analysis of the CoAP [10]
protocol, that allows to measure the latency or delay in the data transmission. This is useful to determine
the performance of a particular protocol or link; however, it is not enough to guarantee real-time constraints
or QoS. Related to CoAP, in [38], the authors analyze an extension to this protocol by introducing new
real-time primitives that are validated through finite state machines.

On the other hand, Kolozali et al. [39] introduce an annotation procedure to deal with real-time data
streams within IoT applications, but this research work does not indicate how the procedure contemplates
associated deadlines and how these are verified with scheduling tests. The reported analysis is limited to
low latency/delayed use of the network.

The Object Management Group (OMG) proposes the data distribution service (DDS) for real-time
systems specification [40] that is implemented as a middleware based on Common Object Request Broker
Architecture (CORBA). This proposal deals with message exchange among different components in the
network. The interactions on DDS adhere to a publisher/subscriber mechanism, and the interaction
model contemplates different QoS, including real-time [41]. In order to do that, DDS introduces various
attributes like deadline, latency_budget, and periodicity. Moreover, it counts on several implementations



Sensors 2019, 19, 4801 6 of 27

like RTI Connext DDS (proprietary) https://www.rti.com/products/dds and OpenDDS (open source)
http://opendds.org. Although this proposal is highly comprehensive, well-specified, and validated,
the real-time support that it provides requires a communication link that is stable over time. Therefore,
only the concepts behind this proposal formulation can be reused if we want to provide real-time QoS in
the study scenario.

In [6], the authors proposed the use of Unmanned Aerial Vehicles (UAVs) to provide connectivity in
disaster-relief scenarios establishing a flying ad hoc network. There are two main aspects considered in that
proposal: the real-time scheduling of messages and the nodes deployment. Although the communication
is performed using mobile devices, the network is dedicated and not open to the wide Internet. In [7],
a real-time analysis for disrupted networks is provided when mules are used to link disconnected nodes.
The schedulability analysis in this case contemplates not only the periodicity of the messages and
the available bandwidth, but also the visiting order of the mule and the actual speed with which it
moves around. Like in the previous case, the network is not considered to be an open Internet application,
but a special ad hoc one created to support the action of firefighters during wildfires.

In order to address the stated challenge, the next two sections present the proposed interaction model
design and its implementation, respectively. This model, named SRTI (Simple Real-Time Interaction),
was designed to support soft real-time interactions in IoT scenarios that involve communication links with
uncertain stability.

3. Proposed Architecture

Any interaction model proposed to deal with the stated challenge must define two basic aspects of the
solution: the structure of the interaction scenario and the behavior of the interaction model. The first one
establishes the components that will be present in the IoT scenario and the role played by those components.
The second aspect describes the dynamics of the interaction model and the way in which the interaction
services are provided considering the preestablished restrictions. Next, we present the design of these two
aspects in the SRTI model and discuss the rationale behind the main design decisions.

3.1. Structure of the Interaction Scenario

There are several alternatives for structuring the IoT interaction scenario; however, most of them
implement a three-tier architecture that involves the sensing, network, and application layers [42] (Figure 1).
This architecture is devised to coordinate the functionality of the nodes in order to obtain an integral
behavior of the system, through the integration and coordination of its parts. This structure is not related
to the traditional five-layer Internet model; in fact, any IoT system should count with transport, network,
and link layer-nested protocols to operate in the open Internet network.

The lower layer involves the collection of physical devices that participate in the system, for instance,
sensors and actuators that interact with the physical environment or smart objects acting as interaction
intermediary or temporal data repository. The network layer is responsible for connecting all components
in order to allow interactions and to coordinate the individual behavior of the devices to generate a
collective behavior of the system (or subsystem). Therefore, this layer transports the information among
components of the system and it implements mechanisms to address several communication aspects like
modulation, medium access control, routing, transport, and flux control.

Finally, the application layer provides the system services to end-users; it includes human users, other
systems, and also components of its own system (e.g., actuators). The complex behaviors of the system,
for instance, making contextualized decisions, is usually implemented at this level.

In this architectural model, a node may act on the three layers, as it may be a sensor unit that transmits
the collected data after processing and transforming it in information. Some nodes may collect data

https://www.rti.com/products/dds
http://opendds.org


Sensors 2019, 19, 4801 7 of 27

and information and then organize it following certain criteria or filters to forward it to other nodes.
Finally, some nodes make decisions based on the information they receive.

Figure 1. Layered structure of an Internet-of-Things (IoT) interaction scenario.

The SRTI model adheres to such a structure considering three type of nodes: terminals, brokers,
and processors. There are different kinds of nodes in the system, and some of them should implement
different services at each layer. The terminals are represented by the sensors and actuators present in
the system. Clearly, these are part of the sensing layer and provide simple services to brokers (Figure 2).
A terminal can be linked to more than a broker, and such a link is loosely coupled. In case of actuators
linked to more than a broker, every change in the device’s status is propagated to all involved brokers,
following a change-propagation mechanism similar to the one proposed to the model-view-controller
pattern [43].

The brokers are interim nodes that interact with a subset of related terminals in order to provide some
basic intelligence at the middle level. Therefore, they implement several services based on the terminals
linked to them. For instance, a broker can be designed to interact with all sensors and actuators related
to the security aspect of a smart home, while other brokers can address other aspects of the system, like
energy consumption, resource provision, or environmental wellness. In this scenario, the brokers act like a
switch, connecting sensors or actuators with consumers in the application layer.

Figure 2. Hierarchy of the interactions among nodes.

Finally, the processor nodes usually increase the intelligence of the system using the services provided
by the brokers. Like the previous case, a processor can be linked to multiples brokers and vice versa.
Processors are implemented in the application layer. The management of events in this layer usually
adheres to the publish–subscribe model [41,44]. Unlike client–server or request–response coupling models,



Sensors 2019, 19, 4801 8 of 27

publish–subscribe facilitates the inclusion and exclusion of devices and also the dynamic orchestration of
services provided by the nodes, making the systems more flexible and easy to evolve [44,45].

Considering the implementation aspect, it is important to remark that the node types represent
conceptual constructs; therefore, they can be hosted in the same device, particularly the brokers and
the processors.

3.2. Intelligent Management of Topics in the Communication Scenario

The IoT model described in the previous section is concerned with the functionality of the nodes
and not with how the information is exchanged among the nodes in the network. Provided that we
consider open IoT applications executing on the open Internet when the devices should use links provided
by Internet Service Providers (ISPs), it is necessary to describe the interaction between the nodes in
terms of the traditional network layers. As mentioned before, the IoT network layer comprises all the
communication aspects related to the information exchange, and these are represented by the physical,
link, network, and transport layers in the traditional Internet model.

Although IoT applications assume sensors and actuators are reachable through an open Internet in a
flat access mode, it still has several practical restrictions like dynamic discovery of services, information
providers, and routing. However, even if these restrictions are properly addressed, the network would
require a huge bandwidth to avoid traffic overflow and congestion. The use of brokers in this scenario
reduces the traffic, as they collect information from publishers and send it to subscribers on demand.

The brokers have an intelligent real-time agent (IRTA) associated in the application layer. This agent is
subscribed to all the published topics in the broker on one hand, while it receives also all the subscriptions
to the broker. A published data is filtered by the agent according to a set of functions that may be configured
by the end user of the system. Each publication has metadata describing attributes like its publication
period, precision, source, and reliability.

On the other side, subscriptions require data from certain sources, with an expected periodicity,
precision, and reliability. In the case of a direct match between the subscription and the publication,
the IRTA connects both. If there is not a direct match, the IRTA may work with the available publications to
satisfy the subscriber with a new one. To do this, it may aggregate data from multiple sources to generate
a desired sampling frequency not available within the publisher sources or fusion raw data in order to
generate new information.

The IRTA is in charge of checking that data is on time and of implementing scheduling policies
in case of conflicts. The functions of the IRTA are not related to a server or the cloud. Instead, these
functions only preprocess data to conform subscriptions and to validate it from a real-time perspective.
If there is a subscription that requests certain periodicity for a particular data or requires a certain latency
in the network to take a value as good, the IRTA should evaluate if publishers have data that meet
these requirements. Using the last measured delays in the network, the IRTA can determine if it is possible
to satisfy the minimum latency. Subscription is rejected if both things are not guaranteed. Figure 3 presents
a diagram that shows this structure.



Sensors 2019, 19, 4801 9 of 27

Figure 3. Structure of a broker.

3.2.1. Behavior of the IRTA

Typically, when the broker receives a subscription request that does not have a direct match in
the publications, it calls the IRTA to analyze if the answer can be built using the data stored in the
local repository. If it does, the IRTA generates a new topic matching the subscriber request under certain
real-time restrictions. To do this, the user may implement a set of functions to work on the metadata
associated to the publications.

On the other hand, when the IRTA is not capable of building the answer with the local information,
a second negotiation stage is started and the requested topic is searched among different brokers
participating in the system. In this second round, neighbor brokers share information to build the
requested answer.

3.2.2. Application Example

In order to illustrate this point, let us suppose there is a temperature sensor that provide the actual
temperature read, together with additional information. This additional information includes the units
in which the data is provided (i.e., Celsius, Fahrenheit, or Kelvin), the actual location of the sensor in
a qualitative and precise way (e.g., Buenos Aires, latitude, and longitude), the sampling frequency or
period with which the temperature is read, its precision (8,10,12 or 16 bits), and a last field that weighs
the reliability of the sensor from the source. The metadata associated with this publisher provides the
IRTA with the necessary information to aggregate or combine it with other data and, in this way, to obtain
new information useful for the system or the end-users. Table 1 presents the data structure of the answer
provided by the sensor.

Table 1. Metadata for temperature sensor.

Variable Units

Temp C, F, or K
Location Name Lat, Long

Period s
Precision 8/10/12/16 bits
Reliability High/Medium/Low

Changing the units of the answers provided by the sensor is a simple operation, and it can be
implemented with just a few computations. Functions associated to unit changes are notated U(a, b),
where a is the unit used by the sensor and b is the desired unit. The frequency is more difficult to adjust.
When a subscription requires certain sampling frequency, there are basically two scenarios to consider:
(1) the publisher sampling rate is below the demanded one; or (2) it is equal or higher. In the first case,



Sensors 2019, 19, 4801 10 of 27

the only way to accept the subscription is to obtain more data from other sources. In the second case,
there are two alternatives: either the subscriber accepts a higher data rate update or the IRTA builds
a regression function (probably first order) to interpolate values matching the demanded frequency.
However, to do this, deadlines should be large enough to admit the necessary latency to build the
“computed” data, for instance, using the least squares methodology. The set of values used to do the
regression can be dynamically updated.

In the case that a higher sampling frequency is required, the IRTA should check if it is possible to
combine different publishers. In order to do that, the location, precision, and reliability of the sensors
should be similar to produce a new publication with the necessary quality. In the basic case, let us suppose
there are two temperature sensors in Buenos Aires with similar parameters and even the same period.
Both produce data every 30 min, but the first one does it at o’clock and past 30 min while the second does
it at 15 and 45 min. Combining both readings, the IRTA can provide the temperature with a 15-min period.
The functions related to frequency adjustments are notated as F(a).

When a subscription requires data that is not present in the broker, the IRTA may ask the linked
brokers to determine if they have a publisher satisfying the subscription. If there is such a broker, the IRTA
may pass through the request to that broker, acting as a simple switch between the subscriber and the new
pair broker/publisher. The function of searching the topic in another broker is notated as S(a, b), in which
a is the original broker and b is the new broker.

The last functionality of the IRTA is related to providing information based on raw data. For this,
it should be prepared with the appropriate functions, which may be as simple as providing the maximum
or minimum values of a published topic or as complex as to compute a Fast Fourier Transform on a
sequence of data to provide the spectrum of a topic. There are many options to be implemented according
to the type of data processing that is required. In any case, these functions are notated as P(a), where a
indicates the topic that is processed.

Using this architecture, the system can be seen as a hierarchical set of endpoints (i.e., sensors or actuators),
intelligent real-time brokers, and subscribers. The brokers may have two functions as they can become
publishers and subscribers of other brokers that allow them to get information not present within their inputs
or outputs.

Figure 4 illustrates an example of the general structure of the interaction scenario, considering an
architecture with four interconnected brokers. For simplicity, publishers are in the bottom while subscribers
are in the top of the figure. As shown in such a figure, several publishers share their topics with different
brokers, and various subscribers receive topics from different brokers. In the middle, brokers share data as
publishers and subscribers indistinctly based on the functionality required for each connection.



Sensors 2019, 19, 4801 11 of 27

Figure 4. Structure of an interaction scenario.

3.3. Real-Time Communication Model

A real-time task is defined as one that should produce correct results within a certain instant named
deadline, and a real-time system is one in which there is at least one real-time task [46]. In an IoT scenario,
these tasks represent threads that support the interaction among the system components, which are
coordinated by one or more software applications. Therefore, a real-time task, τi, is described as a sequence
of jobs or instances.

The interval between these instances is named the minimum inter-arrival time or period, Pi.
Each instance has a worst case execution time denoted Ci and a relative deadline, Di. Each instance
has a release or activation time aij and an absolute deadline defined as dij = aij + Di.

There are several scheduling policies to order the execution of tasks, where the most used ones are
Rate Monotonic Scheduling (RMS) and Earliest Deadline First (EDF). In RMS, task priorities are assigned
in reverse order of P; therefore, the highest priority is assigned to the task with minimum P. In EDF,
the priorities are dynamic and the highest priority is given to the task that has the earliest deadline.
In this proposal, we adopt the earliest deadline first given it is optimal for single processors systems,
as shown in [47].

In an IoT real-time interaction, the processing at both endpoints (i.e., the producer and consumer) and
the delay in the network have to be bounded and completed before the deadline. As mentioned before,
the IoT system may involve the use of a dedicated network or one with an uncertain stability. In the first case,
we can compute the worst case end-to-end delay in an interaction, noted ∆i, from the producer to the
consumer as follows:

∆i = Ccon + δn + Cprod (1)

where Ccon and Cprod stand for the computation time in the consumer and producer, respectively, and δn

is the delay in the communication network. With it, a scheduling policy in the producer, network,
and consumer can be implemented to guarantee deadlines.

If the network is not dedicated (i.e., its stability is uncertain), the situation is much more complex.
Although Equation (1) is still valid, δn is not always predictable. In this case, the processing in hard
real-time is not feasible as tasks may lose their deadlines while being delayed in the network. In cases
where some deadlines can be lost without jeopardizing the correctness of the system (soft real-time),
the delay in the network can be assumed to be the worst measured delay in the connection negotiation
process and it can be updated in the next exchanges to keep the expected delay close to the worst case delay
measured in the last transactions, for example, in the last 10 exchanges.



Sensors 2019, 19, 4801 12 of 27

In order to deal with unknown delays in the network, we have extended the MQTT protocol [9] that,
according to the analysis conducted on the related work, is closest to this proposal. The next section
presents such an extension.

4. Modeling the Publish–Subscribe Paradigm on the SRTI Model

This section presents the implementation of the publish–subscribe interaction scheme, considering
the structure of the IoT scenario and design decisions presented in the previous section. In order to
do that, we specify the behavior of the processors (subscribers), terminals (publishers), and brokers
(publisher/subscriber) when the SRTI model is used to support interactions in the IoT study scenario.
The terminals are associated to the sensing layer in the IoT model. In this scenario, they are either producers
of data (sensors) or consumers (actuators). Provided that most participants in the sensing layer are sensors,
we associate terminals to publishers.

As introduced in the previous section, the processors transform data coming from sensors into
information that is available for the system components. For this, the processors subscribe to topics
in the different brokers. For the rest of the presentation, we assume that terminals are associated with
sensors. The terminals act as actuators; therefore, they are not publishers but subscribers that receive
commands to execute. Nevertheless, the proposed analysis is still valid. Similar to MQTT, the SRTI
model provides a set of primitives that order the communication among processors and terminals through
brokers, as illustrated in Figure 2. Typically, the smart solutions working on the IoT scenario interact
directly with the processors to monitor relevant variables, to eventually deliver notifications, to make
decisions, and to take particular actions when required. The processors subscribe to the services provided
by the brokers (usually, information provision) given that the latter have a cooperation agreement (contract)
with the terminals linked to them (i.e., sensors and actuators).

Next, we specify the behavior of the terminals, processors, and brokers using a finite state
machine (FSM). We assume the connection among these components is already established; therefore,
their behavior specifications are focused mainly on the exchange of data messages. In the case that a certain
node operates like terminal or processor (i.e., publisher or subscriber), it may assume both operating
modes, switching between them according to the role played in the system operation.

4.1. Terminals: Behavior Specification

As mentioned before, the terminals correspond to the publishers in the publish–subscribe pattern.
The behavior of these components is simple since, while connected to a broker, it mainly uploads data
with a given periodicity. Figure 5 shows the finite state machine for the terminal. The only modification
that has to be incorporated within the data is the timestamp and the period. This information is used by
the broker to keep updated the delay between the publisher and the broker and to evaluate if the data will
potentially arrive before the deadline to the subscriber.



Sensors 2019, 19, 4801 13 of 27

Figure 5. Finite state machine (FSM) representing the behavior of the terminals.

4.2. Processor: Behavior Specification

In the case of the processors (i.e., the subscribers), their behavior has to deal with timestamps
and deadlines. As it can be seen in Figure 6, the processor connects to the broker and remains connected
while this latter forwards data received from the terminals. In the first state, the processor is IDLE waiting
for an activation from the software application controlling the IoT scenario. Once the application requests
data to the processor, REQ_DATA, it sends a SEND_S_REQ(Topic,TStampR,D,P) to the corresponding
broker. The parameters identify the topic, the actual time of the request, the deadline, and the period.
The topic is a variable used to identify classes of requested information (e.g., weather, traffic, or pictures
of surveillance cameras). When the broker accepts the subscription, Subs_Ack(Topic,TStampS,D,P,
the processors goes to the WAIT state.

When the processor is in the WAIT state, it evaluates four Boolean variables related to the
subscription process.

• Queue Empty QE is true if the receiving data queue is empty, and it is false when at least one valid
data has been received.

• Elapsed time L is true while the deadline has not been reached. It actually accounts for the available time
to receive data before the deadline expiration. Once the deadline is over, this variable turns to false.

• Fail F is true if the amount of failures is greater than Limit. The processor records, in Fail_count,
the number of times that data has not arrived within its deadline. When Fail_count ≥ Limit, F turns true.

• Data completed DC is used to identify if enough data has been received for the processing. In this
case, the variable is set or reset by the application handling the queue.

The transitions associated to the WAIT are determined by the values of the Boolean variables. In the
third transition, there is time (L = true) and the queue is empty; therefore, it remains in the WAIT state.
The fourth transition corresponds to the case in which there is time and some data has been received.
In this case, the data is unqueued and delivered to the application for its use. In the fifth transition, there
is no more time and the state machine decides if it has to increment the failure count or to reset all the
parameters for the next period. In this case, the DC is used to evaluate if the data received is enough for
the application. When the number of failures is over Limit, it goes to the END state, indicating that there is
no resource associated to the requested topic. The application may end the subscription with a STOP signal.

The services available for subscription provide single or multiple data, which is indicated using a
wildcard (as in MQTT). In single data services, the answer has a single structure and semantic, but in
multiple data services, that structure and semantic should be informed to the subscribers in order to allow
them to properly understand the received information. Wildcards are single or multiple level. In the



Sensors 2019, 19, 4801 14 of 27

first case, it is used to collect the information in hierarchical topics. For example, while checking the
temperature in a city, “City/+/Temperature/”, it is not relevant if the information comes from downtown
or a park, whichever is available is good for that subscription. In the case of a multi-level wildcard, all the
information from a specific location is relevant, for instance, “City/Downtown/#” would collect all the
available topics in the downtown of a city.

Figure 6. FSM representing the behavior of the processor.

4.3. Broker: Behavior Specification

In the publish–subscribe model, the broker is a key element that connects the actions of the publishers
and subscribers. Its main purpose is to collect data from publishers and to then distribute it to the
subscribers. The broker interacts with both publishers and subscribers, making its operation the most
complex within the protocol. In this work, on top of the broker, the IRTA is in charge of aggregating data
and producing if possible new publications to satisfy the subscribers requirements.

Figure 7 presents the FSM for the IRTA/broker. We assume that the connection, publishing,
and subscription primitives follow the standard MQTT protocol. The IRTA agent receives all the
publications from the broker. When a subscriber requires a certain topic, the IRTA verifies if it has
the topic in the broker directory or if it is possible to aggregate information coming from other publishers
to satisfy the subscription. If part of the data is missing, it checks with other brokers to determine if
it is possible to complete the necessary information. We extend this functionality by incorporating in the
subscription process the identification of the period, the timestamp, and the deadline for the transmissions.

Context information (typically metadata) can also be used to determine the validity and relevance of
a piece of information when the answer of a request should be created. For this purpose, it is important to
have the geolocalization of the sensor, the quality of the measure, and the time at which the data has been
collected as explained in Section 3. In this case, it is not necessary to know the IP address of the device.

The broker becomes Active whenever a valid connection is established to either publisher or
subscriber (transition I). In the same way, it becomes Idle when there are no more connections
(transition V). In transition II, the broker accepts a subscription with a certain timestamp TStampR,
deadline D, and period P. With the first parameter, the broker can evaluate the remaining time it has to



Sensors 2019, 19, 4801 15 of 27

send the topic requested to the subscriber. The third transition describes the registration of the publisher
with a certain topic and period. It also has the time at which the data was produced. In both cases, the IRTA
is involved in the processing and matching of publishers and subscribers. Finally, the fourth transition
describes the instant in which the broker has the topic. Provided that it is within the deadline and the
period has elapsed, it must send the topic/data to the subscriber.

Figure 7. State machine diagram for broker.

5. Implementation Details

This section describes the extensions proposed to the MQTT protocol in order to translate the SRTI
model into a messaging system for application development. These extensions consider the version 3.1.1
of the protocol.

There are two points to take into account for this work. The first one deals with how a MQTT broker
should interact with the IRTA. The second one indicates how to adapt the specification of this version of
MQTT, so that publishers, subscribers, and brokers can send the additional information needed by the
IRTA to provide the functionalities described in previous sections. Figure 8 shows an activity diagram of
the IRTA agent.

The communication between the MQTT broker and the IRTA is bidirectional; this means that both
components can send and receive data. On the one hand, the broker will send information about both the
subscriptions and publications that it receives. On the other hand, the IRTA will store the information of
the subscriptions (e.g., the topic, timestamp, deadline, and period). Every time it receives a publication,
it performs the following steps:

1. If there is a function defined by the user, it will be applied taking the publication message as
an argument. The output of this function will be a new publication message that will replace the
previous one. For example, the original publication could be a temperature value with the topic
“Full_Temperature” with an accuracy of two bytes. However, the function applied rounds it up to
one byte because that much precision is not needed; therefore, to save bandwidth, it is published
under a new topic named “Shrunken_Temperature”.

2. The publication message product of step 1 is submitted to an analysis of temporal restrictions to
validate if it is within the expectations of the subscriber or not. This analysis corresponds to transition
VI of the state machine described in Section 4.

3. If from the previous step it is decided that the publication is valid, it is queued in the output buffer of
the broker following the EDF scheduling algorithm.



Sensors 2019, 19, 4801 16 of 27

Figure 8. High-level activity diagram of a publication message processing of the intelligent real-time
agent (IRTA).

5.1. Extensions to MQTT

Regarding the protocol specification, this work proposes three major extensions to make it suitable
to allow soft real-time interactions in IoT scenarios. The first one is to add a topic registration related to
the MQTT control packets, similar to MQTT-SN, which a variant of the protocol that introduces a way to
register a topic in order to reduce packet sizes. The aim of the topic registration in SRTI is not to shrink
the packets, but to inform the temporal data associated to the publisher and the periodicity of the topic.
Therefore, its variable header should have the timestamp of the publisher, the period in which it will send
the corresponding data of that topic, and the length of the topic along with its name. The packet identifier
value could be 0 or 15, both currently unused.

The second extension implies modification of the headers of the PUBLISH and SUBSCRIBE MQTT
Control Packets, adding in both a timestamp of the issuer. Moreover, in the case of SUBSCRIBE, also add
the period and deadline in which it is expected to receive the data of that topic.



Sensors 2019, 19, 4801 17 of 27

The third extension considers adding a new return code in the SUBACK package, so that the broker
can reject a subscription in case it cannot offer data with the temporary parameters required by the
subscriber. The value of the return code could be any between the failure code 0x80 and the maximum
available 0xFF.

5.2. Code and Example Repository

MQTT has been implemented for personal computers with the Mosquitto [48] and Mosca [8] applications.
Using the second one, we implemented the extensions to the broker that add the IRTA to such a component.
In [49], the code of this implementation can be downloaded in order to install the Mosca extension. Moreover,
this work also makes available an example that shows the way in which a subscriber requests a value that is
obtained by processing two publications in the broker. In [50], a simple graphical interface is available to
configure the Mosca application, allowing it to implement different IRTA functions that can be added by the
system administrator.

6. Evaluation of the IRTA Extension

The proposed architecture and its implementation on Mosca was evaluated through three different
experiments designed to validate the system performance; each experiment shows different aspects. In the
first one, the system has two publishers: one subscriber and a broker with IRTA. The subscriber requires a
topic that is not available in the broker directory, but the IRTA has a function defined that can allow the
subscription using two topics coming from two publishers.

In the second experiment, the system has a publisher, a subscriber, and a broker with IRTA.
The subscriber requires a topic with a certain rate that is not available within the publications. However,
the topic is present with a higher rate. The broker accepts the subscription through the IRTA that
subsamples the topic reducing the traffic and matching the subscriber requirements.

Finally, the third experiment involves a publisher, a subscriber, and a broker with IRTA. In this case,
the subscriber requires a topic with a certain frequency. Although the topic is present in the broker, the IRTA
cannot guarantee the latency and the topic is not forwarded to the subscriber reducing the traffic. The next
figures show the logs obtained in each element for the different experiments.

Figures 9–12 show the log for the first experiment in the sensors, broker, and subscriber, respectively.
As it can be seen, the broker waits until having the topics coming from the two publishers before forwarding
the required topic to the subscriber.

[2019/07/26 15:54] Packet sent with topic “pumpFlow” and payload: 146.71
[2019/07/26 15:55] Packet sent with topic “pumpFlow” and payload: 146.04
[2019/07/26 15:56] Packet sent with topic “pumpFlow” and payload: 147.87
[2019/07/26 15:57] Packet sent with topic “pumpFlow” and payload: 149.79

Figure 9. Sensor pump log.

[2019/07/26 15:54] Packet sent with topic “time” and payload: 92.43
[2019/07/26 15:55] Packet sent with topic “time” and payload: 99.06
[2019/07/26 15:56] Packet sent with topic “time” and payload: 97.63
[2019/07/26 15:57] Packet sent with topic “time” and payload: 96.78

Figure 10. Sensor time log.



Sensors 2019, 19, 4801 18 of 27

[2019/07/26 15:54] Message received with topic: pumpFlow
[2019/07/26 15:54] Message received with topic: time
[2019/07/26 15:54] Publish new message under topic: applicationRate
[2019/07/26 15:55] Message received with topic: pumpFlow
[2019/07/26 15:55] Message received with topic: time
[2019/07/26 15:55] Publish new message under topic: applicationRate
[2019/07/26 15:56] Message received with topic: pumpFlow
[2019/07/26 15:56] Message received with topic: time
[2019/07/26 15:56] Publish new message under topic: applicationRate
[2019/07/26 15:57] Message received with topic: pumpFlow
[2019/07/26 15:57] Message received with topic: time
[2019/07/26 15:57] Publish new message under topic: applicationRate

Figure 11. Broker log.

[2019/07/26 15:54] Receives packet with topic “applicationRate” and payload: 27.12
[2019/07/26 15:55] Receives packet with topic “applicationRate” and payload: 28.93
[2019/07/26 15:56] Receives packet with topic “applicationRate” and payload: 28.87
[2019/07/26 15:57] Receives packet with topic “applicationRate” and payload: 28.99

Figure 12. Subscriber log.

Figures 13–15 show the logs for the publisher, broker, and subscriber in the second experiment,
respectively. Here, we can see that the publisher sends information with three times the required frequency
and that the broker discards two out of three packets before forwarding the data to the subscriber.

[2019/07/26 16:14] Packet sent with topic “pumpflow” and payload: 146.56
[2019/07/26 16:15] Packet sent with topic “pumpflow” and payload: 146.62
[2019/07/26 16:16] Packet sent with topic “pumpflow” and payload: 147.27
[2019/07/26 16:17] Packet sent with topic “pumpflow” and payload: 145.76
[2019/07/26 16:18] Packet sent with topic “pumpflow” and payload: 145.30
[2019/07/26 16:19] Packet sent with topic “pumpflow” and payload: 149.51
[2019/07/26 16:20] Packet sent with topic “pumpflow” and payload: 148.31
[2019/07/26 16:21] Packet sent with topic “pumpflow” and payload: 147.15
[2019/07/26 16:22] Packet sent with topic “pumpflow” and payload: 146.48

Figure 13. Experiment 2: Sensor log.

[2019/07/26 16:14] Message received with topic: pumpFlow
[2019/07/26 16:15] Message received with topic: pumpFlow
Packet period is not acceptable: 1 (projected) vs 3 (expected)
[2019/07/26 16:16] Message received with topic: pumpFlow
Packet period is not acceptable: 2 (projected) vs 3 (expected)
[2019/07/26 16:17] Message received with topic: pumpFlow
[2019/07/26 16:18] Message received with topic: pumpFlow
Packet period is not acceptable: 1 (projected) vs 3 (expected)
[2019/07/26 16:19] Message received with topic: pumpFlow)
Packet period is not acceptable: 2 (projected) vs 3 (expected)
[2019/07/26 16:20] Message received with topic: pumpFlow
[2019/07/26 16:21] Message received with topic: pumpFlow
Packet period is not acceptable: 1 (projected) vs 3 (expected)
[2019/07/26 16:22] Message received with topic: pumpFlow
Packet period is not acceptable: 2 (projected) vs 3 (expected)

Figure 14. Experiment 2: Broker log.



Sensors 2019, 19, 4801 19 of 27

[2019/07/26 16:14] Receives packet with topic “pumpflow” and payload: 146.56
Received pump flow: 146.56 m3/hour
[2019/07/26 16:17] Receives packet with topic “pumpflow” and payload: 145.76
Received pump flow: 145.76 m3/hour
[2019/07/26 16:20] Receives packet with topic “pumpflow” and payload: 148.31
Received pump flow: 148.31 m3/hour

Figure 15. Experiment 2: Subscriber log.

Figures 16 and 17 show the logs for the publisher and broker in the third experiment, respectively.
In this case, the publisher-expected latency is higher than that the required by the subscriber; therefore,
the broker discards the topic.

[2019/07/26 16:30] Packet sent with topic “pumpflow” and payload: 147.50
[2019/07/26 16:31] Packet sent with topic “pumpflow” and payload: 149.98
[2019/07/26 16:32] Packet sent with topic “pumpflow” and payload: 149.55
[2019/07/26 16:33] Packet sent with topic “pumpflow” and payload: 146.85
[2019/07/26 16:34] Packet sent with topic “pumpflow” and payload: 149.92

Figure 16. Experiment 3: Sensor log.

[2019/07/26 16:32] Message received with topic: pumpFlow
Packet latency is not acceptable: 2 (projected) vs 1 (expected)
[2019/07/26 16:33] Message received with topic: pumpFlow
Packet latency is not acceptable: 2 (projected) vs 1 (expected)
[2019/07/26 16:34] Message received with topic: pumpFlow
Packet latency is not acceptable: 2 (projected) vs 1 (expected)

Figure 17. Experiment 3: Broker log.

Table 2 presents a qualitative analysis that compares two versions of the solution required to address
the three interaction scenarios described in Section 6. One version of the solution was implemented
using the standard MQTT, and the other used the proposed SRTI with IRTA (SRTI-IRTA). In the three
experiments, we can see that using SRTI-IRTA provides several benefits; however, we also recognize
that this comparison is not fair, as such a software infrastructure implements functionalities that are not
present in the current version of MQTT. Regardless of such a consideration, this comparison allows to
see that SRTI-IRTA contributes to reaching soft real-time interactions in IoT scenarios and improves the
implementation of the closest proposal according to the review of the state-of-the-art reported in Section 2,
i.e., the MQTT protocol.



Sensors 2019, 19, 4801 20 of 27

Table 2. Comparison of solutions implemented using Message Queue Telemetry Transport (MQTT) and
Software Real-Time Interaction (SRTI)-IRTA.

Experiment Description Solution with SRTI-IRTA Solution with MQTT Benefits of Using SRTI-IRTA

1 New topic based on the
values of other topics.

The broker uses a function to
process, create, and publish a
new message under a new
topic.

An extra client is needed. It
should subscribe to the topics of
interest, process the values
received, and publish a new
message under a new topic.

(1) Less traffic in the network;
(2) no extra client is needed,
avoiding the overhead of
having another node.

2

The publisher sends a
message more frequently
than what the subscriber
needs.

The broker filters the
messages received based on
the needs of the subscriber.

The broker will send all the
messages received, and it will be
a task of the subscriber to
discard it.

(1) Less traffic in the network;
(2) less processing at the
subscriber.

3
The publisher latency is
higher than the one
required by the subscriber.

The broker filters the
messages received based on
the needs of the subscriber.

The broker will send all the
messages received, and it will be
a task of the subscriber to
analyze it and discard it.

(1) Less traffic in the network;
(2) less processing at the
subscriber.

7. Application Scenario

This section shows an application scenario related to Precision Agriculture (PA) and describes how
the proposed model can be applied to such a domain. PA is related to the use of technology to observe,
measure, and decide the actions to optimize the productivity of a cultivation area, while preserving the
natural resources [24,25]. As mentioned in Section 1, there are several situations that require predictable
response times in PA scenarios. One typical case is the irrigation to prevent frosts and their consequences in
plantations of fruit trees. When certain combinations of temperature, atmospheric pressure, and humidity
are present, the frost can produce severe damage to fruit plantations, and irrigating the plants in a particular
moment avoids the effects of the frost.

In PA scenarios, the synchronization among several kind of sensors distributed in the field is also
required to obtain a consistent picture of the current situation. In countries where agriculture is developed
in large areas, the farmers are not able to personally control the crops, not even with several employees.
For this reason, it is important to count with an automatic or semiautomatic system that supervises and
registers, in real-time, the different variables needed to decide which action to take.

When these irrigation systems operate autonomously, real-time interaction among the system
components is required to quickly detect problems, like floods in parts of the terrain or stops of the
water pumps when the plantation is in critical situations (e.g., in risk of frost). The growing of potatoes,
onions, or kiwis are particularly vulnerable to these situations.

The handling of real-time constraints to improve the IoT solutions for PA is still an open issue.
Although MQTT is an appropriate protocol to support the interactions among components of a PA system,
it does not provides real-time guarantees for these interactions. Therefore, the extension proposed in
this paper represents a way to improve the QoS of critical messages in IoT solutions that use unstable
communication networks.

In the particular lots where crop is being cultivated, a set of sensors are deployed both buried within
the land and measuring weather conditions in the air. For this, the temperature, ultraviolet rays and
its incidence, humidity, and many others variables can be measured. These data should be sampled along
the lot in different places, as lots may have several thousands of square meters. These sensors publish their
data to the broker that keeps the subscribers updated. The process of retrieving the information should be
made with time guarantees, since to make a decision it is important to determine the current situation of
the whole lot. For example, while irrigation could be enough in one part of the lot, another part of it may
still require irrigation.



Sensors 2019, 19, 4801 21 of 27

Sensors deployed in the field are equipped with LoRA transceivers [29,30]. These sensors publish
their measured variables to a LoRa server that implements an MQTT broker. The sensors are based on
simple 8-bits microcontrollers with small RAM and ROM memories. As the proposed scenario works on
open sky, they are powered with solar cells that provide energy and charge the batteries for night operation.

Typically, counting on a weather station is enough to provide the required meteorological information
for a whole lot (e.g., wind direction and intensity, temperature, and humidity). This unit may provide
the data independently or integrate it in a packet that includes, for instance, values of soil moisture,
temperature, pH, and nitrogen. All values sampled by the sensors in the lot are used to build gradient
maps on the different variables.

Other sensors can be distributed in the lot to provide information about the height of the plants
and the color and state of the leaves. For this purpose, multispectral cameras can reveal information on
the health of the crops. This kind of information can also be evaluated periodically with pictures taken
by drones.

The scheme is repeated for each lot; therefore, there may be an important amount of information
that should be processed. Lots are not necessarily close to each other; in fact, they may be several
kilometers apart. The IoT systems deployed in this way facilitate the control and supervision of the lots,
even when the persons in charge of them are not present in the area. Thus, the agricultural producer can
make decisions based on real-time data. For instance, if there is too much moisture on certain parts of the
lot but not enough on another, the farmer can decide to conduct selective irrigation.

In this kind of applications, even if deadlines are not hard, the correct operation in real-time of the
system is a requirement. This aspect should be considered at the system design time. Sensors operating on
batteries recharged by solar panels should consider the energy demand at the moment of sending data
that has been outdated.

Figure 18 illustrates a PA scenario where an IoT system is used for real-time control of the growing
conditions. The sample considers three lots; each one has 800 m × 500 m. Within each lot, there are several
irrigation lines that are crossed at different points by sensor lines. A multi-parametric sensor equipped
with a LoRa radio transceiver is deployed in each intersection of the sensor lines. These devices can be
acquired in the market at prices that vary between 10 and 30 US dollars, operate on batteries, and have a
communication range of several kilometers, which make the them ideal for this kind of application. While
the lot may look regular, there could be an elevation difference of 15 m between one part and another,
which may lead to a zone being flooded more frequently or faster than others.

Another example that can be found in PA scenarios is having a lot with two or more types of soil.
This means that the nutrients in each part and the amount of water for such areas should be managed in a
different way. Figure 18 shows a schematic distribution of the sensors, which should be carefully located
in order to ensure the necessary information is gathered and distributed through the system. The optimal
distribution of sensors is not analyzed in this paper; therefore, it could happen that two sensors reading
the same value produce different reactions in the system, as they are placed in locations with distinct
requirements, even if both are within the same lot.

The transceiver of the system uses a small antenna that operates without the need to be at the site of
the receptor. The weather stations may act at the same time as gateways to a non-challenged network,
for instance, a mobile telephone line with 4G technology. In this case, the gateways act as MQTT brokers,
and all the information coming from the sensors is collected and processed in the IRTA. Subscriptions to
the brokers can be made by other gateways, processing servers, or end-users.

While the two lots in the bottom of Figure 18 may use the same weather station, the third lot has
its own. With this, we remark the fact that, in the first place, the sensors may be in rather large natural
scenarios in which weather conditions may vary and that, in the second place, the amount of information
in the first two lots may be too much for a single broker to process in real-time. If the lot has a different



Sensors 2019, 19, 4801 22 of 27

shape, as the one in Figure 18, or there are not enough available sensors to cover the whole lot in a regular
way, it will be crucial to analyze the structure of the lot and to install sensors in different areas, grouped by
common characteristics.

Figure 18. Sensors deployment in a hypothetical precision agriculture (PA) scenario.

The grid of the sensors shown in Figure 18 can be mapped within the lots using a matrix notation,
where sijk identifies the sensor within the ith lot, in the jth row, and in the kth column. As we assume
all of them are similar within a class, each sensor in the lot will have a general name with the structure
mentioned in Table 3. In the case of the weather stations, they follow the same idea. Each weather station is
noted wsi, and it has associated a lot or set of lots depending on the geography and location. Table 4 shows
a possible URI assignment.

Finally, the multispectral cameras are notated as mscij, where i reflects the lot in which the camera
is sampling the plants and j identifies the individual camera within that lot. The URI in this case is just
“http://www.iotagriculture.com/mscij/spectral”, and it provides the intensities in each wavelength light.
Using this sensor-naming scheme, it is possible to accomplish with the identification requirements of the
MQTT protocol; particularly, it requires the identification of the topics informed by each sensor.

Table 3. Topics for the sensors within the loT scenario.

Variable URI

Temperature http://www.iotagriculture.com/sijk/temperature
pH http://www.iotagriculture.com/sijk/pH
Humidity http://www.iotagriculture.com/sijk/moisture
Nitrogen http://www.iotagriculture.com/sijk/nitrogen

http://www.iotagriculture.com/mscij/spectral
http://www.iotagriculture.com/sijk/temperature
http://www.iotagriculture.com/sijk/pH
http://www.iotagriculture.com/sijk/moisture
http://www.iotagriculture.com/sijk/nitrogen


Sensors 2019, 19, 4801 23 of 27

Table 4. URIs for the weather stations.

Variable URI

Temperature http://www.iotagricenteringculture.com/wsi/temperatute
Wind Direction http://www.iotagriculture.com/wsi/direction
Wind Intensity http://www.iotagriculture.com/wsi/intensity
Humidity http://www.iotagriculture.com/wsi/humidity
Pressure http://www.iotagriculture.com/wsi/pressure
UV factor http://www.iotagriculture.com/wsi/uv

With the network deployed and the connection working, the user may require any node within the
IoT ecosystem for appropriate information. Although we can impersonate the user, the system may work
autonomously and implement some kind of decision algorithm to determine if it is necessary, for instance,
to irrigate the whole lot, to irrigate part of it, or to not irrigate. The same idea can be applied to spreading
herbicides or pesticides in the lot or to making any other action to maximize crop production.

8. Discussion

The model presented in this paper is oriented to handling soft real-time quality of service based on
MQTT TCP/IP communications in the open Internet. Although there is an increasing use of sensors and
end devices to provide actual information on different areas, most applications are closed and do not
work in the open Internet but on dedicated networks. At the moment, the available bandwidth provided
by Internet service providers is not enough to have a full mesh network of things. Several strategies
are being developed to allow connecting things in a network without the intervention of people, in a
true M2M fashion. Typically, these strategies are oriented to building alternative networks that let some
nodes be connected to the Internet through a gateway. As mentioned before, the literature reports several
systems and architectures to support interactions among IoT components, but most of these proposals
show similar limitations to support real-time interactions. Some of them consider unstable networks
and others involve real-time QoS, but none of them support both features simultaneously. This situation
represents a stumbling block for the development of smart systems that must ensure on-time message
delivery but work on networks with uncertain instability. Almost any remote monitoring system must
address these two requirements simultaneously.

In this context, both LoRa and Sigfox [51] provide similar solutions to support real-time interactions.
In case of South America, LoRa is leading the market and several companies have adopted the standard
to provide connectivity to sensors; particularly, LoRaWAN provides an interesting connectivity pattern.
In the case study analyzed in Section 7, the LoRa server acting as gateway implements at the same time
the MQTT broker.

The proposed extension to MQTT provides the possibility of discriminating between messages that
may comply with the time constraints from those that are not going to satisfy deadlines. At the moment,
MQTT provides a way to feed subscriptions with data produced by publishers. The broker acts as a
phone directory giving the data stored in the topic queue without processing to the subscriber. In this
extension, the broker incorporates an agent that has the ability to classify and aggregate data to build
new information. Both aspects, the real-time control and the incorporation of the intelligent agent, reduce
network traffic by avoiding the transmission of outdated messages.

9. Conclusions and Future Work

This paper proposes the Simple Real-Time Interaction (SRTI) architectural model, which extends
the interaction scheme proposed by the MQTT protocol to deal with the delivery of messages that have

http://www.iotagricenteringculture.com/wsi/temperatute
http://www.iotagriculture.com/wsi/direction
http://www.iotagriculture.com/wsi/intensity
http://www.iotagriculture.com/wsi/humidity
http://www.iotagriculture.com/wsi/pressure
http://www.iotagriculture.com/wsi/uv


Sensors 2019, 19, 4801 24 of 27

time constraints. The proposal was particularly designed to address IoT scenarios where the communication
link is unstable or its stability is uncertain.

While IoT is emerging as the next networking paradigm, there are still several open issues related
to service discovery, energy consumption, traffic congestion, and message routing that should be solved.
In the meantime, as in the past, there is a race to gain the market with the appropriate technology at the
physical and link layers. Among the main competitors, Sigfox and LoRa are proprietary radio systems
working in the unlicensed spectrum that have already developed solutions. The fifth generation (5G)
for cell phones technology has not reached yet a standard for its deployment, but it will be available
during the next year [52]. In South America, at the moment, LoRa is the technology that is being adopted
by most of the IoT application developers. We have implemented the MQTT extended protocol with
real-time primitives on a LoRa server acting as gateway. The proposal can be used in different areas of
IoT, but specially in those related to monitoring systems that require bounded response times and operate
on batteries.

The SRTI model incorporates the Intelligent Real-Time Agent (IRTA) to process published data and
adapts it to the subscriptions demands when possible. Such a model was implemented through a software
infrastructure named SRTI-IRTA, of which the performance was evaluated in three different IoT scenarios.
The results indicate that such an infrastructure helps address soft real-time message delivery in unstable
networks or in those where its stability is uncertain. The capabilities of SRTI-IRTA was compared to those
from a recent implementation of the MQTT protocol, showing the former outperforms the latter in the
evaluation scenarios.

Finally, we have shown how this extension to MQTT can be used in precision agriculture to monitor
the weather variables and chemical conditions of the soil and to control irrigation and agrochemical
products used to maximize the productivity of crops. In the system proposed for this application domain,
additional information is provided by spectral cameras and images obtained by drones.

The next steps in this initiative considers performing several simulations to determine the limits of
this proposal. Then, we will implement various IoT applications to see that the benefits identified in the
simulations are also present in the systems deployed in real scenarios.

Author Contributions: Conceptualization, R.S., S.F.O., and R.M.; formal analysis, M.F., G.M.E., R.S., J.O., and R.M.;
funding acquisition, J.O.; investigation, M.F. and G.M.E.; methodology, R.S.; project administration, J.O.; software,
M.F.; supervision, R.S.; validation, S.F.O. and R.M.; writing—original draft, M.F. and R.S.; writing—review and editing,
G.M.E., J.O., S.F.O., and R.M.

Funding: This work was supported by the European H2020 framework programme project LightKone (H2020-732505),
by the Spanish government under contract TIN2016-77836-C2-2-R, and by the Catalan government under contract
AGAUR SGR 990.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Deng, S.; Huang, L.; Wu, H.; Tan, W.; Taheri, J.; Zomaya, A.Y.; Wu, Z. Toward Mobile Service Computing:
Opportunities and Challenges. IEEE Cloud Comput. 2016, 3, 32–41. [CrossRef]

2. Stolpe, M. The Internet of Things: Opportunities and Challenges for Distributed Data Analysis. SIGKDD Explor. Newsl.
2016, 18, 15–34. [CrossRef]

3. Vijayakumar, N.; Ramya, R. The real time monitoring of water quality in IoT environment. In Proceedings of the
International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS),
Coimbatore, India, 19–20 March 2015; pp. 1–5. [CrossRef]

http://dx.doi.org/10.1109/MCC.2016.92
http://dx.doi.org/10.1145/2980765.2980768
http://dx.doi.org/10.1109/ICIIECS.2015.7193080


Sensors 2019, 19, 4801 25 of 27

4. Zhang, Y.; Wang, W.; Wu, N.; Qian, C. IoT-Enabled Real-Time Production Performance Analysis and Exception
Diagnosis Model. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1318–1332. [CrossRef]

5. Satija, U.; Ramkumar, B.; Sabarimalai Manikandan, M. Real-Time Signal Quality-Aware ECG Telemetry System
for IoT-Based Health Care Monitoring. IEEE Internet Things J. 2017, 4, 815–823. [CrossRef]

6. Micheletto, M.; Petrucci, V.; Santos, R.; Orozco, J.; Mosse, D.; Ochoa, S.; Meseguer, R. Flying real-time network to
coordinate disaster relief activities in urban areas. Sensors 2018, 18. [CrossRef] [PubMed]

7. Santos, R.; Orozco, J.; Ochoa, S.; Meseguer, R.; Mosse, D. Providing Real-Time Message Delivery on
Opportunistic Networks. IEEE Access 2018. [CrossRef]

8. Collina, M. Mosca lib/server.js. Available online: http://www.mosca.io/docs/lib/server.js.html (accessed on
1 November 2019).

9. Banks, A.; Gupta R. MQTT Version 3.1.1; OASIS Standard: Burlington, MA, USA, 2014.
10. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); RFC7252; IETF: Fremont, CA, USA,

2014. [CrossRef]
11. Sarkar, C.; SN, A.U.N.; Prasad, R.V.; Rahim, A.; Neisse, R.; Baldini, G. DIAT: A Scalable Distributed Architecture

for IoT. IEEE Internet Things J. 2015, 2, 230–239. [CrossRef]
12. Lanese, I.; Bedogni, L.; Di Felice, M. Internet of Things: A Process Calculus Approach. In Proceedings of the

28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013; pp. 1339–1346.
13. Aijaz, A.; Aghvami, A.H. Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol

Stack Perspective. IEEE Internet Things J. 2015, 2, 103–112. [CrossRef]
14. Lekidis, A.; Stachtiari, E.; Katsaros, P.; Bozga, M.; Georgiadis, C.K. Using BIP to reinforce correctness of

resource-constrained IoT applications. In Proceedings of the 10th IEEE International Symposium on Industrial
Embedded Systems (SIES), Siegen, Germany, 8–10 June 2015; pp. 1–10.

15. Basu, A.; Bensalem, S.; Bozga, M.; Bourgos, P.; Maheshwari, M.; Sifakis, J. Component Assemblies in the Context
of Manycore. In Formal Methods for Components and Objects: 10th International Symposium, FMCO 2011, Turin, Italy,
3–5 October 2011, Revised Selected Papers; Springer: Berlin, Heidelberg, 2013; pp. 314–333.

16. Aziz, B. A formal model and analysis of an IoT protocol. Ad Hoc Netw. 2016, 36, 49–57. [CrossRef]
17. Luzuriaga, J.E.; Zennaro, M.; Cano, J.C.; Calafate, C.; Manzoni, P. A disruption tolerant architecture based on

MQTT for IoT applications. In Proceedings of the 14th IEEE Annual Consumer Communications Networking
Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 71–76.

18. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises.
Bus. Horizons 2015, 58, 431–440. [CrossRef]

19. Grieco, L.; Rizzo, A.; Colucci, S.; Sicari, S.; Piro, G.; Paola, D.D.; Boggia, G. IoT-aided robotics applications:
Technological implications, target domains and open issues. Comput. Commun. 2014, 54, 32–47. [CrossRef]

20. Han, S.; Lin, T.; Chen, D.; Nixon, M. WirelessCHARM: An open system low cost wireless marshalling module for
industrial environments. In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea,
6–8 March 2014; pp. 502–505. [CrossRef]

21. Distefano, S.; Merlino, G.; Puliafito, A. A utility paradigm for IoT: The sensing Cloud. Pervasive Mob. Comput.
2015, 20, 127–144. [CrossRef]

22. Xu, B.; Xu, L.D.; Cai, H.; Xie, C.; Hu, J.; Bu, F. Ubiquitous Data Accessing Method in IoT-Based Information
System for Emergency Medical Services. IEEE Trans. Ind. Inf. 2014, 10, 1578–1586. [CrossRef]

23. Koley, S.; Ghosal, P. An IoT Enabled Real-Time Communication and Location Tracking System for
Vehicular Emergency. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Bochum, Germany, 3–5 July 2017; pp. 671–676. [CrossRef]

24. Auernhammer, H. Precision farming—The environmental challenge. Comput. Electron. Agric. 2001, 30, 31–43.
[CrossRef]

25. McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005,
6, 7–23. [CrossRef]

http://dx.doi.org/10.1109/TASE.2015.2497800
http://dx.doi.org/10.1109/JIOT.2017.2670022
http://dx.doi.org/10.3390/s18051662
http://www.ncbi.nlm.nih.gov/pubmed/29789458
http://dx.doi.org/10.1109/ACCESS.2018.2848546
http://www.mosca.io/docs/lib/server.js.html
http://dx.doi.org/10.17487/RFC7252
http://dx.doi.org/10.1109/JIOT.2014.2387155
http://dx.doi.org/10.1109/JIOT.2015.2390775
http://dx.doi.org/10.1016/j.adhoc.2015.05.013
http://dx.doi.org/10.1016/j.bushor.2015.03.008
http://dx.doi.org/10.1016/j.comcom.2014.07.013
http://dx.doi.org/10.1109/WF-IoT.2014.6803218
http://dx.doi.org/10.1016/j.pmcj.2014.09.006
http://dx.doi.org/10.1109/TII.2014.2306382
http://dx.doi.org/10.1109/ISVLSI.2017.122
http://dx.doi.org/10.1016/S0168-1699(00)00153-8
http://dx.doi.org/10.1007/s11119-005-0681-8


Sensors 2019, 19, 4801 26 of 27

26. Luoto, P.; Bennis, M.; Pirinen, P.; Samarakoon, S.; Horneman, K.; Latva-aho, M. System level performance
evaluation of LTE-V2X network. In Proceedings of the 22th European Wireless Conference, Oulu, Finland,
18–20 May 2016; pp. 1–5.

27. Luoto, P.; Bennis, M.; Pirinen, P.; Samarakoon, S.; Horneman, K.; Latva-aho, M. Vehicle clustering for improving
enhanced LTE-V2X network performance. In Proceedings of the European Conference on Networks and
Communications, Oulu, Finland, 12–15 June 2017; pp. 1–5. [CrossRef]

28. Cecchini, G.; Bazzi, A.; Masini, B.M.; Zanella, A. LTEV2Vsim: An LTE-V2V simulator for the investigation
of resource allocation for cooperative awareness. In Proceedings of the 5th IEEE International Conference
on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017;
pp. 80–85. [CrossRef]

29. Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range & Low Power Networks for the
Internet of Things. Sensors 2016, 16, 1466. [CrossRef]

30. Ismail, D.; Rahman, M.; Saifullah, A. Low-power Wide-area Networks: Opportunities, Challenges, and Directions.
In Proceedings of the 19th International Conference on Distributed Computing and Networking, Varanasi, India,
4–7 January 2018; ACM: New York, NY, USA, 2018; pp. 8:1–8:6. [CrossRef]

31. IEEE. Standards for Information Technology—Telecommunications and Information Exchange between Systems Local and
Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications; IEEE: Piscataway, NJ, USA. [CrossRef]

32. Wevers, K.; Lu, M. V2X Communication for ITS-from IEEE 802.11 p Towards 5G. IEEE 5G Tech. Focus 2017, 1, 5–10.
33. Wang, P.; Di, B.; Zhang, H.; Bian, K.; Song, L. Cellular V2X Communications in Unlicensed Spectrum:

Harmonious Coexistence With VANET in 5G Systems. IEEE Trans. Wirel. Commun. 2018, 17, 5212–5224.
[CrossRef]

34. Bazzi, A.; Zanella, A.; Masini, B.M. An OFDMA-Based MAC Protocol for Next-Generation VANETs. IEEE Trans.
Veh. Technol. 2015, 64, 4088–4100. [CrossRef]

35. Yasumoto, K.; Yamaguchi, H.; Shigeno, H. Survey of real-time processing technologies of IoT data streams.
J. Inf. Process. 2016, 24, 195–202. [CrossRef]

36. Konieczek, B.; Rethfeldt, M.; Golatowski, F.; Timmermann, D. Real-Time Communication for the
Internet of Things Using jCoAP. In Proceedings of the IEEE 18th International Symposium on Real-Time
Distributed Computing, Auckland, New Zealand, 13–17 April 2015; pp. 134–141. [CrossRef]

37. Konieczek, B.; Rethfeldt, M.; Golatowski, F.; Timmermann, D. A Distributed Time Server for the Real-Time
Extension of CoAP. In Proceedings of the IEEE 19th International Symposium on Real-Time Distributed
Computing (ISORC), York, UK, 17–20 May 2016; pp. 84–91. [CrossRef]

38. Santos, R.; Orozco, J.; Finochietto, M.; Eggly, G.; Meseguer, R. CoAp Real-Time extension. In Proceedings of the
Workshop on UbiComp Innovation for Helping People in Vulnerable Condition (UCAMI 2018), Punta Cana,
Dominican Republic, 4–7 December 2018.

39. Kolozali, S.; Bermudez-Edo, M.; Puschmann, D.; Ganz, F.; Barnaghi, P. A Knowledge-Based Approach for
Real-Time IoT Data Stream Annotation and Processing. In Proceedings of the IEEE International Conference
on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber-Physical and Social Computing (CPSCom), Taipei, Taiwan, 1–3 September 2014; pp. 215–222.

40. Object Management Group. Data Distribution Service for Real-time Systems Specification, version 1.4;
Object Management Group (OMG): Needham, MA, USA, 2015.

41. Rizano, T.; Abeni, L.; Palopoli, L. Experimental Evaluation of the Real-Time Performance of
Publish-Subscribe Middlewares. In Proceedings of the Second International Workshop on Real-Time and
Distributed Computing in Emerging Applications, Vancouver, BC, Canada, 3 December 2013.

42. Sethi, P.; Sarangi, S. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017,
2017. [CrossRef]

43. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture—Volume
1: A System of Patterns; Wiley: Hoboken, NJ, USA, 1996; pp.126–144.

http://dx.doi.org/10.1109/EuCNC.2017.7980735
http://dx.doi.org/10.1109/MTITS.2017.8005625
http://dx.doi.org/10.3390/s16091466
http://dx.doi.org/10.1145/3170521.3170529
http://dx.doi.org/10.1109/IEEESTD.2012.6178212
http://dx.doi.org/10.1109/TWC.2018.2839183
http://dx.doi.org/10.1109/TVT.2014.2361392
http://dx.doi.org/10.2197/ipsjjip.24.195
http://dx.doi.org/10.1109/ISORC.2015.35
http://dx.doi.org/10.1109/ISORC.2016.21
http://dx.doi.org/10.1155/2017/9324035


Sensors 2019, 19, 4801 27 of 27

44. Rodríguez-Domínguez, C.; Benghazi, K.; Noguera, M.; Garrido, J.L.; Rodríguez, M.L.; Ruiz-López, T.
A Communication Model to Integrate the Request-Response and the Publish-Subscribe Paradigms into
Ubiquitous Systems. Sensors 2012, 12, 7648–7668. [CrossRef] [PubMed]

45. Al-Madani, B.; Al-Roubaiey, A.; Baig, Z.A. Real-time QoS-aware Video Streaming: A Comparative and
Experimental Study. Adv. Multimed. 2014, 2014, 1. [CrossRef]

46. Stankovic, J.A. Misconceptions about Real-Time Computing. IEEE Comput. 1988, 21, 10–19. [CrossRef]
47. Liu, C.L.; Layland, J.W. Scheduling algorithms for multiprogramming in a hard-real-time environment. JACM

1973, 20, 46–61. [CrossRef]
48. Light, R.A. Mosquitto: Server and client implementation of the MQTT protocol. J. Open Source Softw. 2017, 2.

[CrossRef]
49. Finochietto, M. Real-time MQTT-MOSCA. Available online: https://github.com/marianofino/realtime-mqtt

(accessed on 1 November 2019).
50. Finochietto, M. MQTT Graphical Interface. Available online: http://192.241.222.173:4101/demo/ (accessed on

1 November 2019).
51. Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT

deployment. ICT Express 2018, 5, 1–7. [CrossRef]
52. Gohil, A.; Modi, H.; Patel, S.K. 5G technology of mobile communication: A survey. In Proceedings of the

International Conference on Intelligent Systems and Signal Processing (ISSP), Gujarat, India, 1–2 March 2013;
pp. 288–292. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s120607648
http://www.ncbi.nlm.nih.gov/pubmed/22969366
http://dx.doi.org/10.1155/2014/164940
http://dx.doi.org/10.1109/2.7053
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.21105/joss.00265
https://github.com/marianofino/realtime-mqtt
http://192.241.222.173:4101/demo/
http://dx.doi.org/10.1016/j.icte.2017.12.005
http://dx.doi.org/10.1109/ISSP.2013.6526920
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	IoT Structural Models
	IoT-Based Applications
	Real-Time Communication in IoT-Based Scenarios

	Proposed Architecture
	Structure of the Interaction Scenario
	Intelligent Management of Topics in the Communication Scenario
	Behavior of the IRTA
	Application Example

	Real-Time Communication Model

	Modeling the Publish–Subscribe Paradigm on the SRTI Model
	Terminals: Behavior Specification
	Processor: Behavior Specification
	Broker: Behavior Specification

	Implementation Details
	Extensions to MQTT
	Code and Example Repository

	Evaluation of the IRTA Extension
	Application Scenario
	Discussion
	Conclusions and Future Work
	References

