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Real-Time Scheduling Architecture for Embedded Systems 
 
 

Ricardo Cayssials1, 2, 3, Edgardo Ferro1, José M. Urriza4, Eduardo Boemo5 
 
 
Abstract – Industrial applications require meeting real-time specifications. Real-time systems 
are implemented using processors in order to execute real-time tasks. Temporal constraints must 
be supported by real-time operating systems or designing the application based on specific 
hardware resources. Previous approaches to real-time processors have implemented operating 
system functions in hardware and consequently they are designed to manage tasks’ periods rather 
than real-time. They cannot be used in a great deal of applications because they are based on 
restrictive models. This paper proposes the Hardware Real-Time Scheduling Architecture 
(HRTSA) that introduces an innovative methodology with which to efficiently manage time, events, 
priorities and tasks in an embedded hardware implementation. The HRTSA is described and real-
time performance is evaluated. Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
Real-time systems are usually built using either Real-

Time Operating Systems (RTOS) or designing the whole 
system as a monolithic program based on specific 
hardware resources. RTOSs allow designers to achieve a 
higher abstraction level, higher portability and finally, 
better verification and maintenance features of the 
system. Several RTOSs were proposed and designed in 
order to give real-time support to applications (e.g. 
POSIX.1003 [1], Spring kernel [2], QNX [3], uC/OS II 
[4], [5], among others). 

The RTOS includes a special system task, known as 
the scheduler, which shares the processor among the 
tasks which require execution. The scheduler carries out 
a scheduling policy to determine the next task to be 
executed. The real-time behaviour of the system depends 
on the scheduling policy implemented. 

Each RTOS applies a scheduling policy and it is 
difficult to change it in order to modify the real-time 
characteristics of the application. The scheduler should 
be executed periodically producing an overhead on the 
system. Some applications may require stricter temporal 
features or may not tolerate the runtime overhead 
produced by the RTOS or the system memory 
requirements. In these cases, a direct use of the hardware 
resources is mandatory. Timers, counters and interrupts 
must be directly programmed making easy maintenance 
of the system difficult.  

The improvement of the computational capacity has 
allowed the utilisation of microprocessor-based systems 
within a great deal of equipment and many embedded 
real-world applications, such as telecommunications, 
transportation, industrial automation, surveillance, and so 
on. These classes of applications have real-time operation 
constraints which must be fulfilled to avoid serious 
human injuries or material damages [6]. 

Several papers have proposed the implementation of 
scheduler functions in hardware in order to improve the 
real-time efficiency of the system ([6], [7], [8], [9], [10], 
[11], [12], [13], [14], [15]). Most of the ideas are based 
on transferring the scheduling functions of the RTOS to 
hardware. However, while the runtime efficiency 
increases ([16]), the real-time restrictions originating 
from the software version implemented in RTOSs remain 
in the hardware. Hardware schedulers which have 
migrated from RTOS usually implement a certain 
scheduling policy over a reduced number of tasks which 
cannot be easily modified. 

Nowadays, Field Programmable Gate Arrays (FPGAs) 
offer a high capacity to implement Systems-on-
Programmable-Chip (SOPC). The architecture of the 
processors implemented in FPGAs, known as soft-
processors, may be modified in order to add new features 
to the processor prior to its synthesis and 
implementation. This may include new instructions, 
often called custom instructions, and inter-processor 
interfaces. These features make SOPCs and FPGA 
devices suitable for industrial and embedded applications 
([17], [18], [19], [20], [21], [22]) since they allow a high 
flexibility for Hardware/Software Co-design.   

In this paper, an architecture referred to as Hardware 
Real-Time Scheduling Architecture (HRTSA), and which 
is able to incorporate real-time scheduling properties into 
a soft-processor, is proposed. The HRTSA was designed 
from a real-time point of view and may support any real-
time scheduling mechanism over a set of up to 65,000 
tasks. 

The HRTSA is scalable and consequently the number 
of tasks and events supported depends on the amount of 
physical memory of the system. It is described in VHDL 
and can be used to build SOPC over FPGA devices from 
different vendors. 
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The architecture may be adapted to different soft-
processors (e.g. Altera NIOS II, Xilinx Microblaze, 8051 
core). With the HRTSA, temporal parameters can be 
defined independently of the functionality of each task. 
Hence, a task’s code may not include real-time 
programming which permits a higher abstraction level of 
implementation and a better flexibility in design. 

The paper is organised as follows: Section 2 describes 
the typical model used in real-time theory. The HRTSA is 
explained in Section 3. Section 4 describes how time and 
events are supported by the HRTSA. The support for 
tasks and priorities are explained in Section 5. Section 6 
details the architecture of the Real-Time Manager Unit of 
the HRTSA. An example of configuration of the HRTSA 
is explained in Section 7. The performance of the 
HRTSA is compared with a traditional scheduler in 
Section 8. Finally, results are analysed in Section 9 whilst 
conclusions are drawn in Section 10. 

II. Real-Time Model 
A real-time system is modelled as a set Π of n 

periodic tasks to be executed on a processor. Each task i 
performs a certain function and it is characterised by its 
period or minimum time between invocations, Ti, its 
deadline, Di, and its execution time, Ci. The utilisation 
factor of each task i is defined as Ci/Ti and the total 
utilisation factor of the system is the summation of the 
utilisation factor of all tasks. 

If each real-time task of the system always meets its 
deadline, then it is said that the system is schedulable. 
Real-time advance techniques compute the worst case of 
response of any real-time task of the system in order to 
analyse its schedulability ([23], [24], [25]). 

Scheduler assigns the processor according to the 
scheduling policy which it implements. Fixed Priority 
(FP) and Earliest Deadline First (EDF) are two of the 
most important scheduling policies in real-time ([23], 
[26]). In an FP policy, each real-time task is assigned 
with a priority in the design time and it remains fixed 
during runtime. In an EDF policy, the priority of a task 
increases as its deadline draws closer. The EDF policy is 
optimal in the sense that if the system is not schedulable 
under an EDF policy, then the system is not schedulable 
under any other scheduling policy. However, the 
complexity of the EDF policy may make it difficult to 
achieve an efficient implementation, compared with a 
Fixed Priority one, in an RTOS for embedded 
applications. 

The time that a task has to wait to be 
executed/completed depends on the computation time 
required by higher priority tasks that are ready to be 
executed. Because the pattern of releases is not fixed, and 
execution times of a task may vary from invocation to 
invocation, which results in a variable interference and 
therefore a variable response time of the task. These time 
variations produce a jitter on both the starting and 
completion times of task execution. Despite the fact that 
the jitter is not usually taken as a real-time parameter, it 

has been proven that it could produce undesirable effects 
on control and signal processing applications ([27]). In 
this paper, the jitter is used to compare the real-time 
performance of the different scheduling mechanisms 
evaluated. In the following section, the proposed 
Hardware Real-Time Scheduling Architecture is 
described. It is designed considering the real-time model 
and consequently it supports the different scheduling 
mechanism proposed in the real-time literature. 

III. The Hardware Real-Time     
Scheduling Architecture 

The basis of the HRTSA relies on the control of the 
real-time behaviour of the system without hindering the 
execution of the system’s tasks. The architecture includes 
two main processing units (Fig. 1): the Processing Unit 
(PU) and the HRTSA unit.  

The processing unit (PU) is a soft-processor core 
which fetches the instructions of the tasks from the 
memory and executes it accordingly. In this paper, the 
Intel 8051 instruction set was chosen as a case study to 
validate ideas. However, the HRTSA may be adapted to 
others soft-processors (e.g NIOS II, MicroBlaze). 

The instructions set of the Intel 8051 processor is 
recognised in addition to a number of special real-time 
instructions which are included to configure the real-time 
behaviour of the system. On the other hand, the Real-
Time Manager Unit (RTMU) controls all of the system’s 
real-time behaviour It may produce a task switching of 
the PU, whilst at the same time managing each event 
which takes place during runtime according to the 
information stored in the Event as well as the Task’s 
structures. This information may be modified by 
executing special real-time instructions in the task code. 
Each time that the PU recognises one of the real-time 
instructions, the RTMU takes control and executes it. 
One of these instructions is, for instance, the exit one, 
which ends the execution of the task that the PU is 
executing. 

When the PU recognises an exit operation code, the 
RTMU takes control and changes the status of the current 
executing task to waiting state whilst also modifying the 
internal registers of the PU in order to execute the next 
task which is ready to be executed. 

 

 
 

Fig. 1. The HRTSA-based processor architecture 
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The interrelation and communication between the 
RTMU and the PU is carried out through a 
Communication Interface. Soft-processors offer different 
alternatives to implement the Communication Interface 
such as: custom instruction, co-processing or source code 
modification.  

The task which the PU executes is selected by the 
RTMU according to the real-time information. Each time 
that the RTMU is required to perform a task switching, it 
performs the following actions: (1) waits until the 
completion of the instruction that is being executed by 
the PU (PU is not preempted during an instruction cycle), 
(2) stops the PU before the next fetch cycle, (3) saves all 
the registers of the PU into the Task Structure and, (4) 
restores the registers of the PU with the ones of the next 
executing task. Therefore, task switching is performed by 
modifying the registers of the PU (program counter 
included). Consequently, when the RTMU releases the 
PU, it will be executing the new task. The task switching 
may be implemented, for instance, by: (1) the RTMU 
directly accesses to the PU´s registers (as it was 
implemented in the case study in this paper) or (2) the 
RTMU forces to the PU to execute a task switching 
routine. However, alternative mechanisms may be 
adapted according to the features of the soft-processor 
chosen. 

The Interrupt Manager unit deals with external events 
that may invoke real-time tasks. Each time an enabled 
external event takes place, the Real-Time Manager Unit 
executes the Associated Action. Therefore, sporadic real-
time tasks invoked by external events are supported in a 
way similar to that of real-time periodic tasks. 

The Memory Manager implements memory access 
arbitration in order to allow for sharing the same external 
memory between the HRTSA and the PU.  

The performance, adaptability and scalability of the 
architecture depend on how the real-time information is 
both stored and handled by the RTMU. This information 
includes: task structures, event structures and the action 
code associated with each event. The following sections 
describe the real-time information in detail. 

IV. Time and Events                                          
in a Real-Time System 

Time is important in a real-time system because it is 
when events take place. We define event as an 
occurrence or happening, usually significant to the 
performance of a function, operation, or task. 
Consequently, the evolution of a real-time system may be 
adequately defined by expressing the time when events 
happen. Release, deadline, end of execution, priority 
promotion, and abortion are some examples of events in 
a real-time system. 

According to the nature of the event, we can 
differentiate between synchronous and asynchronous 
events. We say that an event is synchronous when its 
occurrence can be expressed as a function of the clock of 
the system. 

On the contrary, we say that an event is asynchronous 
when its occurrence depends on an external signal which 
is not a function of the clock of the system. 

While external interrupts are asynchronous events, 
timers produce synchronous ones. Depending on the base 
of time considered, synchronous events may be classified 
in two categories: 

1. absolute time events: this category includes the 
events whose occurrence is a function of the system time. 
Release and deadline of periodic tasks are examples of 
absolute time events. 

2. relative time events: this category includes the 
events whose occurrence is a function of the executed 
time of a task. These events are related to the time at 
which the task has been executed. Usually, fault-
tolerance strategies suggest the implementation of 
relative time events.  

For example, in an EDF policy the priority of each 
task is determined according to the time remaining until 
its deadline. Let us consider a real-time system with two 
periodic tasks whose periods (T), deadlines (D) and 
maximum execution times (C) are detailed in Table I. 

 
TABLE I 

EXAMPLE OF REAL-TIME PARAMETERS 

 T [ms] D 
[ms] 

C 
[ms] 

Task 1 6 6 3 
Task 2 8 7 4 

 
Fig. 2 shows the evolution of the system scheduled 

under an EDF policy after a simultaneous release of both 
tasks. Each down-arrow represents the release of a task.  

The priority of each task is determined according its 
deadline: the closer to its deadline, higher its priority.  

The use of the processor is granted to the highest 
priority task. The priority of each task can be determined 
by configuring absolute events each time the task is 
released: the deadline of task 1 is set to 6 each time task 
1 is released and, similarly, it is set to 7 for task 2. 

Fig. 2 shows the value of the deadline at 1ms 
intervals, but it is a value that modifies in a time-
continuous way. 

 

 
 

Fig. 2. Example of synchronous events 
 

Time and events should be adequately supported by 
the real-time processor. It is mandatory to keep the 
absolute time of the system in an internal register of the 
RTMU. Such a register in the HRTSA architecture is 
known as System Time Register (STR). The RTMU 
increases this register one unit per system’s clock period.  

The range of the STR should be long enough to avoid 
an overrun during the lifetime of the system. 
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For instance, an STR of 64 bits takes 58,494 years to 
overrun with a system’s clock equal to 10MHz. 
Similarly, the Relative Time Register (RTR) counts how 
long the current executing task has been executed. Of 
course, the RTR is accordingly updated when tasks are 
switched. 

On the other hand, events should be adequately 
defined in order to describe the real-time behaviour of 
the system. 

The next time an event takes place is called 
Occurrence Time. While the occurrence times of 
absolute time events are related to the value of the STR, 
the occurrence times of relative time events are related to 
the value of the RTR of the respective task. Therefore, an 
event is, in essence, defined by its occurrence time and 
its Associated Action. The action associated with an 
event is a code program stored in the memory of the 
system and it is executed by the RTMU when the event 
takes place. 

IV.1. Event Structure 

The Event Structure stores all of the event information 
(Fig. 3). The occurrence time is stored in the Occurrence 
Time field (OcF) of the respective event structure. The 
RTMU continuously checks whether: (1) the STR 
reaches the value of some of the Occurrence Fields of the 
absolute events and (2) the RTR reaches the OcF of the 
relative events of the executing task. 

The starting address of the associated action is held in 
the Code_Address field of the event structure. 

 

 
 

Fig. 3. Event Structure 
 
In order to efficiently manage the events of the 

system, the event structures are organised in a linked list 
sorted by its occurrence times. An RTMU register, 
referred to as Next Absolute Event (NAE), and a field 
named Next_Event in each event structure, are in charge 
of maintaining this organisation. Each time an OcF is 
modified, the Next Event register and fields are 
accordingly updated by the RTMU. 

Fig. 4 demonstrates an example of the linked list 
organisation of the event structures. This linked list is 
dynamically updated accordingly each time that an event 
takes places (the event is deleted from the list and the 
associated action executed) or an event is enabled (the 
event is inserted into the linked list sorted by its 
Occurrence Time field). 

Relative time events are organised in a similar way for 
each task. The maximum number of events supported 
depends on the physical amount of memory assigned to 
events structures. 

 
 

Fig. 4. Example of the Absolute time event structure organisation 

V. Tasks and Priorities 
Because most real-time process models consider a set 

of tasks to be executed into a processor, a real-time 
architecture should support multitasking. Consequently, 
a real-time architecture must manage all the task’s 
parameters needed to provide a multitasking 
environment. A Task Structure is defined to store each 
real-time parameter of the task. The task structures are 
stored into the memory of the system. The maximum 
number of tasks supported depends on the physical 
amount of memory assigned to task structures. 

In a multitasking system, a priority is assigned to each 
task in order to schedule the set of tasks which are ready 
to be executed. The priority of each task may be 
modified or remain fixed during runtime according to the 
scheduling policy implemented. 

Previous real-time processor approaches implemented 
a predefined scheduling policy over a reduced set of 
priorities ([28], [29], [30], [31], [32]). 

V.1. Task Structure 

The HRTSA does not execute a predefined scheduling 
policy but instead chooses to execute the highest priority 
task. The priority of each task is held in the 
Ready_Priority field of its respective task structure (Fig. 
5). In order to schedule tasks efficiently, the RTMU 
keeps an updated linked list of task structures sorted by 
task priority. 

The Highest Priority Task register (HPT) of the 
RTMU points to the highest priority task (smallest 
number). There is a field in each task structure, named 
Next_Task, which points to the immediate next priority 
task structure of the linked list. 

The scheduling policy depends on how the priority of 
each task is assigned. Task’s priorities may be changed 
by programming the Associated Action of either absolute 
or relative events, interrupts or exceptions. 

Therefore, any arbitrary scheduling policy may be 
implemented. 
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Fig. 5. Task Structure 
 
For example, if actions associated with task release 

events modify the priority of their respective tasks to 
OcF + D (priority is set to absolute deadline of the task), 
then an EDF policy is implemented. On the contrary, if 
actions do not modify task priority, then a Fixed Priority 
policy is implemented. 

In the example shown by Fig. 2, it would be sufficient 
to set the priority of the task equal to its absolute 
deadline each time that a release event takes place in 
order to implement an EDF scheduling policy. As 
priority may be a function of the system time, the range 
of the priority of each task should be long enough in 
order to avoid an overflow. 

Therefore, the length of task priority is the same 
number of bits as the STR register. 

Because many events may be defined and each action 
may modify the task’s priorities, a great many priority 
mechanisms may be implemented. In addition, as RTMU 
manages events and tasks, the execution of the tasks is 
not disturbed by scheduling. Scheduling overhead is 
almost neglected (just the task switching time) whatever 
the scheduling policy is. Additionally, a priority level 
may be assigned to each task when it is in executing state 
(setting the respective Execution_Priority field of the 
task structure). 

In this way, it is easy to implement, for example, a 
non-preempted scheduling mechanism. It is only 
necessary to assign a higher priority to the executing 
state than any other priority of the tasks in ready state. 

Each time that a task changes its status, an Associated 
Action takes place. Task structure stores the address of 
the program code of the action associated to each 
exception. Three states are supported: 
 Wait state: the task was not invoked. The task 

structure is not inserted in the linked-list. 
 Ready state: the task was invoked and requires 

executing. The task structure is inserted in the linked-
list according to its Ready Priority. 

 Execution state: the processor is granted to the task 
for execution. The task structure is removed from the 
linked list while the task is executing. 

In this way, an action may be associated when a task 
changes from either wait to ready, ready to wait, ready to 
execution, execution to wait or execution to ready. The 
RTMU executes the action associated with each 
exception in the same way that it executes actions 
associated with events. 

The STATUS_REGISTERS fields are reserved to 
save the PU’s internal registers, preserving the status of 
the tasks when the task is preempted in order to restore it 
when the task switches to execution state again. Some 
soft-processors allow custom instruction or co-processing 
options for accessing the internal registers directly. 

These alternatives, as well as modifying the source 
code, allow achieve a high switching performance since 
the saving and restoring operations of the PU’s registers 
are done through a Direct Memory Access (DMA). If 
there is not a direct access from the HRTSA to the 
internal register of the PU, then the task switching should 
be performed through executing storing and restoring 
procedures by the PU. 

VI. The Real-Time Manager Unit 
The RTMU manages events, tasks and executes the 

action code associated with each event and exception 
which takes places. To do this, the RTMU must: 
1. Update the STR and the respective RTR with a rate of 

one per time unit. 
2. Execute the real-time instructions included in the task 

code. When the PU decodes an operation code for the 
RTMU, such as modifying certain real-time 
parameters or a task exit code, then the RTMU takes 
control and executes it. 

3. Check if a certain event is taking place. The absolute 
time events and the relative time events are 
continuously monitored in order to establish whether 
the respective action code has to be executed. 

4. Check if the executing task is the highest priority one. 
On the contrary, a task switching is performed in 
order to choose the highest priority task for 
execution. 

5. Keep both the events and the tasks’ structures 
organised. Each time that either an event or a task 
structure is modified, the event list and the priority 
list are accordingly updated. 

6. Execute the action codes when a task changes its 
state. Each time that a task changes its state, the 
action code of the respective exception is executed 
according to the information stored in its task 
structure. 

All these functions are carried out at the same time 
that the PU executes the system tasks. The performance 
handling real-time information is high and predictable 
because of the way in which events and tasks are 
organised.  

Moreover, jitters and real-time performance of the 
processor are measured in periods of the system’s clock 
instead of timer’s ticks as is the case in real-time 
operating systems. Therefore, the performance is 
improved in several orders of magnitude. 

VII.   Memory Organization 
A certain amount of system memory must be assigned 

to hold the following real-time information: 
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 The event structures. 
 The task structures. 
 The action codes. 
 General-purpose data. 
 Stack for next associated action codes. 

The general-purpose data area may be accessed 
directly by the instructions that the RTMU executes. 
Important run-time information of the action codes may 
be stored in this area. 

The stack for next action codes stores the addresses of 
the associated action codes that the RTMU has to execute 
when the current action code is completed. Execution of 
action codes is non-preempted. As an action code may 
call further actions codes, then the respective addresses 
must be saved in order to execute them later. 

The maximum number of events and tasks as well as 
the amount of memory for data, code and stack depends 
on the physical amount of memory assigned to each one 
of them. To do this, real-time memory access is 
segmented. 

Five internal segment registers of the RTMU point to 
the beginning of each area. Therefore, the amount of 
physical memory assigned to each area of memory is 
configured according to the value of the respective 
segment registers. 

VII.1.   Real-Time Configuration 

The RTMU should be configured in order to produce 
the real-time behaviour that the application requires. The 
configuration is carried out by the execution of special 
real-time instructions. The set of real-time instructions 
expands the original instruction set of the PU. When the 
RTMU is configured, it is rarely necessary to execute 
additional real-time instructions. However, real-time 
tasks can execute real-time instructions during runtime. 

 
TABLE II  

RTMU’S REGISTERS 
Register Description Width [bits] 

A General Purpose Register 64 
B General Purpose Register 64 

CET Current Executing Task 16 
CPri Current Priority 64 
CSR Code Segment Register 16 
DSR Data Segment Register 16 
ESR Event Segment Register 16 
ETP Event to Process 16 
Flags Flag Register 8 
HPT Highest Priority Task 16 
NAE Next Absolute Event 16 

NAOT Next Absolute Occurrence 
Time 

64 

NRE Next Relative Event 16 
NROT Next Relative Occurrence 

Time 
64 

PC Program Counter 16 
PriHPT Priority Highest Priority Task 64 

RTR Relative Time Register 48 
SP Stack Pointer 16 

SSR Stack Segment Register 16 
STR System Time Register 64 
TSR Task Segment Register 16 

 

TABLE III 
HRTSA INSTRUCTIONS 

Instruction Description 
add reg_d, reg_s Adds the source register to the destination register, 

leaving the result in the destination register. 
add reg_d, 
field_d, reg_s, 
field_s 

Adds the specified field of the event pointed by 
the source register into the field pointed by 
destination register. 

chstatus task reg, 
status 

Changes the status of the pointed task by register 
to status. 

chstatus task task, 
status 

Changes the status of the task task to status. 

cmp reg_d, 
field_d, reg_s, 
field_s 

Compares the specified field of the event pointed 
by the source register into the field pointed by 
destination register. 

dec reg_d Decrements the destination register. 
dec reg_d, field_d Decrements the field pointed by the destination 

register. 
disable event 
event 

Disables the event event. When an event is 
disabled, it will not take place. 

disable event reg Disables the event pointed by register. When an 
event is disabled, it will not take place. 

enable event event Enables the event event and consequently it will 
take place according to its configuration. 

enable event reg Enables the event pointed by register and 
consequently it will take place according to its 
configuration. 

end Finishes the execution of code in the Real-Time 
Manager Unit. 

exit Finishes the execution of the current executing 
task. 

inc reg_d Increments the destination register. 
inc reg_d, field_d Increments the field pointed by the destination 

register 
init event event Configures the structure of event to be considered 

by the Real-Time Manager Unit. 
init task task Configures the structure of task to be considered 

by the Real-Time Manager Unit. 
jc address Jumps if carry. 
je address Jumps to address address if zero flag is set. 
jg address Jumps if it is greater. 
jl address Jumps if it is less. 
jmp address Jumps unconditionally to address. 
jnc address Jumps if not carry. 
jne address Jumps if no zero. 
load upu_pc, a Sets the PC of task with the register A of the Real-

Time Manager Unit. 
mov event event, 
field, value 

Copies the value in the specified event_field of the 
event structure. 

mov event reg, 
field, reg 

Copies the source register in the specified field of 
the event pointed by the source register. 

mov reg, event 
reg, field 

Copies the specified field of the event pointed by 
the source register into the destination register. 

mov reg, reg Copies the value in the source register to the 
destination register. 

mov reg, task reg, 
field 

Copies the specified field of the task pointed by 
the source register into the destination register. 

mov reg, value Copies the value value to the destination register. 
mov reg_d, 
field_d, reg_s, 
field_s 

Copies the specified field of the event pointed by 
the source register into the field pointed by 
destination register. 

mov task  task, 
field, value 

Copies the value in the specified field of the task 
structure. 

mov task reg, 
field, reg 

Copies the source register in the specified field of 
the task pointed by the source register. 

not reg Performs the not bit-wise of register. 
sub reg_d, reg_s Subtracts the source register from the destination 

register, leaving the result in the destination 
register. 

sub reg_d, field_d, 
reg_s, field_s 

Subtracts the specified field of the event pointed 
by the source register from the field pointed by the 
destination register. 

Once the RTMU is configured, it carries out all of the 
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real-time functions at the same time that the PU executes 
the code of the real-time tasks. 

The RTMU is a processing unit with the set of internal 
registers. The instructions executed by the RTMU are 
reported in Table III. 

VIII.    Example: Programming                          
a Real-Time Application 

Real-Time instructions should be executed to 
configure the real-time behaviour of the system. This 
configuration is very flexible and does not depend on the 
code of the real-time task. For instance, an EDF policy 
can be reduced to the correct configuration of the 
associated actions of the real-time events.  

As an example, the configuration of the RTMU, in 
order to execute the real-time system in Table I, under an 
EDF policy, is described in the following sections. 

VIII.1.    Initialisation (Included at the Beginning               
of the Code Executed by the PU) 

The initialisation of the Event Structure of EVENT1 
should be included at the beginning of the code executed 
by the PU and could take the following form: 

; Creates event 1 Structure. 
INIT EVENT 1 
; Set First Occurrence Time 
MOV EVENT 1, OCCURRENCE TIME, 600000 
; Store Period of Task 1. 
MOV EVENT 1, DATA1, 600000 
; Store Task 1 as task associated to event 1. 
MOV EVENT 1, DATA2, 1 
; Set the address of the associated action. 
MOV EVENT 1, CODE ADDRESS, 

RELEASE_START 
; Enable event 1. 
ENABLE EVENT 1 
This code initialises Event 1, configures the variable 

DATA1 with the period of the task (600 ms), configures 
the variable DATA2 with the task associated with the 
event (Task 1) and configures the Associated Action at 
address RELEASE_START. Finally, the initialisation 
code enables Event 1 (the event structure of event 1 is 
inserted in the linked list of absolute events). The 
initialisation of event 2 is similar. 

The initialisation of the Task Structure of Task 1 
could take the following form: 

 
; Creates Event 1 Structure. 
INIT TASK 1 
;Sets the beginning of Task 1’s code. 
MOV TASK 1, Task_Program_Code_Address, 

Start_Addr_Task1 
; No action when task is aborted. 
MOV TASK 1, Task_Code_Address_Aborted, 

NO_CODE 
; No action when task’s  
; status changes to Execution. 

MOV TASK 1, Task_Code_Address_Execution, 
NO_CODE 

; No action when task is pre-empted. 
MOV TASK 1, Task_Code_Address_Desallocated, 

NO_CODE 
; No action when task’s status changes to Ready 
MOV TASK 1, Task_Code_Address_Ready, 

NO_CODE 
; No action when task finishes. 
MOV TASK 1, Task_Code_Address_Finished, 

NO_CODE 
; Set task’s priority to 60000  
; when task is in execution state. 
MOV TASK 1, Task_Ready_Priority, 60000 
; Store the deadline of the task (600ms). 
MOV TASK 1, DATA2, 60000 
 
The initialisation of the task structure configures the 

associated actions for each event that the task produces.  
These events are: Aborted, Execution, Desallocated, 

Ready and Finished. In this example, only the Ready 
event is configured. Initialisation of Task 2 is similar. 

VIII.2.    Associated Actions 

The real-time policy is performed executing the 
associated action of the different events during runtime.  

The associated actions may be programmed taking 
into account the ETP register of the RTMU. The ETP 
register holds the index of the event which has taken 
place. In this way, the associated action can be 
parameterised using this register. 

Each time that Event 1 or Event 2 takes place (the 
occurrence time is reached) the event is configured (the 
occurrence time is set to the current occurrence time plus 
the period of the task). The status of the task is changed 
to Ready and consequently is inserted into the linked list 
of ready tasks. The Ready Priority of the task is set equal 
to the absolute deadline of the task to implement an EDF 
policy among the task of the system. The Execution 
Priority of the task is set equal to the Ready Priority to 
implement a preemptable scheduling policy. Otherwise, 
if a non-preemptable policy is desired, then the 
Execution Priority might be set equal to zero. 

Therefore, the associated action with Events 1 and 2 
could be as follows: 

 
RELEASE_START: 
; The occurrence time is added to the period 
; of the task stored in the variable DATA1 
; and the event is enabled. 
ADD ETP, OCCURRENCE_TIME, ETP, DATA1 
INSERT ETP IN ABSOLUTE LIST 
; The ETP register is loaded with the 
; task associated with event (stored  
; in variable DATA2.) 
MOV A, EVENT ETP, DATA2 
MOV ETP, A 
; Register B of the RTMU is added to  
; the deadline of the task (stored 
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; in variable DATA1 of the task structure). 
MOV B, TASK ETP, DATA1 
ADD A, B 
; The Ready Priority is set equal to the 
; absolute deadline to perform an EDF policy 
; as well as the Execution Priority 
; to make it preemptive. 
MOV TASK ETP,TASK_READY_PRIORITY, A 
; The status of the task is changed to ready 
MOV TASK ETP, TASK_EXECUTION_PRIORITY, 

A 
CHSTATUS TASK ETP, ready 
; The associated action is ended 
END 

IX. Performance Evaluation 
The HRTSA was described in VHDL, synthesised 

using Quartus II v11.0 and implemented in a Cyclone III 
FPGA device from Altera. The architecture required 
approximately 3500 LEs. The system includes a 16Mb 
Mobile SDRAM memory to store the tasks’ codes and 
the real-time information. 

A set of 560 real-time systems was randomly 
generated in order to evaluate the performance of the 
HRTSA. Each real-time system contains 10 real-time 
tasks. The period of each task (T) was randomly 
generated between 800μs and 8000μs, whilst deadlines 
(D) were set equal to the periods and the worst case 
execution times (C) were generated to produce a total 
utilisation factor equal to 0.7, considering a system clock 
frequency equal to 10MHz. While the period and 
deadline depends on the specification of the real-time 
application, the execution time of a task is a function of 
the time required to execute such a task. Therefore, when 
the system clock frequency is increased, the total 
utilisation factor decreases. 

For comparison purposes, a real-time scheduler was 
implemented to execute each one of the real-time 
systems generated. It was implemented as a timer routine 
(TR), as it is in a RTOS, and it does not execute any real-
time instruction of the RTMU. When a real-time system 
based on TR is considered, the interval in which the 
scheduler must be invoked to execute the scheduling 
policy should be defined. Different invocation intervals 
were implemented to analyse its influence on the 
execution of the real-time system. 

The invocation interval of the scheduler was set to 
130μs, 150μs and 175μs. When a RTOS is utilised, a 
task’s period should be expressed in units of the 
invocation interval of the scheduler. 

Consequently, the periods of the tasks were rounded 
to the upper multiple of the invocation interval of the 
scheduler. This choice reduced the total utilisation factor 
of the systems implemented in RTOS but allowed a 
conservative comparison with the performance of the 
HRTSA. 

On the other hand, the HRTSA can achieve a 
precision of 100ns with a 10MHz clock and consequently 

the implementation of the real-time system based on a 
HRTSA is more accurate. 

The evaluation of both systems, TR and HRTSA, was 
performed by modifying the system clock frequencies to 
10, 20, 40, 50, 80 and 100MHz. The jitter was used as a 
measure to compare the performance of the system. The 
jitter is defined as the difference between the period of 
the task and the interval between the two consecutive 
starting times of the task during runtime. 

As the execution pattern of the tasks is not fixed, the 
starting time of the tasks is not periodic. The maximum 
jitter of each task was stored and the average among the 
560 systems for task 1, 2, 6 and 10 are shown in Figs. 6. 

The HRTSA-based processor can schedule the 
systems with a 10MHz clock frequency whilst the TR-
based systems needed at least a 50MHz clock frequency 
to schedule them. 

X. Result Analysis 
From the results, the overhead of the system produced 

by the scheduler is reduced with a HRTSA-based 
implementation and the system is schedulable at lower 
clock frequencies with the following advantages: 
 The power consumption of the system may be 

reduced. The power dissipation of a digital circuit is 
proportional to the clock frequency of the system. 
Because the system can be scheduled at a lower clock 
frequency, the voltage and consequently the power 
consumption of the system may be dramatically 
reduced [33]. Moreover, the HRTSA avoids the 
overhead introduced by the RTOS and as a result the 
power consumption is also reduced. 

 The cost of the technology required may be reduced. 
When lower clock frequencies are applied, lower-cost 
technologies can be used in processor 
implementation, debugging and interfacing. Hence, a 
more sophisticated device should be needed if a 
system based on RTOS is implemented. 

 The electromagnetic interference is reduced when 
lower clock frequencies are applied and consequently 
systems can easily meet electromagnetic standards. 

 The accuracy of the implementation of the real-time 
system is improved. With a 10MHz clock, the real-
time parameters can be expressed with a precision of 
100ns. When a RTOS is utilised, the real-time 
parameters should be modified to be a multiple of the 
invocation interval of the scheduler. 

On the other hand, from the application point of view, 
the performance is improved when a HRTSA is utilised 
because the maximum jitter of the tasks is reduced. This 
feature may be very important when the real-time system 
is applied to control or digital signal processing 
applications ([34], [35], [36]). 

In a real-time system based on an RTOS, the interval 
time of the scheduler invocation may have a greater 
influence on the control performance than the clock 
frequency.  
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0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

0 10 20 30 40 50 60 70 80 90 100 
Frequency [MHz] 

jitter [us] 
HRTSA TR 175us  
TR 150us  TR 130us  

 
(d) Maximum Jitter Task 10 

 
Figs. 6. Maximum jitter of real-time tasks 

 
Increasing the clock frequency in an RTOS-based 

system may not proportionally decrease the jitter 
introduced. There may not be an optimal interval time of 
scheduler invocation for all tasks: whilst 175µs is 
optimal for task 1, a slot time of 150µs is optimal for 
tasks 2, 6 and 10. On the other hand, we can observe that 

the jitter in an HRTSA-based processor is just 
proportional to the clock frequency. 

XI. Conclusion 
Embedded and industrial applications require digital 

processing architectures in order to meet real-time 
constraints. Real-time theory offers diverse scheduling 
mechanisms with varied real-time features, each of 
which is suitable for different applications. Most of these 
mechanisms consider a scheduler as part of the RTOS.  

However, when the scheduling mechanisms are 
complex, the chances of an efficient implementation in 
an embedded system are reduced. Consequently, most 
RTOSs implement a Fixed Priority policy or a Cyclic 
Executive that offers a deterministic performance with a 
low overhead cost. RTOSs with different scheduling 
policies are restricted to systems whose capacity enables 
the implementation of more complex scheduling 
mechanisms. Several papers have proposed the 
implementation of scheduler functions in hardware in 
order to improve the real-time efficiency of the system. 
Most of these papers are based on transferring the 
scheduling functions of the RTOS to hardware. However, 
while the runtime efficiency increases ([16]), the real-
time restrictions originating from the software version 
implemented in RTOSs remain in hardware. Usually, 
hardware schedulers migrated from RTOS implement a 
certain scheduling policy which cannot be easily 
modified. On the other hand, real-time processors with 
scheduling features in hardware are based on the 
possibility of executing a reduced set of real-time tasks 
under a predefined scheduling policy chosen by the 
designer of the processor. 

Modern Field Programmable Gate Arrays (FPGAs) 
offer the possibility to implement Systems-on-
Programmable-Chip based on soft-processors. 

The architecture of these processors may be modified 
to add new features in order to make it more suitable for 
the target application. Some of these features may 
include custom instructions and inter-processor 
interfaces, useful for Hardware/Software Co-design 
methods. In this paper, the Hardware Real-Time 
Scheduling Architecture designed to incorporate real-
time properties with soft-processors is described. The 
HRTSA can be configured to implement any scheduling 
policy and support a large number of real-time tasks. 

The HRTSA is described including the events and task 
structures to configure the real-time features of the 
application. A simple example is sketched to show the 
easiness with which an EDF scheduler can be 
implemented. Experience shows that the efficiency of the 
HRTSA allows for scheduling of the real-time system at 
a very low frequency. While the HRTSA-based processor 
schedules a real-time application with a 10MHz clock, a 
system scheduled with a timer routine needed at least a 
50MHz clock. The HRTSA is easily adaptable to soft-
processors in order to improve the real-time performance 
of the system implementing the more adequate real-time 
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methodology. 

Acknowledgements 
This work was supported in part by the Program 2012 

UAM-Santander Bank University Cooperation Projects 
with Latin America. Additional funds have been obtained 
from Convenio Marco UNS-UAM 2010-2015. 

References 
[1] IEEE1003.1d-1999, IEEE Standard for Information Technology-

Portable Operating System Interface (POSIX)-Part 1: System 
Application Program Interface (API)- Amendment D: Additional 
Real time Extensions [C Language], 1999.  

[2] John A.  Stankovic and Krithi Ramamrithan, "The Spring 
Kernel: a new paradigm for real-time systems," IEEE Software, 
Vol.3, No. 3, pp.62-72, 1991. 

[3] Dan Hildebrand, "An Architectural Overview of QNX", 
Proceeding of the Workshop on Micro-Kernels & Other Kernel 
Architectures, pp. 113-126, Seattle, 1992. 

[4] Jean J. Labrosse, “MicroC/OS-II: The Real Time Kernel”, 
CMPBooks, 2002.  

[5] Jean J. Labrosse, “uC/OS-III, The Real-Time Kernel”, Micrium, 
2009. 

[6] Arnaldo Oliveira, Luís Almeida, and António de Brito Ferrari, 
"The ARPA-MT Embedded SMT Processor and its RTOS 
Hardware Accelerator," IEEE Transactions on Industrial 
Electronics, vol. 58, No. 3, pp. 890-904, March 2011, 2011. 

[7] Hamdaoui, F., Ladgham, A., Sakly, A., Mtibaa, A., Real time 
implementation of medical images segmentation using Xilinx 
System Generator, (2012) International Review on Computers 
and Software (IRECOS), 7 (6), pp. 2861-2867. 

[8] Jason Agron, Wesley Peck, Erik Anderson, David Andrews, Ed 
Komp, Ron Sass, Fabrice Baijot, and Jim Stevens, "Run-Time 
Services for Hybrid CPU/FPGA Systems on Chip," Proceeding 
of the 27th IEEE International Real-Time Systems Symposium, 
pp. 3-12, Dec. 2006. 

[9] Li Yan, Li Xian-yao, Gu Ping-ping, Zhao Hong-jie, and Cheng 
Ping, "Hardware Implementation of uC/OS-II based on FPGA,", 
Proceeding of the 2nd International Workshop on Education 
Technology and Computer Science (ETCS), pp. 825-828, March 
2010. 

[10] Elhamzi, W., Saidani, T., Said, Y., Atri, M., FPGA based Real 
Time wavelet Video coding, (2013) International Review on 
Computers and Software (IRECOS), 8 (1), pp. 243-249. 

[11] Melissa Vetromille, Luciano Ost, César Marcon, Carlos Reif, 
and Fabiano Hessel, "RTOS Scheduler Implementation in 
Hardware and Software for Real Time Applications", 
Proceedings of the 17th IEEE International Workshop on Rapid 
System Prototyping, pp. 163-168, June 2006. 

[12] Pramote Kuacharoen, Mohamed Shalan, and Vincent Mooney 
III, "A Configurable Hardware Scheduler for Real-Time 
Systems", Proceedings of the International Conference on 
Engineering of Reconfigurable Systems and Algorithms, pp. 96-
101, 2003. 

[13] Ondrej Krejcar, Petr Tucnik, Ondrej Adamec, “Evaluation of 
aJile aJ-80 Real-Time embedded platform for RT-Java 
parameters”, Measurement, Elsevier, Vol. 44, Issue 7, pp. 1253-
1260, August 2011. 

[14] Tiago Muck, Antonio Frohlich, Michael Gernoth, Wolfgang 
Friedrich, “Implementing OS components in hardware using 
AOP”, ACM SIGOPS Operating Systems Review, Vol. 46, Issue 
1, pp.:64-72, Jan. 2012. 

[15] Rajeswari, P., Nagarajan, N., Real time network traffic 
monitoring using FPGA, (2013) International Review on 
Computers and Software (IRECOS), 8 (7), pp. 1658-1662. 

[16] Jaehwan Lee, Vincent John Mooney III, Anders Daleby, Karl 
Ingström, Tommy Klevin and Lennart Lindh, "A Comparison of 
the RTU Hardware RTOS with a Hardware/Software RTOS", 

Proceedings of the Asia and South Pacific Design Automation 
Conference (ASP-DAC 2003), pp. 683-688, Jan. 2003. 

[17] Octavian Cheng, Waleed. Abdulla and Zoran Salcic, "Hardware-
Software Codesign of Automatic Speech Recognition System for 
Embedded Real-Time Applications," IEEE Trans. on Industrial 
Electronics, Vol. 58, No.3, pp. 850-859, March 2011. 

[18] Alfredo Rosado-Muñoz, Manuel Bataller-Mompeán, Emilio 
Soria-Olivas, Claudio Scarante and Juan F. Guerrero-Martínez, 
"FPGA Implementation of an Adaptive Filter Robust to 
Impulsive Noise: Two Approaches", IEEE Trans. on Industrial 
Electronics, vol. 58, No. 3, pp. 860-870, March 2011. 

[19] Joshua Weber, Erdal Oruklu and Jafar Snaiie, "FPGA-based 
Configurable Frequency-Diverse Ultrasonic Target-Detection 
System", IEEE Trans. on Industrial Electronics, vol. 58, No. 3, 
pp. 871-879, March 2011. 

[20] M.A. Aguirre, J.N. Tombs, V. Baena-Lecuyer, J.L. Mora, J.M. 
Carrasco, A. Torralba, L.G. Franquelo, “Microprocessor and 
FPGA interfaces for in-system co-debugging in field 
programmable hybrid systems”, Microprocessors and 
Microsystems, Elsevier, Vol. 29, Issue 2, pp. 75-85, April 2005. 

[21] Mahmoud Hamouda, Handy Fortin Blanchette, Kamal Al-
Haddad and Farhat Fnaiech, "An Efficient DSP-FPGA-Based 
Real-Time Implementation Method of SVM Algorithms for an 
Indirect Matrix Converter", IEEE Trans. on Industrial 
Electronics, vol. 58, No. 11, pp. 5024-5031, Nov. 2011. 

[22] Nagarajan, V., Waran R., Srinivasan, V., Kannan, R., 
Thinakaran, P., Hariharan, R., Vasudevan, B., Nachiappan, N.C., 
Saravanan, K.P., Sridharan, A., Sankaran, V.,  Adhinarayanan, 
V., Vignesh, V.S., Mukundrajan, R., “Compilation Accelerator 
on Silicon”, Proceedings IEEE Computer Society Annual 
Symposium on VLSI, pp.:267-272, Aug. 2012. 

[23] Chang. L. Liu and James W. Layland, "Scheduling Algorithms 
for Multiprogramming in a Hard Real-Time Environment", 
Journal of the ACM (JACM), vol. 20, No. 1, pp. 46-61, Jan. 
1973. 

[24] Houssine Chetto and Maryline Chetto, "Some Results of the 
Earliest Deadline Scheduling Algorithm", IEEE Transactions on 
Software Engineering, Vol. 15, No. 10, pp. 1261-1269, Oct. 
1989. 

[25] J. Urriza, L. Schorb, J. Orozco, R. Cayssials, “Reduced 
Computational cost in the Calculation of Worst Case Response 
Time for Real-Time Systems”, Journal of Computer Science & 
Technology, Vol. 9, Octuber 2009. 

[26] Joseph Y. Leung and Jennifer Whitehead, "On the complexity of 
fixed-priority scheduling of periodic, real-time tasks", 
Performance Evalaluation, Elsevier, Vol. 2, No. 4, pp. 237-250, 
Dec. 1982. 

[27] Richard J Vaccaro, “Digital Control: A State-Space Approach”, 
McGraw-Hill College, 1995. 

[28] Matjaz Colnaric and Wolfgang A. Halang, "Architectural 
support for predictability in hard real time systems", Control 
Engineering Practice, Elsevier, Vol. 1, No. 1, pp. 51-57, Feb. 
1993. 

[29] Vlado Glaviníc, Stjepan Gros, and Matjaz Colnaric, "VHDL-
based modeling of a hard real-time task processor", Proceeding 
of the IEEE International Symposium on Industrial Electronics 
(ISIE’99), Vol. 1, pp.49-54, Jul. 1999. 

[30] Matjaz Colnaric, Domen Verber and Wolfgang A. Halang, 
"Supporting High Integrity and Behavioural Predictability of 
Hard Real-Time Systems," Informatica (Slovenia), Special Issue 
on Parallel and Distributed Real-Time Systems, Vol. 19, No.1, 
pp. 59-69, February 1995. 

[31] Joakim Adomat, Johan Furunäs, Lennart Lindh, and Johan 
Stärner, "RealTime Kernel in Hardware RTU: A Step Towards 
Deterministic and High-Performance Real-Time Systems", 
Proceedings of the in 8th Euromicro Workshop on Real Time 
Systems, pp. 164-168, June 1996. 

[32] Steven Miller, David Greve, Matthew Wilding and Mandayan 
Srivas, "Formal Verification of the AAMP-FV microcode", 
NASA Langley Technical Report, MD21076-1320, 1999. 

[33] Clive Watts and Ravi Ambatipudi, "Dynamic Energy 
Management in Embedded Systems", Computing and Control 
Engineering, IEE, Vol. 14, No. 5, pp.36-40, Oct. 2003. 



 
R. Cayssials, E. Ferro, J. Urriza, E. Boemo 

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved                                   International Review on Computers and Software, Vol. 8, N. 8 

1853 

[34] Manuel Lluesma, Anton Cervin, Patricia Balbastre, Ismael 
Ripoll and Alfons Crespo, “Jitter Evaluation of Real-Time 
Control Systems”, Proceedings of the 12th IEEE International 
Conference on Embedded and Real-Time Computing Systems 
and Applications, pp. 257-260, Sep. 2006. 

[35] Daniele Fontanelli, Luigi Palopoli and Luca Greco, 
“Deterministic and Stochastic QoS Provision for Real-Time 
Control Systems”, Proceedings of the 17th IEEE Real-Time and 
Embedded Technology and Applications Symposium, pp. 103-
112, April 2011. 

[36] Frederick M. Proctor and William P. Shackleford, “Real-time 
Operating System Timing Jitter and its Impact on Motor 
Control”, Proceedings of the SPIE Sensors and Controls for 
Intelligent Manufacturing II, Volume 4563, pp. 10-16, October 
28, 2001. 

Authors’ information 
1Universidad Nacional del Sur -DIEC / Av. Alem 1253 – Bahía Blanca 
– Argentina. 
 

2Universidad Tecnológica Nacional – FRBB / 11 de Abril 464 – Bahía 
Blanca – Argentina. 
 

3CONICET / Av. Alem 1253 – Bahía Blanca – Argentina. 
 

4Universidad Nacional de la Patagonia San Juan Bosco / Brown 3025 – 
Puerto Madryn – Argentina. 
 

5Universidad Autónoma de Madrid – Madrid- España. 

 
Ricardo Cayssials received the Engineer degree 
in electronics in 1993 and the PhD degree in 
engineering in 1999 from the National Southern 
University, Bahía Blanca, Argentina. Since 
1994, he has been with the National Southern 
University, where he is currently Adjunct 
Professor and Researcher at CONICET. He also 
is professor at the National Technological 

University in Bahia Blanca (UTN-FRBB).  In 2001 and 2003 he 
granted two postdoctoral stays at the University of York, York, 
England. His research interests include real-time system, 
programmable logic devices and system on programmable chip. He is 
senior member of IEEE. 

Edgardo Ferro received the Engineer degree in 
electronics in 1990 and the PhD degree in 
engineering in 1999 from the National Southern 
University, Bahía Blanca, Argentina. 
Since 1990, he has been with the National 
Southern University, where he is currently 
Adjunct Professor. His current research interests 
include real-time system, Industrial Automation, 

fieldbus communications and system on programmable chip. 
 

José Urriza is an Adjunct Professor at the 
Universidad Nacional de la Patagonia San Juan 
Bosco in Puerto Madryn, Argentina. He 
received the Engineer degree in electronics in 
1998 and the PhD degree in engineering in 2007 
from the National Southern University, Bahía 
Blanca, Argentina. His research interests include 
schedulability of real-time systems and dynamic 

voltage scheduling. 
 

Eduardo Boemo is a titular professor of ASIC 
design at the School of Computer Engineering 
of the Universidad Autónoma de Madrid. His 
current research interests include the design of 
FPGA-based systems, low-power techniques, 
computer arithmetic, self-timed circuits and 
electrical engineering education. He received the 
electrical engineering degree from the 

Universidad Nacional del Mar del Plata (Argentina) and the PhD 
degree in telecommunications engineering from the Universidad 
Politécnica de Madrid (Spain) in 1985 and 1998, respectively. 
 


	Main menu
	Contents 
	Security and Peer Management of Query Routing Technique for P2P Networks 
	Queuing Aware Earliest Deadline First Scheduling for Cognitive Radio Network 
	Adaptive Cluster-Based Location Monitoring Technique for Query Processing in Mobile Computing Environment 
	Performance Evaluation of Feature Selection Method for Sentiment Classification of Online Reviews Using Machine Learning Techniques 
	Virtualization Techniques for Mobile Devices 
	Impact of Mobility and Density on a Cross-Layer Architecture for Wireless Sensor Networks 
	Hybrid Method for Automatic Ontology Building from Relational Database 
	Auto-Reflexive Software Architecture with Layer of Knowledge Based on UML Models 
	Automatic Tracking of Changes in User Behavior to Support Proactivity in Pervasive Systems 
	Conceptual Software Testing: a New Approach 
	Real-Time Scheduling Architecture for Embedded Systems 
	Preterm Birth Prediction Using Cuckoo Search-Based Fuzzy Min-Max Neural Network 
	Rotation and Scale Invariant Texture Classification Using Wavelet Transform and LBP Operator 
	An Efficient Image Reconstruction Technique with Aid of PSO (Particle Swarm Optimization) and DWT (Discrete Wavelet Transform) 
	An Efficient 2DWT-A Architecture Using Distributive Arithmetic Algorithm 
	Score-Level Fusion Technique for Multi-Modal Biometric Recognition Using ABC-Based Neural Network 
	Human Authentication through Emotional States Based on Keystroke Dynamics with the Aid of Particle Swarm Optimization 
	Steganalysis Using a Composite Set of Transform Domain Features and Ensemble Classifier 
	An Efficient Intrusion Detection System Based on GA to Recognize Attacks in User Privileges 
	Maximum Tsallis Entropy Thresholding for Image Segmentation Using a Refined Artificial Bee Colony Optimization 
	A Technique to Tumor Detection from Brain MRI Images Using FCM and Neuro-Fuzzy Classifier 
	A Method for Prognosis of Primary Open-Angle Glaucoma 
	Brain Tumor Segmentation in MRI Images Based on Image Registration and Improved Fuzzy C-Means (IFCM) Method
	A Proportional Fair Quality of Service Allocation Scheme for Telemedicine Applications 
	A Robust Brain Image Segmentation Approach Using ABC with FPCM 
	Elliptic Curve Cryptography (ECC) Based Four State Quantum Secret Sharing (QSS) Protocol 
	Novel Secure Code Encryption Techniques Using Crypto Based Indexed Table for Highly Secured Software 
	An Improved Image Denoising Approach Using Optimized Variance-Stabilizing Transformations 

 
	A 3D Gluing Defect Inspection System Using Shape-Based Matching Application from Two Cameras 
	Factors Effecting Migration Traditional Projects to Enterprise Resource Planning System (ERP) 
	A New Enterprise Integration-Based Framework for Enterprise Physical Mashup 

	---------------

	Text3: Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved


