
International Review on
Computers and Software

(IRECOS)

Contents

Security and Peer Management of Query Routing Technique for P2P Networks
by U. V. Arivazhagu, S. Srinivasan

 1744

Queuing Aware Earliest Deadline First Scheduling for Cognitive Radio Network
by S. K. Syed Yusof, D. S. Shu’aibu, H. Hosseini, B. O. Sheikh Ahmed

 1751

Adaptive Cluster-Based Location Monitoring Technique for Query Processing
in Mobile Computing Environment
by G. Kalaimani, B. G. Geetha

 1760

Performance Evaluation of Feature Selection Method for Sentiment Classification
of Online Reviews Using Machine Learning Techniques
by P. Kalaivani, K. L. Shunmuganathan

 1769

Virtualization Techniques for Mobile Devices
by David Jaramillo, Borko Furht, Ankur Agarwal

 1776

Impact of Mobility and Density on a Cross-Layer Architecture for Wireless Sensor Networks
by Ahmed Loutfi, Mohammed El Koutbi

 1793

Hybrid Method for Automatic Ontology Building from Relational Database
by M. R. Chbihi Louhdi, H. Behja, S. Ouatik El Alaoui

 1801

Auto-Reflexive Software Architecture with Layer of Knowledge Based on UML Models
by Zdeněk Havlice

 1814

Automatic Tracking of Changes in User Behavior to Support Proactivity in Pervasive Systems
by N. Gouttaya, A. Begdouri

 1822

Conceptual Software Testing: a New Approach
by Sabah Al-Fedaghi

 1832

Real-Time Scheduling Architecture for Embedded Systems
by Ricardo Cayssials, Edgardo Ferro, José M. Urriza, Eduardo Boemo

 1843

Preterm Birth Prediction Using Cuckoo Search-Based Fuzzy Min-Max Neural Network
by Jyothi Thomas, G. Kulanthaivel

 1854

Rotation and Scale Invariant Texture Classification Using Wavelet Transform and LBP Operator
by Naouel Boughattas, Hela Mahersia, Kamel Hamrouni

 1863

An Efficient Image Reconstruction Technique with Aid of PSO (Particle Swarm Optimization)
and DWT (Discrete Wavelet Transform)
by B. Deevena Raju, P. Pandarinath, G. S. Prasad

 1871

An Efficient 2DWT-A Architecture Using Distributive Arithmetic Algorithm
by C. Thirumarai Selvi, R. Sudhakar

 1878

(continued)

.

Score-Level Fusion Technique for Multi-Modal Biometric Recognition
Using ABC-Based Neural Network
by J. Aravinth, S. Valarmathy

 1889

Human Authentication through Emotional States Based on Keystroke Dynamics
with the Aid of Particle Swarm Optimization
by K. Senathipathi, Krishnan Batri

 1901

Steganalysis Using a Composite Set of Transform Domain Features and Ensemble Classifier
by S. Arivazhagan, W. Sylvia Lilly Jebarani, S. V. Uma Saranya

 1909

An Efficient Intrusion Detection System Based on GA to Recognize Attacks in User Privileges
by P. Nirmaladevi, A. Tamilarasi

 1917

Maximum Tsallis Entropy Thresholding for Image Segmentation
Using a Refined Artificial Bee Colony Optimization
by L. Jubair Ahmed, A. Ebenezer Jeyakumar

 1923

A Technique to Tumor Detection from Brain MRI Images Using FCM and Neuro-Fuzzy Classifier
by G. Thamarai Selvi, K. Duraiswamy

 1931

A Method for Prognosis of Primary Open-Angle Glaucoma
by E. V. Vysotskaya, A. N. Strashnenko, Y. A. Demin, I. V. Prasol, C. A. Sinenko

 1943

Brain Tumor Segmentation in MRI Images Based on Image Registration
and Improved Fuzzy C-Means (IFCM) Method
by A. R. Kavitha, C. Chellamuthu

 1950

A Proportional Fair Quality of Service Allocation Scheme for Telemedicine Applications
by Sabato Manfredi

 1955

A Robust Brain Image Segmentation Approach Using ABC with FPCM
by B. Thiagarajan, R. Bremananth

 1961

Elliptic Curve Cryptography (ECC) Based Four State Quantum Secret Sharing (QSS) Protocol
by G. Aloy Anuja Mary, C. Chellappan

 1970

Novel Secure Code Encryption Techniques Using Crypto Based Indexed Table
for Highly Secured Software
by N. Sasirekha, M. Hemalatha

 1980

An Improved Image Denoising Approach Using Optimized Variance-Stabilizing Transformations
by K. Sampath Kumar, C. Arun

 1991

A 3D Gluing Defect Inspection System Using Shape-Based Matching Application
from Two Cameras
by Marizan Sulaiman, Hairol Nizam Mohd Shah, Mohamad Haniff Harun, Lim Wee Teck,
Mohd Nor Fakhzan Mohd Kazim

 1997

Factors Effecting Migration Traditional Projects to Enterprise Resource Planning System (ERP)
by Basem Zughoul, Burairah Hussin

 2005

A New Enterprise Integration-Based Framework for Enterprise Physical Mashup
by M. Benhaddi, K. Baïna, E. Abdelwahed

 2013

International Review on Computers and Software (I.RE.CO.S.), Vol. 8, N. 8
ISSN 1828-6003 August 2013

Manuscript received and revised July 2013, accepted August 2013 Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved

1843

Real-Time Scheduling Architecture for Embedded Systems

Ricardo Cayssials1, 2, 3, Edgardo Ferro1, José M. Urriza4, Eduardo Boemo5

Abstract – Industrial applications require meeting real-time specifications. Real-time systems
are implemented using processors in order to execute real-time tasks. Temporal constraints must
be supported by real-time operating systems or designing the application based on specific
hardware resources. Previous approaches to real-time processors have implemented operating
system functions in hardware and consequently they are designed to manage tasks’ periods rather
than real-time. They cannot be used in a great deal of applications because they are based on
restrictive models. This paper proposes the Hardware Real-Time Scheduling Architecture
(HRTSA) that introduces an innovative methodology with which to efficiently manage time, events,
priorities and tasks in an embedded hardware implementation. The HRTSA is described and real-
time performance is evaluated. Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved.

Keywords: Real-Time Scheduling, FPGA, Soft-Processor, Microprocessor Design

I. Introduction
Real-time systems are usually built using either Real-

Time Operating Systems (RTOS) or designing the whole
system as a monolithic program based on specific
hardware resources. RTOSs allow designers to achieve a
higher abstraction level, higher portability and finally,
better verification and maintenance features of the
system. Several RTOSs were proposed and designed in
order to give real-time support to applications (e.g.
POSIX.1003 [1], Spring kernel [2], QNX [3], uC/OS II
[4], [5], among others).

The RTOS includes a special system task, known as
the scheduler, which shares the processor among the
tasks which require execution. The scheduler carries out
a scheduling policy to determine the next task to be
executed. The real-time behaviour of the system depends
on the scheduling policy implemented.

Each RTOS applies a scheduling policy and it is
difficult to change it in order to modify the real-time
characteristics of the application. The scheduler should
be executed periodically producing an overhead on the
system. Some applications may require stricter temporal
features or may not tolerate the runtime overhead
produced by the RTOS or the system memory
requirements. In these cases, a direct use of the hardware
resources is mandatory. Timers, counters and interrupts
must be directly programmed making easy maintenance
of the system difficult.

The improvement of the computational capacity has
allowed the utilisation of microprocessor-based systems
within a great deal of equipment and many embedded
real-world applications, such as telecommunications,
transportation, industrial automation, surveillance, and so
on. These classes of applications have real-time operation
constraints which must be fulfilled to avoid serious
human injuries or material damages [6].

Several papers have proposed the implementation of
scheduler functions in hardware in order to improve the
real-time efficiency of the system ([6], [7], [8], [9], [10],
[11], [12], [13], [14], [15]). Most of the ideas are based
on transferring the scheduling functions of the RTOS to
hardware. However, while the runtime efficiency
increases ([16]), the real-time restrictions originating
from the software version implemented in RTOSs remain
in the hardware. Hardware schedulers which have
migrated from RTOS usually implement a certain
scheduling policy over a reduced number of tasks which
cannot be easily modified.

Nowadays, Field Programmable Gate Arrays (FPGAs)
offer a high capacity to implement Systems-on-
Programmable-Chip (SOPC). The architecture of the
processors implemented in FPGAs, known as soft-
processors, may be modified in order to add new features
to the processor prior to its synthesis and
implementation. This may include new instructions,
often called custom instructions, and inter-processor
interfaces. These features make SOPCs and FPGA
devices suitable for industrial and embedded applications
([17], [18], [19], [20], [21], [22]) since they allow a high
flexibility for Hardware/Software Co-design.

In this paper, an architecture referred to as Hardware
Real-Time Scheduling Architecture (HRTSA), and which
is able to incorporate real-time scheduling properties into
a soft-processor, is proposed. The HRTSA was designed
from a real-time point of view and may support any real-
time scheduling mechanism over a set of up to 65,000
tasks.

The HRTSA is scalable and consequently the number
of tasks and events supported depends on the amount of
physical memory of the system. It is described in VHDL
and can be used to build SOPC over FPGA devices from
different vendors.

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1844

The architecture may be adapted to different soft-
processors (e.g. Altera NIOS II, Xilinx Microblaze, 8051
core). With the HRTSA, temporal parameters can be
defined independently of the functionality of each task.
Hence, a task’s code may not include real-time
programming which permits a higher abstraction level of
implementation and a better flexibility in design.

The paper is organised as follows: Section 2 describes
the typical model used in real-time theory. The HRTSA is
explained in Section 3. Section 4 describes how time and
events are supported by the HRTSA. The support for
tasks and priorities are explained in Section 5. Section 6
details the architecture of the Real-Time Manager Unit of
the HRTSA. An example of configuration of the HRTSA
is explained in Section 7. The performance of the
HRTSA is compared with a traditional scheduler in
Section 8. Finally, results are analysed in Section 9 whilst
conclusions are drawn in Section 10.

II. Real-Time Model
A real-time system is modelled as a set Π of n

periodic tasks to be executed on a processor. Each task i
performs a certain function and it is characterised by its
period or minimum time between invocations, Ti, its
deadline, Di, and its execution time, Ci. The utilisation
factor of each task i is defined as Ci/Ti and the total
utilisation factor of the system is the summation of the
utilisation factor of all tasks.

If each real-time task of the system always meets its
deadline, then it is said that the system is schedulable.
Real-time advance techniques compute the worst case of
response of any real-time task of the system in order to
analyse its schedulability ([23], [24], [25]).

Scheduler assigns the processor according to the
scheduling policy which it implements. Fixed Priority
(FP) and Earliest Deadline First (EDF) are two of the
most important scheduling policies in real-time ([23],
[26]). In an FP policy, each real-time task is assigned
with a priority in the design time and it remains fixed
during runtime. In an EDF policy, the priority of a task
increases as its deadline draws closer. The EDF policy is
optimal in the sense that if the system is not schedulable
under an EDF policy, then the system is not schedulable
under any other scheduling policy. However, the
complexity of the EDF policy may make it difficult to
achieve an efficient implementation, compared with a
Fixed Priority one, in an RTOS for embedded
applications.

The time that a task has to wait to be
executed/completed depends on the computation time
required by higher priority tasks that are ready to be
executed. Because the pattern of releases is not fixed, and
execution times of a task may vary from invocation to
invocation, which results in a variable interference and
therefore a variable response time of the task. These time
variations produce a jitter on both the starting and
completion times of task execution. Despite the fact that
the jitter is not usually taken as a real-time parameter, it

has been proven that it could produce undesirable effects
on control and signal processing applications ([27]). In
this paper, the jitter is used to compare the real-time
performance of the different scheduling mechanisms
evaluated. In the following section, the proposed
Hardware Real-Time Scheduling Architecture is
described. It is designed considering the real-time model
and consequently it supports the different scheduling
mechanism proposed in the real-time literature.

III. The Hardware Real-Time
Scheduling Architecture

The basis of the HRTSA relies on the control of the
real-time behaviour of the system without hindering the
execution of the system’s tasks. The architecture includes
two main processing units (Fig. 1): the Processing Unit
(PU) and the HRTSA unit.

The processing unit (PU) is a soft-processor core
which fetches the instructions of the tasks from the
memory and executes it accordingly. In this paper, the
Intel 8051 instruction set was chosen as a case study to
validate ideas. However, the HRTSA may be adapted to
others soft-processors (e.g NIOS II, MicroBlaze).

The instructions set of the Intel 8051 processor is
recognised in addition to a number of special real-time
instructions which are included to configure the real-time
behaviour of the system. On the other hand, the Real-
Time Manager Unit (RTMU) controls all of the system’s
real-time behaviour It may produce a task switching of
the PU, whilst at the same time managing each event
which takes place during runtime according to the
information stored in the Event as well as the Task’s
structures. This information may be modified by
executing special real-time instructions in the task code.
Each time that the PU recognises one of the real-time
instructions, the RTMU takes control and executes it.
One of these instructions is, for instance, the exit one,
which ends the execution of the task that the PU is
executing.

When the PU recognises an exit operation code, the
RTMU takes control and changes the status of the current
executing task to waiting state whilst also modifying the
internal registers of the PU in order to execute the next
task which is ready to be executed.

Fig. 1. The HRTSA-based processor architecture

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1845

The interrelation and communication between the
RTMU and the PU is carried out through a
Communication Interface. Soft-processors offer different
alternatives to implement the Communication Interface
such as: custom instruction, co-processing or source code
modification.

The task which the PU executes is selected by the
RTMU according to the real-time information. Each time
that the RTMU is required to perform a task switching, it
performs the following actions: (1) waits until the
completion of the instruction that is being executed by
the PU (PU is not preempted during an instruction cycle),
(2) stops the PU before the next fetch cycle, (3) saves all
the registers of the PU into the Task Structure and, (4)
restores the registers of the PU with the ones of the next
executing task. Therefore, task switching is performed by
modifying the registers of the PU (program counter
included). Consequently, when the RTMU releases the
PU, it will be executing the new task. The task switching
may be implemented, for instance, by: (1) the RTMU
directly accesses to the PU´s registers (as it was
implemented in the case study in this paper) or (2) the
RTMU forces to the PU to execute a task switching
routine. However, alternative mechanisms may be
adapted according to the features of the soft-processor
chosen.

The Interrupt Manager unit deals with external events
that may invoke real-time tasks. Each time an enabled
external event takes place, the Real-Time Manager Unit
executes the Associated Action. Therefore, sporadic real-
time tasks invoked by external events are supported in a
way similar to that of real-time periodic tasks.

The Memory Manager implements memory access
arbitration in order to allow for sharing the same external
memory between the HRTSA and the PU.

The performance, adaptability and scalability of the
architecture depend on how the real-time information is
both stored and handled by the RTMU. This information
includes: task structures, event structures and the action
code associated with each event. The following sections
describe the real-time information in detail.

IV. Time and Events
in a Real-Time System

Time is important in a real-time system because it is
when events take place. We define event as an
occurrence or happening, usually significant to the
performance of a function, operation, or task.
Consequently, the evolution of a real-time system may be
adequately defined by expressing the time when events
happen. Release, deadline, end of execution, priority
promotion, and abortion are some examples of events in
a real-time system.

According to the nature of the event, we can
differentiate between synchronous and asynchronous
events. We say that an event is synchronous when its
occurrence can be expressed as a function of the clock of
the system.

On the contrary, we say that an event is asynchronous
when its occurrence depends on an external signal which
is not a function of the clock of the system.

While external interrupts are asynchronous events,
timers produce synchronous ones. Depending on the base
of time considered, synchronous events may be classified
in two categories:

1. absolute time events: this category includes the
events whose occurrence is a function of the system time.
Release and deadline of periodic tasks are examples of
absolute time events.

2. relative time events: this category includes the
events whose occurrence is a function of the executed
time of a task. These events are related to the time at
which the task has been executed. Usually, fault-
tolerance strategies suggest the implementation of
relative time events.

For example, in an EDF policy the priority of each
task is determined according to the time remaining until
its deadline. Let us consider a real-time system with two
periodic tasks whose periods (T), deadlines (D) and
maximum execution times (C) are detailed in Table I.

TABLE I

EXAMPLE OF REAL-TIME PARAMETERS

 T [ms] D
[ms]

C
[ms]

Task 1 6 6 3
Task 2 8 7 4

Fig. 2 shows the evolution of the system scheduled

under an EDF policy after a simultaneous release of both
tasks. Each down-arrow represents the release of a task.

The priority of each task is determined according its
deadline: the closer to its deadline, higher its priority.

The use of the processor is granted to the highest
priority task. The priority of each task can be determined
by configuring absolute events each time the task is
released: the deadline of task 1 is set to 6 each time task
1 is released and, similarly, it is set to 7 for task 2.

Fig. 2 shows the value of the deadline at 1ms
intervals, but it is a value that modifies in a time-
continuous way.

Fig. 2. Example of synchronous events

Time and events should be adequately supported by
the real-time processor. It is mandatory to keep the
absolute time of the system in an internal register of the
RTMU. Such a register in the HRTSA architecture is
known as System Time Register (STR). The RTMU
increases this register one unit per system’s clock period.

The range of the STR should be long enough to avoid
an overrun during the lifetime of the system.

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1846

For instance, an STR of 64 bits takes 58,494 years to
overrun with a system’s clock equal to 10MHz.
Similarly, the Relative Time Register (RTR) counts how
long the current executing task has been executed. Of
course, the RTR is accordingly updated when tasks are
switched.

On the other hand, events should be adequately
defined in order to describe the real-time behaviour of
the system.

The next time an event takes place is called
Occurrence Time. While the occurrence times of
absolute time events are related to the value of the STR,
the occurrence times of relative time events are related to
the value of the RTR of the respective task. Therefore, an
event is, in essence, defined by its occurrence time and
its Associated Action. The action associated with an
event is a code program stored in the memory of the
system and it is executed by the RTMU when the event
takes place.

IV.1. Event Structure

The Event Structure stores all of the event information
(Fig. 3). The occurrence time is stored in the Occurrence
Time field (OcF) of the respective event structure. The
RTMU continuously checks whether: (1) the STR
reaches the value of some of the Occurrence Fields of the
absolute events and (2) the RTR reaches the OcF of the
relative events of the executing task.

The starting address of the associated action is held in
the Code_Address field of the event structure.

Fig. 3. Event Structure

In order to efficiently manage the events of the

system, the event structures are organised in a linked list
sorted by its occurrence times. An RTMU register,
referred to as Next Absolute Event (NAE), and a field
named Next_Event in each event structure, are in charge
of maintaining this organisation. Each time an OcF is
modified, the Next Event register and fields are
accordingly updated by the RTMU.

Fig. 4 demonstrates an example of the linked list
organisation of the event structures. This linked list is
dynamically updated accordingly each time that an event
takes places (the event is deleted from the list and the
associated action executed) or an event is enabled (the
event is inserted into the linked list sorted by its
Occurrence Time field).

Relative time events are organised in a similar way for
each task. The maximum number of events supported
depends on the physical amount of memory assigned to
events structures.

Fig. 4. Example of the Absolute time event structure organisation

V. Tasks and Priorities
Because most real-time process models consider a set

of tasks to be executed into a processor, a real-time
architecture should support multitasking. Consequently,
a real-time architecture must manage all the task’s
parameters needed to provide a multitasking
environment. A Task Structure is defined to store each
real-time parameter of the task. The task structures are
stored into the memory of the system. The maximum
number of tasks supported depends on the physical
amount of memory assigned to task structures.

In a multitasking system, a priority is assigned to each
task in order to schedule the set of tasks which are ready
to be executed. The priority of each task may be
modified or remain fixed during runtime according to the
scheduling policy implemented.

Previous real-time processor approaches implemented
a predefined scheduling policy over a reduced set of
priorities ([28], [29], [30], [31], [32]).

V.1. Task Structure

The HRTSA does not execute a predefined scheduling
policy but instead chooses to execute the highest priority
task. The priority of each task is held in the
Ready_Priority field of its respective task structure (Fig.
5). In order to schedule tasks efficiently, the RTMU
keeps an updated linked list of task structures sorted by
task priority.

The Highest Priority Task register (HPT) of the
RTMU points to the highest priority task (smallest
number). There is a field in each task structure, named
Next_Task, which points to the immediate next priority
task structure of the linked list.

The scheduling policy depends on how the priority of
each task is assigned. Task’s priorities may be changed
by programming the Associated Action of either absolute
or relative events, interrupts or exceptions.

Therefore, any arbitrary scheduling policy may be
implemented.

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1847

Fig. 5. Task Structure

For example, if actions associated with task release

events modify the priority of their respective tasks to
OcF + D (priority is set to absolute deadline of the task),
then an EDF policy is implemented. On the contrary, if
actions do not modify task priority, then a Fixed Priority
policy is implemented.

In the example shown by Fig. 2, it would be sufficient
to set the priority of the task equal to its absolute
deadline each time that a release event takes place in
order to implement an EDF scheduling policy. As
priority may be a function of the system time, the range
of the priority of each task should be long enough in
order to avoid an overflow.

Therefore, the length of task priority is the same
number of bits as the STR register.

Because many events may be defined and each action
may modify the task’s priorities, a great many priority
mechanisms may be implemented. In addition, as RTMU
manages events and tasks, the execution of the tasks is
not disturbed by scheduling. Scheduling overhead is
almost neglected (just the task switching time) whatever
the scheduling policy is. Additionally, a priority level
may be assigned to each task when it is in executing state
(setting the respective Execution_Priority field of the
task structure).

In this way, it is easy to implement, for example, a
non-preempted scheduling mechanism. It is only
necessary to assign a higher priority to the executing
state than any other priority of the tasks in ready state.

Each time that a task changes its status, an Associated
Action takes place. Task structure stores the address of
the program code of the action associated to each
exception. Three states are supported:
 Wait state: the task was not invoked. The task

structure is not inserted in the linked-list.
 Ready state: the task was invoked and requires

executing. The task structure is inserted in the linked-
list according to its Ready Priority.

 Execution state: the processor is granted to the task
for execution. The task structure is removed from the
linked list while the task is executing.

In this way, an action may be associated when a task
changes from either wait to ready, ready to wait, ready to
execution, execution to wait or execution to ready. The
RTMU executes the action associated with each
exception in the same way that it executes actions
associated with events.

The STATUS_REGISTERS fields are reserved to
save the PU’s internal registers, preserving the status of
the tasks when the task is preempted in order to restore it
when the task switches to execution state again. Some
soft-processors allow custom instruction or co-processing
options for accessing the internal registers directly.

These alternatives, as well as modifying the source
code, allow achieve a high switching performance since
the saving and restoring operations of the PU’s registers
are done through a Direct Memory Access (DMA). If
there is not a direct access from the HRTSA to the
internal register of the PU, then the task switching should
be performed through executing storing and restoring
procedures by the PU.

VI. The Real-Time Manager Unit
The RTMU manages events, tasks and executes the

action code associated with each event and exception
which takes places. To do this, the RTMU must:
1. Update the STR and the respective RTR with a rate of

one per time unit.
2. Execute the real-time instructions included in the task

code. When the PU decodes an operation code for the
RTMU, such as modifying certain real-time
parameters or a task exit code, then the RTMU takes
control and executes it.

3. Check if a certain event is taking place. The absolute
time events and the relative time events are
continuously monitored in order to establish whether
the respective action code has to be executed.

4. Check if the executing task is the highest priority one.
On the contrary, a task switching is performed in
order to choose the highest priority task for
execution.

5. Keep both the events and the tasks’ structures
organised. Each time that either an event or a task
structure is modified, the event list and the priority
list are accordingly updated.

6. Execute the action codes when a task changes its
state. Each time that a task changes its state, the
action code of the respective exception is executed
according to the information stored in its task
structure.

All these functions are carried out at the same time
that the PU executes the system tasks. The performance
handling real-time information is high and predictable
because of the way in which events and tasks are
organised.

Moreover, jitters and real-time performance of the
processor are measured in periods of the system’s clock
instead of timer’s ticks as is the case in real-time
operating systems. Therefore, the performance is
improved in several orders of magnitude.

VII. Memory Organization
A certain amount of system memory must be assigned

to hold the following real-time information:

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1848

 The event structures.
 The task structures.
 The action codes.
 General-purpose data.
 Stack for next associated action codes.

The general-purpose data area may be accessed
directly by the instructions that the RTMU executes.
Important run-time information of the action codes may
be stored in this area.

The stack for next action codes stores the addresses of
the associated action codes that the RTMU has to execute
when the current action code is completed. Execution of
action codes is non-preempted. As an action code may
call further actions codes, then the respective addresses
must be saved in order to execute them later.

The maximum number of events and tasks as well as
the amount of memory for data, code and stack depends
on the physical amount of memory assigned to each one
of them. To do this, real-time memory access is
segmented.

Five internal segment registers of the RTMU point to
the beginning of each area. Therefore, the amount of
physical memory assigned to each area of memory is
configured according to the value of the respective
segment registers.

VII.1. Real-Time Configuration

The RTMU should be configured in order to produce
the real-time behaviour that the application requires. The
configuration is carried out by the execution of special
real-time instructions. The set of real-time instructions
expands the original instruction set of the PU. When the
RTMU is configured, it is rarely necessary to execute
additional real-time instructions. However, real-time
tasks can execute real-time instructions during runtime.

TABLE II

RTMU’S REGISTERS
Register Description Width [bits]

A General Purpose Register 64
B General Purpose Register 64

CET Current Executing Task 16
CPri Current Priority 64
CSR Code Segment Register 16
DSR Data Segment Register 16
ESR Event Segment Register 16
ETP Event to Process 16
Flags Flag Register 8
HPT Highest Priority Task 16
NAE Next Absolute Event 16

NAOT Next Absolute Occurrence
Time

64

NRE Next Relative Event 16
NROT Next Relative Occurrence

Time
64

PC Program Counter 16
PriHPT Priority Highest Priority Task 64

RTR Relative Time Register 48
SP Stack Pointer 16

SSR Stack Segment Register 16
STR System Time Register 64
TSR Task Segment Register 16

TABLE III
HRTSA INSTRUCTIONS

Instruction Description
add reg_d, reg_s Adds the source register to the destination register,

leaving the result in the destination register.
add reg_d,
field_d, reg_s,
field_s

Adds the specified field of the event pointed by
the source register into the field pointed by
destination register.

chstatus task reg,
status

Changes the status of the pointed task by register
to status.

chstatus task task,
status

Changes the status of the task task to status.

cmp reg_d,
field_d, reg_s,
field_s

Compares the specified field of the event pointed
by the source register into the field pointed by
destination register.

dec reg_d Decrements the destination register.
dec reg_d, field_d Decrements the field pointed by the destination

register.
disable event
event

Disables the event event. When an event is
disabled, it will not take place.

disable event reg Disables the event pointed by register. When an
event is disabled, it will not take place.

enable event event Enables the event event and consequently it will
take place according to its configuration.

enable event reg Enables the event pointed by register and
consequently it will take place according to its
configuration.

end Finishes the execution of code in the Real-Time
Manager Unit.

exit Finishes the execution of the current executing
task.

inc reg_d Increments the destination register.
inc reg_d, field_d Increments the field pointed by the destination

register
init event event Configures the structure of event to be considered

by the Real-Time Manager Unit.
init task task Configures the structure of task to be considered

by the Real-Time Manager Unit.
jc address Jumps if carry.
je address Jumps to address address if zero flag is set.
jg address Jumps if it is greater.
jl address Jumps if it is less.
jmp address Jumps unconditionally to address.
jnc address Jumps if not carry.
jne address Jumps if no zero.
load upu_pc, a Sets the PC of task with the register A of the Real-

Time Manager Unit.
mov event event,
field, value

Copies the value in the specified event_field of the
event structure.

mov event reg,
field, reg

Copies the source register in the specified field of
the event pointed by the source register.

mov reg, event
reg, field

Copies the specified field of the event pointed by
the source register into the destination register.

mov reg, reg Copies the value in the source register to the
destination register.

mov reg, task reg,
field

Copies the specified field of the task pointed by
the source register into the destination register.

mov reg, value Copies the value value to the destination register.
mov reg_d,
field_d, reg_s,
field_s

Copies the specified field of the event pointed by
the source register into the field pointed by
destination register.

mov task task,
field, value

Copies the value in the specified field of the task
structure.

mov task reg,
field, reg

Copies the source register in the specified field of
the task pointed by the source register.

not reg Performs the not bit-wise of register.
sub reg_d, reg_s Subtracts the source register from the destination

register, leaving the result in the destination
register.

sub reg_d, field_d,
reg_s, field_s

Subtracts the specified field of the event pointed
by the source register from the field pointed by the
destination register.

Once the RTMU is configured, it carries out all of the

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1849

real-time functions at the same time that the PU executes
the code of the real-time tasks.

The RTMU is a processing unit with the set of internal
registers. The instructions executed by the RTMU are
reported in Table III.

VIII. Example: Programming
a Real-Time Application

Real-Time instructions should be executed to
configure the real-time behaviour of the system. This
configuration is very flexible and does not depend on the
code of the real-time task. For instance, an EDF policy
can be reduced to the correct configuration of the
associated actions of the real-time events.

As an example, the configuration of the RTMU, in
order to execute the real-time system in Table I, under an
EDF policy, is described in the following sections.

VIII.1. Initialisation (Included at the Beginning
of the Code Executed by the PU)

The initialisation of the Event Structure of EVENT1
should be included at the beginning of the code executed
by the PU and could take the following form:

; Creates event 1 Structure.
INIT EVENT 1
; Set First Occurrence Time
MOV EVENT 1, OCCURRENCE TIME, 600000
; Store Period of Task 1.
MOV EVENT 1, DATA1, 600000
; Store Task 1 as task associated to event 1.
MOV EVENT 1, DATA2, 1
; Set the address of the associated action.
MOV EVENT 1, CODE ADDRESS,

RELEASE_START
; Enable event 1.
ENABLE EVENT 1
This code initialises Event 1, configures the variable

DATA1 with the period of the task (600 ms), configures
the variable DATA2 with the task associated with the
event (Task 1) and configures the Associated Action at
address RELEASE_START. Finally, the initialisation
code enables Event 1 (the event structure of event 1 is
inserted in the linked list of absolute events). The
initialisation of event 2 is similar.

The initialisation of the Task Structure of Task 1
could take the following form:

; Creates Event 1 Structure.
INIT TASK 1
;Sets the beginning of Task 1’s code.
MOV TASK 1, Task_Program_Code_Address,

Start_Addr_Task1
; No action when task is aborted.
MOV TASK 1, Task_Code_Address_Aborted,

NO_CODE
; No action when task’s
; status changes to Execution.

MOV TASK 1, Task_Code_Address_Execution,
NO_CODE

; No action when task is pre-empted.
MOV TASK 1, Task_Code_Address_Desallocated,

NO_CODE
; No action when task’s status changes to Ready
MOV TASK 1, Task_Code_Address_Ready,

NO_CODE
; No action when task finishes.
MOV TASK 1, Task_Code_Address_Finished,

NO_CODE
; Set task’s priority to 60000
; when task is in execution state.
MOV TASK 1, Task_Ready_Priority, 60000
; Store the deadline of the task (600ms).
MOV TASK 1, DATA2, 60000

The initialisation of the task structure configures the

associated actions for each event that the task produces.
These events are: Aborted, Execution, Desallocated,

Ready and Finished. In this example, only the Ready
event is configured. Initialisation of Task 2 is similar.

VIII.2. Associated Actions

The real-time policy is performed executing the
associated action of the different events during runtime.

The associated actions may be programmed taking
into account the ETP register of the RTMU. The ETP
register holds the index of the event which has taken
place. In this way, the associated action can be
parameterised using this register.

Each time that Event 1 or Event 2 takes place (the
occurrence time is reached) the event is configured (the
occurrence time is set to the current occurrence time plus
the period of the task). The status of the task is changed
to Ready and consequently is inserted into the linked list
of ready tasks. The Ready Priority of the task is set equal
to the absolute deadline of the task to implement an EDF
policy among the task of the system. The Execution
Priority of the task is set equal to the Ready Priority to
implement a preemptable scheduling policy. Otherwise,
if a non-preemptable policy is desired, then the
Execution Priority might be set equal to zero.

Therefore, the associated action with Events 1 and 2
could be as follows:

RELEASE_START:
; The occurrence time is added to the period
; of the task stored in the variable DATA1
; and the event is enabled.
ADD ETP, OCCURRENCE_TIME, ETP, DATA1
INSERT ETP IN ABSOLUTE LIST
; The ETP register is loaded with the
; task associated with event (stored
; in variable DATA2.)
MOV A, EVENT ETP, DATA2
MOV ETP, A
; Register B of the RTMU is added to
; the deadline of the task (stored

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1850

; in variable DATA1 of the task structure).
MOV B, TASK ETP, DATA1
ADD A, B
; The Ready Priority is set equal to the
; absolute deadline to perform an EDF policy
; as well as the Execution Priority
; to make it preemptive.
MOV TASK ETP,TASK_READY_PRIORITY, A
; The status of the task is changed to ready
MOV TASK ETP, TASK_EXECUTION_PRIORITY,

A
CHSTATUS TASK ETP, ready
; The associated action is ended
END

IX. Performance Evaluation
The HRTSA was described in VHDL, synthesised

using Quartus II v11.0 and implemented in a Cyclone III
FPGA device from Altera. The architecture required
approximately 3500 LEs. The system includes a 16Mb
Mobile SDRAM memory to store the tasks’ codes and
the real-time information.

A set of 560 real-time systems was randomly
generated in order to evaluate the performance of the
HRTSA. Each real-time system contains 10 real-time
tasks. The period of each task (T) was randomly
generated between 800μs and 8000μs, whilst deadlines
(D) were set equal to the periods and the worst case
execution times (C) were generated to produce a total
utilisation factor equal to 0.7, considering a system clock
frequency equal to 10MHz. While the period and
deadline depends on the specification of the real-time
application, the execution time of a task is a function of
the time required to execute such a task. Therefore, when
the system clock frequency is increased, the total
utilisation factor decreases.

For comparison purposes, a real-time scheduler was
implemented to execute each one of the real-time
systems generated. It was implemented as a timer routine
(TR), as it is in a RTOS, and it does not execute any real-
time instruction of the RTMU. When a real-time system
based on TR is considered, the interval in which the
scheduler must be invoked to execute the scheduling
policy should be defined. Different invocation intervals
were implemented to analyse its influence on the
execution of the real-time system.

The invocation interval of the scheduler was set to
130μs, 150μs and 175μs. When a RTOS is utilised, a
task’s period should be expressed in units of the
invocation interval of the scheduler.

Consequently, the periods of the tasks were rounded
to the upper multiple of the invocation interval of the
scheduler. This choice reduced the total utilisation factor
of the systems implemented in RTOS but allowed a
conservative comparison with the performance of the
HRTSA.

On the other hand, the HRTSA can achieve a
precision of 100ns with a 10MHz clock and consequently

the implementation of the real-time system based on a
HRTSA is more accurate.

The evaluation of both systems, TR and HRTSA, was
performed by modifying the system clock frequencies to
10, 20, 40, 50, 80 and 100MHz. The jitter was used as a
measure to compare the performance of the system. The
jitter is defined as the difference between the period of
the task and the interval between the two consecutive
starting times of the task during runtime.

As the execution pattern of the tasks is not fixed, the
starting time of the tasks is not periodic. The maximum
jitter of each task was stored and the average among the
560 systems for task 1, 2, 6 and 10 are shown in Figs. 6.

The HRTSA-based processor can schedule the
systems with a 10MHz clock frequency whilst the TR-
based systems needed at least a 50MHz clock frequency
to schedule them.

X. Result Analysis
From the results, the overhead of the system produced

by the scheduler is reduced with a HRTSA-based
implementation and the system is schedulable at lower
clock frequencies with the following advantages:
 The power consumption of the system may be

reduced. The power dissipation of a digital circuit is
proportional to the clock frequency of the system.
Because the system can be scheduled at a lower clock
frequency, the voltage and consequently the power
consumption of the system may be dramatically
reduced [33]. Moreover, the HRTSA avoids the
overhead introduced by the RTOS and as a result the
power consumption is also reduced.

 The cost of the technology required may be reduced.
When lower clock frequencies are applied, lower-cost
technologies can be used in processor
implementation, debugging and interfacing. Hence, a
more sophisticated device should be needed if a
system based on RTOS is implemented.

 The electromagnetic interference is reduced when
lower clock frequencies are applied and consequently
systems can easily meet electromagnetic standards.

 The accuracy of the implementation of the real-time
system is improved. With a 10MHz clock, the real-
time parameters can be expressed with a precision of
100ns. When a RTOS is utilised, the real-time
parameters should be modified to be a multiple of the
invocation interval of the scheduler.

On the other hand, from the application point of view,
the performance is improved when a HRTSA is utilised
because the maximum jitter of the tasks is reduced. This
feature may be very important when the real-time system
is applied to control or digital signal processing
applications ([34], [35], [36]).

In a real-time system based on an RTOS, the interval
time of the scheduler invocation may have a greater
influence on the control performance than the clock
frequency.

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1851

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]
HRTSA TR 175us
TR 150us TR 130us

(a) Maximum Jitter Task 1

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]
HRTSA TR 175us
TR 150us TR 130us

(b) Maximum Jitter Task 2

0

60

120

180

240

300

360

420

480

540

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]
HRTSA TR 175us
TR 150us TR 130us

(c) Maximum Jitter Task 6

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]
HRTSA TR 175us
TR 150us TR 130us

(d) Maximum Jitter Task 10

Figs. 6. Maximum jitter of real-time tasks

Increasing the clock frequency in an RTOS-based

system may not proportionally decrease the jitter
introduced. There may not be an optimal interval time of
scheduler invocation for all tasks: whilst 175µs is
optimal for task 1, a slot time of 150µs is optimal for
tasks 2, 6 and 10. On the other hand, we can observe that

the jitter in an HRTSA-based processor is just
proportional to the clock frequency.

XI. Conclusion
Embedded and industrial applications require digital

processing architectures in order to meet real-time
constraints. Real-time theory offers diverse scheduling
mechanisms with varied real-time features, each of
which is suitable for different applications. Most of these
mechanisms consider a scheduler as part of the RTOS.

However, when the scheduling mechanisms are
complex, the chances of an efficient implementation in
an embedded system are reduced. Consequently, most
RTOSs implement a Fixed Priority policy or a Cyclic
Executive that offers a deterministic performance with a
low overhead cost. RTOSs with different scheduling
policies are restricted to systems whose capacity enables
the implementation of more complex scheduling
mechanisms. Several papers have proposed the
implementation of scheduler functions in hardware in
order to improve the real-time efficiency of the system.
Most of these papers are based on transferring the
scheduling functions of the RTOS to hardware. However,
while the runtime efficiency increases ([16]), the real-
time restrictions originating from the software version
implemented in RTOSs remain in hardware. Usually,
hardware schedulers migrated from RTOS implement a
certain scheduling policy which cannot be easily
modified. On the other hand, real-time processors with
scheduling features in hardware are based on the
possibility of executing a reduced set of real-time tasks
under a predefined scheduling policy chosen by the
designer of the processor.

Modern Field Programmable Gate Arrays (FPGAs)
offer the possibility to implement Systems-on-
Programmable-Chip based on soft-processors.

The architecture of these processors may be modified
to add new features in order to make it more suitable for
the target application. Some of these features may
include custom instructions and inter-processor
interfaces, useful for Hardware/Software Co-design
methods. In this paper, the Hardware Real-Time
Scheduling Architecture designed to incorporate real-
time properties with soft-processors is described. The
HRTSA can be configured to implement any scheduling
policy and support a large number of real-time tasks.

The HRTSA is described including the events and task
structures to configure the real-time features of the
application. A simple example is sketched to show the
easiness with which an EDF scheduler can be
implemented. Experience shows that the efficiency of the
HRTSA allows for scheduling of the real-time system at
a very low frequency. While the HRTSA-based processor
schedules a real-time application with a 10MHz clock, a
system scheduled with a timer routine needed at least a
50MHz clock. The HRTSA is easily adaptable to soft-
processors in order to improve the real-time performance
of the system implementing the more adequate real-time

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1852

methodology.

Acknowledgements
This work was supported in part by the Program 2012

UAM-Santander Bank University Cooperation Projects
with Latin America. Additional funds have been obtained
from Convenio Marco UNS-UAM 2010-2015.

References
[1] IEEE1003.1d-1999, IEEE Standard for Information Technology-

Portable Operating System Interface (POSIX)-Part 1: System
Application Program Interface (API)- Amendment D: Additional
Real time Extensions [C Language], 1999.

[2] John A. Stankovic and Krithi Ramamrithan, "The Spring
Kernel: a new paradigm for real-time systems," IEEE Software,
Vol.3, No. 3, pp.62-72, 1991.

[3] Dan Hildebrand, "An Architectural Overview of QNX",
Proceeding of the Workshop on Micro-Kernels & Other Kernel
Architectures, pp. 113-126, Seattle, 1992.

[4] Jean J. Labrosse, “MicroC/OS-II: The Real Time Kernel”,
CMPBooks, 2002.

[5] Jean J. Labrosse, “uC/OS-III, The Real-Time Kernel”, Micrium,
2009.

[6] Arnaldo Oliveira, Luís Almeida, and António de Brito Ferrari,
"The ARPA-MT Embedded SMT Processor and its RTOS
Hardware Accelerator," IEEE Transactions on Industrial
Electronics, vol. 58, No. 3, pp. 890-904, March 2011, 2011.

[7] Hamdaoui, F., Ladgham, A., Sakly, A., Mtibaa, A., Real time
implementation of medical images segmentation using Xilinx
System Generator, (2012) International Review on Computers
and Software (IRECOS), 7 (6), pp. 2861-2867.

[8] Jason Agron, Wesley Peck, Erik Anderson, David Andrews, Ed
Komp, Ron Sass, Fabrice Baijot, and Jim Stevens, "Run-Time
Services for Hybrid CPU/FPGA Systems on Chip," Proceeding
of the 27th IEEE International Real-Time Systems Symposium,
pp. 3-12, Dec. 2006.

[9] Li Yan, Li Xian-yao, Gu Ping-ping, Zhao Hong-jie, and Cheng
Ping, "Hardware Implementation of uC/OS-II based on FPGA,",
Proceeding of the 2nd International Workshop on Education
Technology and Computer Science (ETCS), pp. 825-828, March
2010.

[10] Elhamzi, W., Saidani, T., Said, Y., Atri, M., FPGA based Real
Time wavelet Video coding, (2013) International Review on
Computers and Software (IRECOS), 8 (1), pp. 243-249.

[11] Melissa Vetromille, Luciano Ost, César Marcon, Carlos Reif,
and Fabiano Hessel, "RTOS Scheduler Implementation in
Hardware and Software for Real Time Applications",
Proceedings of the 17th IEEE International Workshop on Rapid
System Prototyping, pp. 163-168, June 2006.

[12] Pramote Kuacharoen, Mohamed Shalan, and Vincent Mooney
III, "A Configurable Hardware Scheduler for Real-Time
Systems", Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms, pp. 96-
101, 2003.

[13] Ondrej Krejcar, Petr Tucnik, Ondrej Adamec, “Evaluation of
aJile aJ-80 Real-Time embedded platform for RT-Java
parameters”, Measurement, Elsevier, Vol. 44, Issue 7, pp. 1253-
1260, August 2011.

[14] Tiago Muck, Antonio Frohlich, Michael Gernoth, Wolfgang
Friedrich, “Implementing OS components in hardware using
AOP”, ACM SIGOPS Operating Systems Review, Vol. 46, Issue
1, pp.:64-72, Jan. 2012.

[15] Rajeswari, P., Nagarajan, N., Real time network traffic
monitoring using FPGA, (2013) International Review on
Computers and Software (IRECOS), 8 (7), pp. 1658-1662.

[16] Jaehwan Lee, Vincent John Mooney III, Anders Daleby, Karl
Ingström, Tommy Klevin and Lennart Lindh, "A Comparison of
the RTU Hardware RTOS with a Hardware/Software RTOS",

Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC 2003), pp. 683-688, Jan. 2003.

[17] Octavian Cheng, Waleed. Abdulla and Zoran Salcic, "Hardware-
Software Codesign of Automatic Speech Recognition System for
Embedded Real-Time Applications," IEEE Trans. on Industrial
Electronics, Vol. 58, No.3, pp. 850-859, March 2011.

[18] Alfredo Rosado-Muñoz, Manuel Bataller-Mompeán, Emilio
Soria-Olivas, Claudio Scarante and Juan F. Guerrero-Martínez,
"FPGA Implementation of an Adaptive Filter Robust to
Impulsive Noise: Two Approaches", IEEE Trans. on Industrial
Electronics, vol. 58, No. 3, pp. 860-870, March 2011.

[19] Joshua Weber, Erdal Oruklu and Jafar Snaiie, "FPGA-based
Configurable Frequency-Diverse Ultrasonic Target-Detection
System", IEEE Trans. on Industrial Electronics, vol. 58, No. 3,
pp. 871-879, March 2011.

[20] M.A. Aguirre, J.N. Tombs, V. Baena-Lecuyer, J.L. Mora, J.M.
Carrasco, A. Torralba, L.G. Franquelo, “Microprocessor and
FPGA interfaces for in-system co-debugging in field
programmable hybrid systems”, Microprocessors and
Microsystems, Elsevier, Vol. 29, Issue 2, pp. 75-85, April 2005.

[21] Mahmoud Hamouda, Handy Fortin Blanchette, Kamal Al-
Haddad and Farhat Fnaiech, "An Efficient DSP-FPGA-Based
Real-Time Implementation Method of SVM Algorithms for an
Indirect Matrix Converter", IEEE Trans. on Industrial
Electronics, vol. 58, No. 11, pp. 5024-5031, Nov. 2011.

[22] Nagarajan, V., Waran R., Srinivasan, V., Kannan, R.,
Thinakaran, P., Hariharan, R., Vasudevan, B., Nachiappan, N.C.,
Saravanan, K.P., Sridharan, A., Sankaran, V., Adhinarayanan,
V., Vignesh, V.S., Mukundrajan, R., “Compilation Accelerator
on Silicon”, Proceedings IEEE Computer Society Annual
Symposium on VLSI, pp.:267-272, Aug. 2012.

[23] Chang. L. Liu and James W. Layland, "Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environment",
Journal of the ACM (JACM), vol. 20, No. 1, pp. 46-61, Jan.
1973.

[24] Houssine Chetto and Maryline Chetto, "Some Results of the
Earliest Deadline Scheduling Algorithm", IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp. 1261-1269, Oct.
1989.

[25] J. Urriza, L. Schorb, J. Orozco, R. Cayssials, “Reduced
Computational cost in the Calculation of Worst Case Response
Time for Real-Time Systems”, Journal of Computer Science &
Technology, Vol. 9, Octuber 2009.

[26] Joseph Y. Leung and Jennifer Whitehead, "On the complexity of
fixed-priority scheduling of periodic, real-time tasks",
Performance Evalaluation, Elsevier, Vol. 2, No. 4, pp. 237-250,
Dec. 1982.

[27] Richard J Vaccaro, “Digital Control: A State-Space Approach”,
McGraw-Hill College, 1995.

[28] Matjaz Colnaric and Wolfgang A. Halang, "Architectural
support for predictability in hard real time systems", Control
Engineering Practice, Elsevier, Vol. 1, No. 1, pp. 51-57, Feb.
1993.

[29] Vlado Glaviníc, Stjepan Gros, and Matjaz Colnaric, "VHDL-
based modeling of a hard real-time task processor", Proceeding
of the IEEE International Symposium on Industrial Electronics
(ISIE’99), Vol. 1, pp.49-54, Jul. 1999.

[30] Matjaz Colnaric, Domen Verber and Wolfgang A. Halang,
"Supporting High Integrity and Behavioural Predictability of
Hard Real-Time Systems," Informatica (Slovenia), Special Issue
on Parallel and Distributed Real-Time Systems, Vol. 19, No.1,
pp. 59-69, February 1995.

[31] Joakim Adomat, Johan Furunäs, Lennart Lindh, and Johan
Stärner, "RealTime Kernel in Hardware RTU: A Step Towards
Deterministic and High-Performance Real-Time Systems",
Proceedings of the in 8th Euromicro Workshop on Real Time
Systems, pp. 164-168, June 1996.

[32] Steven Miller, David Greve, Matthew Wilding and Mandayan
Srivas, "Formal Verification of the AAMP-FV microcode",
NASA Langley Technical Report, MD21076-1320, 1999.

[33] Clive Watts and Ravi Ambatipudi, "Dynamic Energy
Management in Embedded Systems", Computing and Control
Engineering, IEE, Vol. 14, No. 5, pp.36-40, Oct. 2003.

R. Cayssials, E. Ferro, J. Urriza, E. Boemo

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. 8, N. 8

1853

[34] Manuel Lluesma, Anton Cervin, Patricia Balbastre, Ismael
Ripoll and Alfons Crespo, “Jitter Evaluation of Real-Time
Control Systems”, Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 257-260, Sep. 2006.

[35] Daniele Fontanelli, Luigi Palopoli and Luca Greco,
“Deterministic and Stochastic QoS Provision for Real-Time
Control Systems”, Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 103-
112, April 2011.

[36] Frederick M. Proctor and William P. Shackleford, “Real-time
Operating System Timing Jitter and its Impact on Motor
Control”, Proceedings of the SPIE Sensors and Controls for
Intelligent Manufacturing II, Volume 4563, pp. 10-16, October
28, 2001.

Authors’ information
1Universidad Nacional del Sur -DIEC / Av. Alem 1253 – Bahía Blanca
– Argentina.

2Universidad Tecnológica Nacional – FRBB / 11 de Abril 464 – Bahía
Blanca – Argentina.

3CONICET / Av. Alem 1253 – Bahía Blanca – Argentina.

4Universidad Nacional de la Patagonia San Juan Bosco / Brown 3025 –
Puerto Madryn – Argentina.

5Universidad Autónoma de Madrid – Madrid- España.

Ricardo Cayssials received the Engineer degree
in electronics in 1993 and the PhD degree in
engineering in 1999 from the National Southern
University, Bahía Blanca, Argentina. Since
1994, he has been with the National Southern
University, where he is currently Adjunct
Professor and Researcher at CONICET. He also
is professor at the National Technological

University in Bahia Blanca (UTN-FRBB). In 2001 and 2003 he
granted two postdoctoral stays at the University of York, York,
England. His research interests include real-time system,
programmable logic devices and system on programmable chip. He is
senior member of IEEE.

Edgardo Ferro received the Engineer degree in
electronics in 1990 and the PhD degree in
engineering in 1999 from the National Southern
University, Bahía Blanca, Argentina.
Since 1990, he has been with the National
Southern University, where he is currently
Adjunct Professor. His current research interests
include real-time system, Industrial Automation,

fieldbus communications and system on programmable chip.

José Urriza is an Adjunct Professor at the
Universidad Nacional de la Patagonia San Juan
Bosco in Puerto Madryn, Argentina. He
received the Engineer degree in electronics in
1998 and the PhD degree in engineering in 2007
from the National Southern University, Bahía
Blanca, Argentina. His research interests include
schedulability of real-time systems and dynamic

voltage scheduling.

Eduardo Boemo is a titular professor of ASIC
design at the School of Computer Engineering
of the Universidad Autónoma de Madrid. His
current research interests include the design of
FPGA-based systems, low-power techniques,
computer arithmetic, self-timed circuits and
electrical engineering education. He received the
electrical engineering degree from the

Universidad Nacional del Mar del Plata (Argentina) and the PhD
degree in telecommunications engineering from the Universidad
Politécnica de Madrid (Spain) in 1985 and 1998, respectively.

	Main menu
	Contents
	Security and Peer Management of Query Routing Technique for P2P Networks
	Queuing Aware Earliest Deadline First Scheduling for Cognitive Radio Network
	Adaptive Cluster-Based Location Monitoring Technique for Query Processing in Mobile Computing Environment
	Performance Evaluation of Feature Selection Method for Sentiment Classification of Online Reviews Using Machine Learning Techniques
	Virtualization Techniques for Mobile Devices
	Impact of Mobility and Density on a Cross-Layer Architecture for Wireless Sensor Networks
	Hybrid Method for Automatic Ontology Building from Relational Database
	Auto-Reflexive Software Architecture with Layer of Knowledge Based on UML Models
	Automatic Tracking of Changes in User Behavior to Support Proactivity in Pervasive Systems
	Conceptual Software Testing: a New Approach
	Real-Time Scheduling Architecture for Embedded Systems
	Preterm Birth Prediction Using Cuckoo Search-Based Fuzzy Min-Max Neural Network
	Rotation and Scale Invariant Texture Classification Using Wavelet Transform and LBP Operator
	An Efficient Image Reconstruction Technique with Aid of PSO (Particle Swarm Optimization) and DWT (Discrete Wavelet Transform)
	An Efficient 2DWT-A Architecture Using Distributive Arithmetic Algorithm
	Score-Level Fusion Technique for Multi-Modal Biometric Recognition Using ABC-Based Neural Network
	Human Authentication through Emotional States Based on Keystroke Dynamics with the Aid of Particle Swarm Optimization
	Steganalysis Using a Composite Set of Transform Domain Features and Ensemble Classifier
	An Efficient Intrusion Detection System Based on GA to Recognize Attacks in User Privileges
	Maximum Tsallis Entropy Thresholding for Image Segmentation Using a Refined Artificial Bee Colony Optimization
	A Technique to Tumor Detection from Brain MRI Images Using FCM and Neuro-Fuzzy Classifier
	A Method for Prognosis of Primary Open-Angle Glaucoma
	Brain Tumor Segmentation in MRI Images Based on Image Registration and Improved Fuzzy C-Means (IFCM) Method
	A Proportional Fair Quality of Service Allocation Scheme for Telemedicine Applications
	A Robust Brain Image Segmentation Approach Using ABC with FPCM
	Elliptic Curve Cryptography (ECC) Based Four State Quantum Secret Sharing (QSS) Protocol
	Novel Secure Code Encryption Techniques Using Crypto Based Indexed Table for Highly Secured Software
	An Improved Image Denoising Approach Using Optimized Variance-Stabilizing Transformations

	A 3D Gluing Defect Inspection System Using Shape-Based Matching Application from Two Cameras
	Factors Effecting Migration Traditional Projects to Enterprise Resource Planning System (ERP)
	A New Enterprise Integration-Based Framework for Enterprise Physical Mashup

	Text3: Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved

