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Abstract In this paper we examine the mechanism of DeLP (Defeasible Logic
Programming). We first study the definition of the defeating relation in a formal
setting that allows us to uncover some hidden assumptions, and suggest an alternative
definition. Then we introduce a game-theoretic characterization of the system. We
obtain a new set of truth values arising from games in which arguments for and
against a given literal are played out. We study how additional constraints define
protocols of admissible attacks. The DeLP protocol ensures the finiteness of the
games, and therefore the existence of winning strategies for the corresponding
games. The defeating relation among arguments determines the strategies that will
win and consequently the truth values of queries. We find that the DeLP protocol
also excludes the warranting of a literal and its negation.
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1 Introduction

The formalism of DeLP (Defeasible Logic Programming) [7] extends declarative
programming [10] to capture features common to various systems of defeasible
reasoning [4, 14, 16, 17, 19, 20, 23]. The inference mechanism of DeLP, upon a query
about a literal, answers by indicating whether it is or not warranted by a program in
which less than certain knowledge is represented [5].

From Logic Programming (LP), DeLP draws the formal characterization of
programs as sets of rules, except that it considers two kinds of rules. Strict rules
represent sound knowledge while defeasible rules, instead, represent less than
certain knowledge that may be defeated by other information.

As said, DeLP works by querying the status of pieces of knowledge, represented
by literals drawn from the program. The query of a literal l succeeds if l is supported
by a warranted argument. Arguments are built using both strict and defeasible rules
as well as facts (literals assumed to be true). The core element of the warrant proce-
dure is the class of criteria for comparing two contradictory arguments. These criteria
determine when an argument defeats others. While in implementations the chosen
criteria are usually purely syntactic (e.g., specificity, see [20]) , the warrant procedure
can be defined abstracting away the details of the relations among arguments.

The inference mechanism of DeLP generates all the arguments for and against a
queried literal l. Then, the warrant procedure is applied to determine if an argument
supporting l remains undefeated in a sequence of admissible attacks and defenses. If
so, l is said to be warranted and the answer to the query is positive.

Several argumentation systems have been formulated in dialectical style [6, 12,
18–20]. The concept of dispute in most of them can be characterized as a so-called
argument game. An argument game is a Śone-dimensionalŠ dispute in which each
player may respond only once to each argument advanced by the opponent, and if
that argument turns out to be ineffective, that player may not try a second reply to the
same argument. Thus, no backtracking is allowed. This fact makes argument games
into what is officially known as two-player zero-sum games, including the concepts
that come with it, the most important of which is strategy.

The warrant procedure admits a natural game-theoretic interpretation. The com-
parison among arguments can be conceived as a contest between a Proponent and an
Opponent. According to the winning strategies in the games for and against l, a gamut
of truth-valuations can be obtained. Which truth value actually obtains depends on
the properties of the defeating relation among arguments.

Without further constraints these games may be infinitely long, implying that the
truth of some literals may remain undefined. Finite games, instead, are determined,
i.e., have always a winning strategy for one of the players. But even in this case, the
program can yield inconclusive answers. In more detail, four truth values may obtain.
Two of them can be interpreted as positive or negative answers to queries. The other
two correspond either to contradictory or ambiguous answers.

In any case, the finiteness of the games can be ensured by stipulating up front
which sequences of for and against arguments are admissible. The admissibility
constraints define a protocol for the games. The warrant mechanism of DeLP is based
on a very natural protocol with just a few constraints.

The nature of the defeating relation among arguments, under the DeLP protocol
for the games, defines which truth values obtain for any given literal. The analysis
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of this determination is the focus of this paper. The main result of this paper is that
using this protocol, literals can be true, false or ambiguous, but never contradictory.

We proceed as follows. In Section 2 we present the DeLP formalism. In Section 3
we analyze the extension of an abstract pre-defeating relation to a defeating relation
over the set of arguments of a given program. This analysis reveals some problems
that lead us to pose some restrictions on the pre-defeating relation and suggest an
alternative definition of defeaters. In Section 4 we rephrase the dialectical aspect of
DeLP in game-theoretic terms. We focus on how the protocol of DeLP ensures the
finiteness the games in Section 5. In Section 6 we establish the main result.

A preliminary report on this research has been published in [22].

2 The basics of DeLP

In order to discuss the formal properties of DeLP, we have to present the basics of
this formalism.1

Each Defeasible Logic Program P is a finite set of facts, strict rules, and defeasible
rules P = 〈�, �〉, where � denotes the set of facts and strict rules, while � denotes
the set of defeasible rules. The set � is the disjoint union of the sets �F of facts and
�R of strict rules.

Facts and rules are defined in terms of atoms. While in the literature on DeLP,
rules like b(X)← p(X) or f (X) –≺b(X) are customary, they are no more than
shorthand for a finite set of propositional rules. We follow the usual convention in
Logic Programming (see [9]), using “schematic rules” with variables. More precisely,
let At be the set of atoms that occur in a given program P. Given a set X ⊆ At
of atoms, ∼ X is the set {∼x : x ∈ X}. Then, the set Lit is the set of all literals in
At∪ ∼At. The complement l̄ of a literal l ∈ Lit is ∼x if l is an atom x and x if l is a
negated atom ∼x. This indicates the strong syntactic bent of DeLP.

Then, the main components of a program P are:

�F Facts, which are literals, elements of Lit.
�R Strict Rules of the form l0 ← l1, . . . , ln, where l0 is the head and {li}i>0 is the

body. Each li in the body or the head is in Lit.
� Defeasible Rules of the form l0 –≺l1, . . . , ln, where l0 is the head and {li}i>0 is the

body. Again, each li in the body or the head is a literal.

Rules, both strict and defeasible act on facts, allowing the derivation of literals.

Definition 1 A defeasible derivation of l up from X ⊆ Lit, R ⊆ �R and A ⊆ � is a
finite sequence l1, . . . , ln = l of literals in Lit such that each li is either in X or there
exists a rule in R ∪ A with li as its head, and every literal b j in its body is such that
b j ∈ {lk}k<i.

Definition 2 Given sets X ⊆ Lit, R ⊆ �R and A ⊆ �, C(X,R,A) is the set of all
literals defeasibly derivable from X ∪ R ∪ A. The set of strict consequences of X ⊆

1We follow very closely the presentation in [7].
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Lit is Cs(X) = C(X,�R,∅). Finally, we are going to use often C(A) = C(�F ,�R,A)

for sets A ⊆ �.

Definition 3 Given a set X ⊆ Lit, let X+ = X ∩ At and X− = {a ∈ At :∼a ∈ X}. X is
said to be contradictory if X+ ∩ X− �= ∅. A set of defeasible rules A is contradictory
if C(A) is contradictory.

We assume that for all programs, the set � of facts and strict rules is not
contradictory. A fundamental relation in DeLP is that of disagreement between
literals:

Definition 4 Two literals h, q ∈ Lit are said to disagree (for a given program P) if
Cs(�F ∪ {h, q}) = C(�F ∪ {h, q},�R,∅) is contradictory. Since we are only inter-
ested in the disagreeing relation over the set LitP of the literals that appear in a
program P, we define a binary relation D ⊆ LitP × LitP to record which pairs of
literals disagree. This relation is clearly symmetric.

This relation matters for the determination of attacks between arguments. In
order to get to that, let us define the fundamental concept of argument. We will
use P to denote the powerset construction.

Definition 5 An argument is a pair 〈A, h〉 ∈ P(�) × Lit that satisfies:

1. h ∈ C(A)

2. A is not contradictory.
3. If h ∈ C(A′), then A′ �⊂ A, that is, A′ is not a proper subset of A.

Definition 6 Let Arg(P) be the set of all arguments of a program P. The argument
〈A1, h〉 is a subargument of 〈A2, h′〉 iff A1 ⊆ A2.

The subargument relation is a preorder over Arg(P). Furthermore, if 〈A1, h〉 is a
subargument of 〈A2, h′〉 and 〈A2, h′〉 is a subargument of 〈A1, h〉, then A1 = A2. This
means that if we identify arguments with the same first component, the relation is
simply a restriction of the inclusion relation over P(�).

Note that for the empty set, we have all the arguments of the form 〈∅, l〉 with
l ∈ �F .

Definition 7 For each literal h we define the binary relation Rh on Arg(P) by
〈A1, h1〉Rh〈A2, h2〉 iff there exists 〈A, h〉 ∈ Arg(P) such that A ⊆ A1 and (h, h2) ∈ D.
We say in this case that the argument 〈A1, h1〉 is attacked by 〈A2, h2〉 at h or that
〈A2, h2〉 attacks or rebutts 〈A1, h1〉 at h. We also say that 〈A2, h2〉 is a counter-
argument of 〈A1, h1〉.

We have the following easy consequences of the definition:

Proposition 1

1. If 〈A1, h1〉Rh〈A2, h2〉, then for some A ⊆ A1,〈A, h〉 is an argument and
〈A2, h2〉Rh2〈A, h〉 (sub-symmetry).
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2. If 〈A, l〉Rl〈B, p〉, then 〈B, p〉Rp〈A, l〉.
3. If q ∈ Cs(�F), then 〈∅, q〉 is an argument and it has no counter-arguments.
4. Furthermore, an argument 〈∅, q〉 cannot be a counterargument of any argument.

Proof

1. From the definition of Rh, we know that for some 〈A, h〉 ∈ Arg(P) we have that
A ⊆ A1 and (h, h2) ∈ D. Therefore, there exists A2 ⊆ A2 and (h, h2) ∈ D so we
can claim that 〈A2, h2〉Rh〈A, h〉.

2. Using the definition of Rl , this simply means that l and p disagree, and this is
enough to justify that 〈B, p〉Rp〈A, l〉, since the arguments are attacked precisely
at the literals they support, so no subarguments need be considered. Recall also
the minimality of the sets that form the argument.

3. It is easy to check that since q ∈ C(∅) while ∅ is not contradictory and has no
proper subset, so 〈∅, q〉 is an argument. Now assume it has a counterargument
〈A2, h′〉 that attacks 〈∅, q〉 at h. Then there exists an argument 〈A, h〉 with A ⊆ ∅,
so h ∈ C(∅), and (h, h′) ∈ D. This means that Cs(�F ∪ {h, h′}) is contradictory,
but since C(∅) ⊆ C(A2), {h, h′} ⊆ C(A2), so A2 is contradictory, and therefore
〈A2, h′〉 cannot be an argument.

4. If 〈A, h〉 is an argument and 〈A, h〉Rp〈∅, q〉, then there is an argument 〈A′, p〉
with (p, q) ∈ D but we have seen in the previous proof that this contradicts the
fact that A′ is not contradictory. ��

Now we have the set Arg(P) with the relations Rh over it. We want to have a
method to decide, given a literal l, whether it is supported by the program P or not.
Clearly we want all literals in C(∅) to be supported or warranted. Which other literals
should be supported? If there is a defeasible derivation of a literal l while l̄ is not
derivable, we want l to be warranted as well.

But what about the cases in which the derivation of l yields a contradictory set of
literals, or there are arguments that support the complement of l as well?

We have seen that if the relation Rh holds between two arguments, there is also
some attack on the attacking argument (Proposition 1, 1). We need to be able to
tell which of these two arguments (if any) ‘wins’ the discussion. For this, we assume
the existence of a binary relation ≺ contained in R = ⋃

h∈Lit Rh (it will be of no
consequence for us if ≺ holds in other cases, so we may as well just concentrate
on subsets of R). We will call this relation pre-defeating . The notation for this
relation is somewhat misleading since we do not assume that ≺ is a partial order
or even a preorder. It will just be an arbitrary way of deciding whether one of two
arguments, is stronger than the other. This information will be propagated to some
other arguments through the following definitions.

Definition 8 〈A1, h1〉 is a proper defeater of 〈A2, h2〉 (at literal h) if 〈A2, h2〉
Rh〈A1, h1〉 and there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A, h〉 ≺
〈A1, h1〉. We denote this by 〈A2, h2〉 < 〈A1, h1〉.

〈A1, h1〉 is a blocking defeater of 〈A2, h2〉 (at literal h) if 〈A2, h2〉Rh〈A1, h1〉
and there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A, h〉 �≺ 〈A1, h1〉 and
〈A1, h1〉 �≺ 〈A, h〉. Whenever this is the case we use the notation 〈A2, h2〉 ≈ 〈A1, h1〉.
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A defeater of an argument is either a proper defeater or a blocking defeater. If
〈A2, h2〉 is a defeater of 〈A1, h1〉 we write 〈A1, h1〉 ≤ 〈A2, h2〉.

Equivalently, we may clean up the original definition by saying that 〈A1, h1〉 is
a proper defeater of 〈A2, h2〉 (at literal h) if there exists a sub-argument 〈A, h〉 of
〈A2, h2〉 such that (h, h2) ∈ D and 〈A, h〉 ≺ 〈A1, h1〉. Similarly, 〈A2, h2〉 ≈ 〈A1, h1〉
if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that (h, h2) ∈ D, 〈A, h〉 �≺
〈A1, h1〉 and 〈A1, h1〉 �≺ 〈A, h〉.

From the definition, the following proposition is immediate:

Proposition 2 The defeating relation ≤ is a subset of R. Furthermore, given two
arguments such that 〈A1, h1〉Rh〈A2, h2〉, if 〈A2, h2〉 is not a defeater of 〈A1, h1〉, then
all the subarguments 〈A, h〉 of 〈A1, h1〉 that attack 〈A2, h2〉 (and there must exist at
least one of these) are proper defeaters of 〈A2, h2〉.

We must keep in mind that ≈ is not necessarily a symmetric relation but it is
sub-symmetric: If 〈A1, h1〉 ≈ 〈A2, h2〉 then there exists 〈A, h〉 ⊆ 〈A1, h1〉 such that
〈A2, h2〉 ≈ 〈A, h〉.

As particular cases, when the relation ≺ is empty, all attacking arguments are
blocking defeaters, so ≤=≈= R. If the pre-defeating relation is the whole of R, then
all attacking arguments are proper defeaters and ≤=<= R.

3 Examples and problems with the definitions

Example 1 Let us consider a simple program P1 with �F = {b , c};�R = {d← a} and
� = {a –≺b ,∼a –≺c}.

We have C({b},∅, {a –≺b}) = {a, b}; Cs({a}) = {a, d}; Cs(�F) = �F and C(�) =
{a, b , c, d,∼a}, a contradictory set.

Let A1 = {a –≺b} and A2 = {∼a –≺c}. Then the arguments are:

Arg(P1) = {〈∅, b〉, 〈∅, c〉, 〈A1, a〉, 〈A1, d〉, 〈A2,∼a〉}.
The disagreeing relation D is formed by the set of all pairs of the form (x, x̄) where
x ∈ Lit, together with the pairs (a,∼d) and (∼d, a). The literal ∼d, however, does
not appear in the program, so we may as well just consider D = {(a,∼a), (∼a, a)}.

Note that in this example, the arguments 〈A1, d〉 and 〈A1, a〉 are subarguments of
each other.

The attack relations that hold between arguments are: 〈A1, a〉Ra〈A2,∼a〉,
〈A1, d〉Ra〈A2,∼a〉 and 〈A2, ∼a〉R∼a〈A1, a〉.

The attacking relations can be pictured by the following graph, where the letters
on the arrows indicate the literals at which the attacks occur:

〈A1, a〉
∼a

�� 〈A2, ∼a〉
a

��

a
�� 〈A1, d〉

Example 2 We observe in the program of the previous example that no defeating
relation can compare the arguments 〈A1, a〉 and 〈A1, d〉. So if we have a pre-defeating
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relation ≺1 such that 〈A1, a〉 ≺1 〈A2,∼a〉, it follows that the induced defeating
relation has 〈A1, a〉 <1 〈A2,∼a〉 and 〈A1, d〉 <1 〈A2, ∼a〉, while ≈1 is empty, that is,
there are no blocking defeaters for this pre-defeating relation.

Example 3 A second pre-defeating relation on the arguments of P1 above given by
〈A1, d〉 ≺2 〈A2,∼a〉 shows that the complexity of the definition can yield unexpected
behaviors. In this case we get that all attackers are in fact blocking defeaters, that is,
R =≤2=≈2. In particular, 〈A2, ∼a〉 is a blocking defeater of 〈A1, d〉 and not a proper
one as one may have expected.

In the literature about DeLP, the pre-defeating relation considered has been the
specif icity relation. If we want to abstract it away from that particular instance, there
are some properties we may demand from it.

As we noted before, the defeating relation induced by ≺ is a subset of R, and
this puts certain constraints on the properties one can expect from the relation. For
example, it is unreasonable to expect ≺ to be transitive, since R is not.

The pre-defeating relation should be asymmetric, as the following example
illustrates:

Example 4 Using the program P1 from the previous example let ≺3 be equal to
the relation R. Then we have that all attackers are proper defeaters. In particular,
〈A1, a〉 is a proper defeater of 〈A2,∼a〉 and 〈A2, ∼a〉 is a proper defeater of 〈A1, a〉.
This contradicts the intuition one has about what a proper defeater should be: an
argument that is unequivocally better than the other.

While the asymmetry of the pre-defeating relation is necessary, it is not sufficient
to guarantee that two arguments are not proper defeaters of each other:

Example 5 Consider the program P2 : �F = {a},� = {∼ y –≺a, x –≺ ∼ y, ∼x –≺a,
y –≺ ∼x} with A = {∼ y –≺a, x –≺ ∼ y}, B = {∼x –≺a, y –≺ ∼x}, C = {∼ y –≺a}, D =
{∼x –≺a} and arguments 〈∅, a〉, 〈A, x〉, 〈B, y〉, 〈C,∼ y〉, 〈D,∼x〉.

By letting 〈D, ∼x〉 ≺ 〈A, x〉 and 〈C,∼ y〉 ≺ 〈B, y〉, we get that 〈A, x〉 is a proper
defeater of 〈B, y〉 and vice-versa.

Example 6 Consider the program P3 where �F = {b , c}, �R = {d ← a} and � =
{a –≺b , ∼d –≺c}.

The difference with program P1 is subtle but has many consequences. The
disagreeing relation is now D = {(d,∼d), (∼d, d), (a,∼d), (∼d, a)}. We have
Arg(P2) = {〈∅, b〉, 〈∅, c〉, 〈A, a〉, 〈A, d〉, 〈B, ∼d〉}, where A = {a –≺b} and B =
{∼d –≺c}.

The attack relations are given in the following graph:

〈A, d〉
∼d

�� 〈B,∼d〉
a,d

��
a,d

�� 〈A, a〉
∼d

��

If we have as pre-defeating relation 〈A, d〉 ≺ 〈B,∼d〉, according to the Definition 8,
〈B,∼d〉 is a proper defeater of 〈A, d〉, but since 〈A, d〉 has 〈A, a〉 as a subargument,
〈A, a〉 �≺ 〈B,∼d〉 and 〈A, a〉 �� 〈B,∼d〉, this is also a blocking attack.
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If one considers that an argument can only be attacked when it uses defeasible
rules, it is a natural idea to regard only these when comparing the relative strength
of two arguments. This idea is captured through the following definition:

Definition 9 Two arguments 〈A, h〉 and 〈B, q〉 are equi-defeasible iff A = B. In other
words, if the defeasible rules used in the derivations of the literals h and q are the
same.

We may now require that the pre-defeating relation be compatible with the
equivalence relation of equi-defeasibility. In other words:

Definition 10 A pre-defeating relation ≺ is compatible with the equi-defeasibility
relation if for all arguments such that 〈A, h〉 ≺ 〈B, q〉 and for all literals h′, q′ such
that 〈A, h′〉 and 〈B, q′〉 are arguments, 〈A, h′〉 ≺ 〈B, q′〉 also holds.

Example 7 The pre-defeating relation ≺2 of Example 3 is not compatible with
equi-defeasibility. We put instead a relation ≺4 over the arguments of P1 that is
compatible. So we have that 〈A1, d〉 ≺4 〈A2, ∼a〉 implies that 〈A1, a〉 ≺4 〈A2,∼a〉,
and 〈A2,∼a〉 is a proper defeater of 〈A1, d〉 as one originally expected. Observe also
that we may summarize ≺4 by just indicating that A1 ≺4 A2.

Example 8 Taking a compatible pre-defeating relation such that A ≺ B in Example
6 the problem of having a defeater that is blocking and proper at the same time also
disappears so that 〈B,∼d〉 is a proper defeater of 〈A, d〉, and not a blocking one.

We can see, however that compatible pre-defeating relations do not preclude all
the overlapping between blocking and proper defeaters.

Example 9 Let P4 be the program with facts set {a}, strict rules �R = {h← b ,

h← c, h1 ← b , c}, while � = {b –≺a, c –≺a,∼h –≺a}. Here we have that the argu-
ment 〈{∼h –≺a},∼h〉 attacks 〈{b –≺a, c –≺a}, h1〉 at literal h, but we have two sub-
arguments at which the attack can happen: 〈{b –≺a}, h〉 and 〈{c –≺a}, h〉. If we let
〈{b –≺a}, b〉 ≺ 〈{∼h –≺a},∼h〉 then we obtain:

〈{b –≺a}, b〉 < 〈{∼h –≺a},∼h〉 〈{c –≺a}, c〉 ≈ 〈{∼h –≺a},∼h〉
〈{b –≺a}, h〉 < 〈{∼h –≺a},∼h〉 〈{c –≺a}, h〉 ≈ 〈{∼h –≺a},∼h〉

〈{b –≺a, c –≺a}, h1〉 < 〈{∼h –≺a},∼h〉 〈{b –≺a, c –≺a}, h1〉 ≈ 〈{∼h –≺a},∼h〉
So in this case 〈{∼h –≺a},∼h〉 is both a proper and a blocking defeater for the same
argument and at the same literal.

It may be desirable to have notions of proper and blocking defeaters that do not
overlap. A blocking defeater should be an attack for which there is no information
on whether it is stronger or weaker than the attacked argument. In an attempt to
capture this intuition we re-define:

Definition 11 An argument 〈A, h〉 is a defeater of 〈B, q〉 if there exists an argument
〈C, z〉 ⊆ 〈B, q〉 such that (z, h) ∈ D and for all 〈D, x〉 ⊆ 〈A, h〉, 〈D, x〉 �≺ 〈B, q〉.
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An argument 〈A, h〉 is a proper defeater of 〈B, q〉 if it is a defeater of 〈B, q〉 and
there exists 〈C, z〉 ⊆ 〈B, q〉 such that 〈C, z〉 ≺ 〈A, h〉.

An argument 〈A, h〉 is a blocking defeater of 〈B, q〉 if it is a defeater of 〈B, q〉 and
for all 〈C, z〉 ⊆ 〈B, q〉, 〈C, z〉 �≺ 〈A, h〉.

The following proposition follows immediately from the definition above:

Proposition 3 Under Def inition 11, the proper defeater relation is asymmetric and no
argument can be both a proper and blocking defeater of another argument.

Example 10 Taking the program P2 from Example 5 and using Definition 11, the
arguments 〈A, x〉 and 〈B, y〉 do not defeat each other. On the other hand, we still
have that 〈A, x〉 is a proper defeater of 〈D, ∼x〉 and 〈B, y〉 is a proper defeater of
〈C,∼ y〉.

Example 11 If we examine P4 from Example 9 using Definition 11, we get that
〈{∼h –≺a},∼h〉 is a proper defeater of 〈{b –≺a, c –≺a}, h1〉 and not a blocking one.

Under the new definition, the relation ≈ is not necessarily sub-symmetric, but the
following is true.

Proposition 4 If 〈A, h〉 is a blocking defeater of 〈B, q〉 as in Def inition 11, then there
is a subargument 〈C, z〉 of 〈B, q〉 such that 〈C, z〉 is a defeater of 〈A, h〉.

Proof Since 〈A, h〉 is a blocking defeater of 〈B, q〉, there exists a subargument 〈C, z〉
of 〈B, q〉 such that (z, h) ∈ D, This is the argument that we want to prove is a defeater
of 〈A, h〉.

For the first condition, we take 〈A, h〉 itself as the subargument of 〈A, h〉 and we
know already that (h, z) ∈ D. Now if 〈D, x〉 ⊆ 〈C, z〉, then we also have that 〈D, x〉 ⊆
〈B, q〉, so, since 〈A, h〉 is a blocking defeater, 〈D, x〉 �≺ 〈A, h〉. ��

One drawback of Definition 11 is its computational cost, which is greater than that
of Definition 8. One would need to weigh the advantages the suggested definition
provides against its cost before adopting it. The results in the following sections are
independent from which definition of proper and blocking defeaters are used. The
original definitions are used unless otherwise stated.

4 Warrant games

Given a literal l we want to find out what the program P has to say about it.
What if there are more than one argument supporting l? What if one of them
is undefeated and the other is defeated? We will answer these questions through
a slightly generalized version of the mechanism of warrant of DeLP [7], using
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the language of game theory, which turns out to be quite natural for framing the
dialectical process that leads to the warrant of a literal.

First, we will introduce the definition of extensive games with perfect information.
Then we will define warrant games, a class of games tailored to our needs, and finally
we will show how to use them for answering queries to the program.

Definition 12 (following [15]) An extensive game with perfect information G =
〈N, H, P, (Ui)i∈N〉 consists of:

– A set N, the set of players.
– A set H of sequences (finite or infinite) that satisfies the following three

properties:

– The empty sequence ∅ is in H.
– If (ak)k=1,...,K ∈ H (where K may be infinite) and L < K then (ak)k=1,...,L ∈

H.
– If an infinite sequence (ak)

∞
k=1 satisfies (ak)k=1,...,L ∈ H for every positive

integer L, then (ak)
∞
k=1 ∈ H.

The members of H are called histories. Each component ak of a history is an
action taken by a player. A history (ak)k=1,...,K ∈ H is terminal if it is infinite
or there is no aK+1 such that (ak)k=1,...,K+1 ∈ H. The set of terminal histories is
denoted with Z .

– A function P : H \ Z → N, that indicates for each history in H which one of the
players takes an action after the history.

– Utility functions Ui : Z → R for i ∈ N that give for each terminal history and
each player, the payof f of that player after that history.

The set H can be seen as a tree with root ∅, with its nodes labeled by the function
P, and the leaves labeled by the functions Ui, i ∈ N. We identify the elements ak

with edges of the tree. Therefore, each particular branch from the root is a history, in
which the edges are the consecutive actions chosen by the players. We call the game
f inite if H is finite. After any nonterminal history y player P(y) chooses an action
from the set A(y) = {a : y followed by a is in H}.

A warrant game for a literal l is an extensive game with perfect information with
two players. We will call these two players Proponent and Opponent. We define the
game as follows:

– P(∅) = Proponent.
– The actions that the proponent Proponent can take at the root of the tree are all

the arguments of the form 〈A, l〉.
– The actions after a nonterminal history y are the arguments 〈A′, q〉 such that

〈A, p〉 ≤ 〈A′, q〉, where 〈A, p〉 is the last component in y. In this case, P(y) =
Proponent if y has even length and P(y) = Opponent if the length is odd.

– The utility for the Proponent assumes the value 1(win) at a history y ∈ Z if the
length of y is odd, and −1 otherwise. The utility for the Opponent is −1 times the
utility of the Proponent.
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If we have that the defeating relation ≤ is simply the union of all the attack
relations R = ⋃

h∈Lit Rh, and a literal l has some argument which can be attacked,
then we will have an infinite tree (see Proposition 1).

Example 12 Let P5 be the program consisting of �F = {c, d}; � = {b –≺c, a –≺b ,
∼b –≺d, ∼a –≺d}. Letting A1 = {b –≺c, a –≺b}, A2 = {∼b –≺d}, A3 = {b –≺c} and
A4 = {∼a –≺d}, the arguments are 〈A1, a〉, 〈A2,∼b〉, 〈A3, b〉 and 〈A4,∼a〉, while
the attacking relations can be read in the graph:

〈A3, b〉
∼b

�� 〈A2,∼b〉
b

��

b

�� 〈A1, a〉
∼a

�� 〈A4,∼a〉
a

��

If we assume a pre-defeating relation such that 〈A3, b〉 ≺1 〈A2,∼b〉 then we
obtain the defeating relation:

〈A1, a〉 <1 〈A2,∼b〉 〈A1, a〉 ≈1 〈A4,∼a〉
〈A3, b〉 <1 〈A2, ∼b〉 〈A4,∼a〉 ≈1 〈A1, a〉

We build the warrant game for the literal a in the program P5:

∅P

〈A1, a〉O

���
��

�����

〈A2,∼b〉
(−1,1)

〈A4,∼a〉P

〈A1, a〉O

�����
�����

〈A2,∼b〉
(−1,1)

〈A4, ∼a〉P

Notice that in the diagram we indicate the nodes by a single argument. The histories
can be reconstructed by tracing the path in the tree up to the root. The superscript
P or O on each node indicates the player who moves next. Below the terminal
histories we have written the payoffs for the players Proponent and Opponent,
respectively.
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If we consider instead the relation ≺2= ∅ or the ≺3= R, we would have the infinite
game tree:

∅P

〈A1, a〉O

�����
�����

〈A2,∼b〉P 〈A4, ∼a〉P

〈A3, b〉O 〈A1, a〉O

�����
�����

〈A2,∼b〉P 〈A2,∼b〉P 〈A4,∼a〉P

A plan for a given player, in which they have a response for every possible
contingency of the game is called a strategy:

Definition 13 [15] A strategy for a player i ∈ N in an extensive game with perfect
information 〈N, H, P, Un〉 is a function that assigns an action in A(y) to each
nonterminal history y ∈ H \ Z for which P(y) = i.

Since players are rational, they will seek to get the highest utility. In order to
do that, each one will seek the best possible strategy. The joint strategy profiles of
all players yield a single history. In the case of warrant games, since each terminal
history pays either 1 or −1, we can in principle define a winning strategy for a player:

Definition 14 A winning strategy for one of the players in a warrant game is a
strategy that yields a terminal history z ∈ Z such that their utility is 1, no matter
what the other player’s actions are.

It turns out that in some warrant games (for example those without terminal
histories), none of the players has a winning strategy.

Now we pose a query to P. The query is a literal l. Then we analyze two associated
games. In the first place, we look at the warrant game for the literal l, and then the
warrant game for the complement literal l̄ in which the Proponent and Opponent
change their roles. That is, the Opponent starts the game by choosing an argument
for l̄.

This approach seems to differ from the formalism presented in [7], where the
existence of a winning strategy for the proponent of a literal l is enough to yield the
answer “yes” to a query . On the other hand, in that paper, to yield the answer “no”
to l, the status of l̄ is analyzed, which clearly suggests the road we have taken here.
Furthermore, we will show (Proposition 7 and Theorem 1) that under the further
constraints imposed by DeLP, the mechanisms are equivalent.
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The following table summarizes the possible outcomes (meaning which of the
players has a winning strategy) of both games and how they jointly yield an answer
to the query:

Warrant game for l Warrant game for l̄ Answer to the query
Proponent Proponent YES
Proponent Opponent undecided
Proponent None yes
Opponent Proponent undecided
Opponent Opponent NO
Opponent None no

None Proponent yes
None Opponent no
None None undecided

Thus we have a system in which a query for a literal l can lead to different outcomes
which can be displayed as a partially ordered set:

PP

��
��

��
��

��
��

��
��

PN

��
��

��
��

��
��

��
��

N P

��
��

��
��

��
��

��
��

PO

��
��

��
��

NN

��
��

��
��

��
��

��
��

OP

��
��

��
��

NO

��
��

��
��

ON

��
��

��
��

OO

where each pair of letters indicates first who has a winning strategy in the game
for l and then who has a winning strategy in the game for l̄. P corresponds to the
Proponent, O to the Opponent and N, in turn, indicates that none of them has a
winning strategy.

This taxonomy of cases bears a resemblance to Antoniou et al.’s ([1, 8]) clas-
sification of proof outcomes for a proposition and its negation in Defeasible Logic.
Nevertheless, that approach differs in many ways from DeLP, mostly because a single
derivation is considered to draw a conclusion, while in DeLP several “proofs” (i.e.,
arguments) are played out one against the other to yield warrant.

We need an interpretation for each of these outcomes. We have marked in the
table with YES and NO the cases in which the arguments are clearly settled for or
against the literal l. If for l the Proponent has a winning strategy and neither they
nor the Opponent have one for the warrant game on l̄, we want to give a positive
answer for the literal l, but not as strong one as we would for the case in which the
Proponent has a winning strategy for both games. This provides a wider framework



194 I.D. Viglizzo et al.

than the one presented in [7], to encompass argumentation systems without the full
restrictions imposed by DeLP.

Example 13 We look now at the warrant game initiated by the Opponent for the
literal ∼a in the conditions we established in Example 12. Using ≤1=<1 ∪ ≈1, the
game is

∅O

〈A4,∼a〉P

〈A1, a〉O

�����
�����

〈A2, ∼b〉
(−1,1)

〈A4,∼a〉P

〈A1, a〉O

�����
�����

〈A2,∼b〉
(−1,1)

〈A4,∼a〉P

so the outcome for the query a is OO, yielding a negative answer. This checks with the
proposed pre-defeating relation, which implied that the argument 〈A1, a〉 is defeated.

On the other hand, using the relation ≺2= ∅, the game we get for ∼a is

∅O

〈A4,∼a〉P

〈A1, a〉O

�����
�����

〈A2,∼b〉P 〈A4, ∼a〉P

〈A3, b〉O 〈A1, a〉O

�����
�����

〈A2,∼b〉P 〈A2,∼b〉P 〈A4,∼a〉P

So here we get the result NN, and the answer “Undecided” for the query a, which
reflects the fact that we have not chosen any of the arguments to be stronger than the
others.
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We have the following trivial result:

Proposition 5 The literals that are facts of a program always get the outcome PP and
therefore the answer YES.

Proof Since the class of facts is not contradictory, given a fact l, we know by Lemma
1, 1 that 〈∅, l〉 is an argument and it has no counter-arguments. Therefore, the game
for l ends after the Proponent chooses 〈∅, l〉 and since there is no counterargument,
they win. Alternatively, for l̄, there can be no arguments so the Opponent has no
valid moves and the Proponent wins again. Therefore, the corresponding element in
the lattice is PP, which yields a YES answer. ��

It should be clear that the query for a literal l and the one for l̄ are directly related
by a reversal of the roles of the Proponent and Opponent.

5 Finite warrant games

If we restrict the definition of warrant games in a way that makes them finite, then in
each game one of the players has a winning strategy. The reason for this is that finite
games are always determined [13]. Our set of possible results (or truth-values) for a
given query gets reduced to four possibilities: PP, PO, OP and OO.

PP

��
��

��
��

��
��

��
��

PO

��
��

��
��

OP

��
��

��
��

OO

The top and bottom of the lattice above yield, respectively the Y ES and NO
answers to the query. The middle possibilities yield Undecided, but with different
meanings. If we obtain PO, both the literal l and its negation are warranted and we
are facing a (defeasible) contradiction, while if the answer is OP, neither the literal
nor its negation can be convincingly supported. We may see this as an informational
gradient in the lattice. From left to right we move from OP (too little information) to
OO and PP where we have the right amount of information to justify an answer, to
PO where we have too much information.

It is enough to have a single attacked argument for the game to become infinite,
in view of Proposition 1, 1. A direct way of avoiding this is to forbid the repetition of
arguments. This alone ensures the finiteness of the warrant games, since the number
of arguments for a given program is finite. But the following example shows it is also
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a bad idea to allow subarguments of an already used argument to come back into
play.

Example 14 Consider the program P1 discussed before. We assume the relation ≺ to
be R so all attacking arguments are proper defeaters. If we don’t allow in a warrant
game the repetition of an argument previously played, then the query for a makes us
consider the games:

∅P

〈A1, a〉O

〈A2,∼a〉
(−1,1)

∅O

〈A2,∼a〉P

〈A1, a〉
(1,−1)

So this query yields OP, undecided. If we query for the literal d instead, we get the
games:

∅P

〈A1, d〉O

〈A2,∼a〉P

〈A1, a〉
(1,−1)

∅O

(1,−1)

That is, the query for d yields and answer YES, while in the program we have the
strict rule d ← a and we have seen that the query for a was inconclusive.

We seek then to disallow histories in the warrant games where subarguments are
reintroduced. We define first:

Definition 15 A history y in a warrant game is said to be s-acyclic if there is
no subsequence 〈A0, h0〉,〈A1, h1〉,. . .,〈Ak+1, hk+1〉 in y such that 〈Ak+1, hk+1〉 is a
subargument of 〈A0, h0〉.

There are other ways in which the information carried by an argument could
be reinforced in a warrant game. One is by allowing the accrual of support [21].
That is, suppose that an argument 〈A j, h j〉 has been blocked in a sequence y by
an argument 〈A j+1, h j+1〉. If, in turn, we allow 〈A j+1, h j+1〉 to be blocked in y by
〈A j+2, h j+2〉, it means that the literal supported by 〈A j, h j〉 accrues further support
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from 〈A j+2, h j+2〉 although ≺ is not actually involved in the attack. This amounts to
counting how many arguments defend and attack a given literal, and while it would
be an acceptable criterion, it is one that DeLP carefully chooses to avoid. We can
disallow this possibility by means of:

Definition 16 (n2b condition): Given 〈A j, h j〉, 〈A j+1, h j+1〉 and 〈A j+2, h j+2〉 in a
history y, if 〈A j, h j〉 ≈ 〈A j+1, h j+1〉, then it is not the case that 〈A j+1, h j+1〉 ≈
〈A j+2, h j+2〉. In other words, a blocking defeater can not be followed by another
blocking defeater.2

Another undesirable possibility that may arise in any play of a warrant game is
that one of the players support some disagreeing literals. More precisely, that in a
history y = 〈A0, h0〉, . . ., 〈AK, hK〉, either

⋃
j≥0 A2 j or

⋃
j≥0 A2 j+1 are contradictory.

This means that the information used to support a literal is further used to support
its negation. To avoid this possibility we can demand the following property of
histories:

Definition 17 A history y is said concordant if the sets
⋃

j≥0 A2 j and
⋃

j≥0 A2 j+1 are
not contradictory.

Given that some sequences can be disallowed, those that are allowed are captured
by a protocol that restricts the admissible actions that may be taken in a warrant
game. DeLP assumes, in particular, the following protocol:

Definition 18 In a warrant game for a literal l, a history is y = 〈A0, h0〉, . . ., 〈AK, hK〉,
where 〈A j, h j〉 ≤ 〈A j+1, h j+1〉, for j = 0, . . . , K − 1. We say that y is DeLP-admissible
if and only if:

– it satisfies the n2b condition.
– it is concordant,
– it is s-acyclic.

While it is clear that each of the three conditions are intended to avoid certain
behaviors, the choice of conditions is by no means the only possible one. One could
ask for consistency of the Proponent but not of the Opponent, or viceversa, or we
could allow a blocking argument to be followed by only one blocking argument, etc.
The reasons why DeLP-admissibility are described by these conditions are purely
pragmatic, since in most examples these conditions are enough to get the intuitively
sound answers and embody some reasonable constraints on a discussion between two
rational agents [7, 11].

2We have seen that an argument can be both a proper and a blocking defeater of another. This is
not a problem when one checks for the n2b condition, since we only need to determine whether the
defeaters are blocking or not.
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Example 15 We take a look now at how the protocol above applies to the program
and query from Examples 12 and 13. Using the relation ≤1 or ≤3 we get the games:

∅P

〈A1, a〉O

���
��

���
��

〈A2,∼b〉
(−1,1)

〈A4,∼a〉
(−1,1)

∅O

〈A4,∼a〉P

〈A1, a〉O

〈A2,∼b〉
(−1,1)

and OO as the answer.
Using the relation ≤2:

∅P

〈A1, a〉O

���
��

���
��

〈A2,∼b〉
(−1,1)

〈A4,∼a〉
(−1,1)

∅O

〈A4,∼a〉P

〈A1, a〉
(1,−1)

We get OP (Undecided) as the answer.

Proposition 6 A warrant game in which each history is DeLP-admissible is f inite.

Proof Immediate, since every history is DeLP-admissible, and therefore an s-acyclic
sequence. Given that Arg(P) is finite, the length of each history y is finite. ��

In [7, Section 5], truth values are determined by means of “dialectical trees”.
These are essentially the subtrees obtained from a warrant game starting with a one-
argument history. The tree nodes are then marked with D and U (for Defeated and
Undefeated, respectively) as follows:

– All leaves are marked U .
– A nonterminal history is marked U if all its children are marked D. Otherwise it

is marked D.

A literal l is said to be warranted if there exists an argument 〈A, l〉 such that in its
marked dialectical tree, the root argument is marked with U . We show now that this
leads to the same outcome as our warrant games.

García and Simari’s procedure of marking the dialectical tree is equivalent to
finding the backward induction solution of the game: if 〈A, l〉 is marked U then, the
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Proponent has a winning strategy in the game that starts at 〈A, l〉. Otherwise, the
Opponent has a winning strategy in this game:

Proposition 7 A literal l is warranted by a program P if and only if the Proponent has
a winning strategy in the game for l.

Proof Assume that the literal l is warranted by the program P. This means that there
exists an argument 〈A, l〉 such that in its subtree, marked as a dialectical tree, it is
marked as undefeated. We use this to define a strategy σ for Proponent in the warrant
game for l.

In the first move, Proponent chooses the argument 〈A, l〉, which is undefeated
by hypothesis. This means that it is a leaf or all its children (which correspond to
the actions that can be chosen by the Opponent) are defeated. In the first case, we
are done. In the second one, we take a look at what happens next in the warrant
game. All the alternatives the Opponent are marked as defeated, so for each one of
these, the Proponent has at least one choice that leads them to a history marked as
undefeated, from which we can iterate the previous reasoning until we reach a leaf.
Any of these choices can be added to the strategy σ . For the histories with first move
other than 〈A, l〉, we can complete σ with arbitrary actions, since these are irrelevant.

Observe now that following the strategy σ constructed above, the Proponent
reaches a terminal history in an odd number of steps: the path followed in the tree of
the warrant game starts with the empty history, then goes to the root of the dialectical
tree marked undefeated, and then goes through alternatively marked defeated and
undefeated histories. So it is a winning strategy for Proponent.

Assume next that the literal l is not warranted by the program P. This is, for
every argument of the form 〈A, l〉, the corresponding marked dialectical tree has
〈A, l〉 marked as defeated. We can now build a winning strategy τ for the Opponent.
Since all the arguments 〈A, l〉 are defeated, they must have at least one undefeated
child each. Let τ be a strategy that chooses one of those. Since they are undefeated,
they must be leaves, and the Proponent has no choice, or they must have all of
its children marked as defeated. We can see that τ can thus be defined so that
a leaf will be reached in an even number of steps, so it is a winning strategy for
Opponent. ��

A concern that may arise is whether the conditions in the definition of DeLP
admissibility are not redundant. The following result, for instance, hints at a certain
overlap between s-acyclicity and concordance:

Proposition 8 If a history in a warrant game is concordant, then none of the players
has used a subargument of an argument used by the other player.

Proof Assume towards contradiction that a history y = 〈A0, h0〉, . . ., 〈AK, hK〉 is
such that there exist 〈A j, h j〉 and 〈Ak, hk〉 in y, with j < k, where k − j is odd,
satisfying Ak ⊆ A j. This means that one of the players has played a sub-argument
of an argument used by their rival.

We also know that there must exist a literal d(hk) ∈ C(Ak−1) such that for
〈Ak−1, hk−1〉 in y, 〈Ak−1, hk−1〉 Rd(hk) 〈Ak, hk〉. This literal disagrees with hk.
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Without loss of generality assume that k is odd and j even. Then, since Ak ⊆ A j,
hk ∈ C(A j) ⊆ ⋃

i≥0 A2i

On the other hand, since k − 1 is even, d(hk) ∈ C(Ak−1) ⊆ C(
⋃

i≥0 A2i), so this set
is contradictory. That is, y is not concordant. ��

Making moves consisting of subarguments of arguments used previously by rivals
was already forbidden by the s-acyclicity condition, but we will use the proposition
in the following section.

Proposition 9 The conditions that def ine DeLP-admissibility, i.e., s-acyclicity, con-
cordance and n2b, are independent and consistent.

Proof To prove the independence, it is enough to show an example where two of the
conditions hold and the other one fails. Let us see this for each case:

– s-acyclicity and n2b do not imply concordance. Consider the program P4 with
�F = {x, y, z};�R = {l←∼h} and � = {∼h –≺x, l –≺y, h –≺l, ∼ l –≺z}. Then
we have arguments 〈A1, l〉, 〈A2, h〉 and 〈A3, ∼ l〉, where A1 = {∼h –≺x}, A2 =
{l –≺y, h –≺l} and A3 = {∼ l –≺z}. Let ≺= R so that all attacking arguments are
proper (and never blocking) defeaters, so the n2b condition will be trivially
satisfied. The sequence 〈A1, l〉, 〈A2, h〉, 〈A3, ∼ l〉 is s-acyclic, since none of these
arguments is subargument of one of the others. . On the other hand, l, and ∼ l are
both consequences of �F ∪ �R ∪ A1 ∪ A3, i.e., the sequence is not concordant.

– concordance and n2b do not imply s-acyclicity. Consider a program P5 with �F =
{x, y};�R = {l←∼h,∼ l← s, ∼s←∼h} and � = {∼h –≺x, s –≺y}. If we let ≺=
R, and define A1 = {∼h –≺x} and A2 = {s –≺y}, the sequence 〈A1, l〉, 〈A2, ∼
l〉, 〈A1,∼s〉 is obviously not s-acyclic but is concordant and satisfies n2b.

– s-acyclicity and concordance do not imply the n2b condition. Consider P6 with
�F = {b , p, t}; �R = ∅ and � = {d –≺t,∼d –≺b ,∼d –≺ p}. We have arguments
〈A1,∼d〉, 〈A2, d〉 and 〈A3, ∼d〉, where A1 = {∼d –≺b}, A2 = {d –≺t} and A3 =
{∼d –≺ p}. Since 〈A1, ∼d〉R∼d〈A2, d〉 and 〈A2, d〉Rd〈A3, ∼d〉, if ≺= ∅, all the
arguments in the sequence are blocking, but the sequence is s-acyclic and
concordant.

The consistency of the conditions can be seen in Example 15. ��

6 Admissibility protocols and truth values

Now we turn our attention to the relation between the warrant games for l and l̄
under the DeLP protocol introduced in the previous section. We prove next that not
all the truth values are attainable. This has been in fact a long-standing conjecture,
implicitly incorporated in the mechanism of DeLP.

Theorem 1 If all the admissible histories for a warrant game satisfy s-acyclicity and
the concordance condition, the truth value PO cannot be obtained.

Proof Assume towards contradiction that Proponent has a winning strategy σ in the
game for l, while Opponent has a winning strategy τ for the game for l̄. Let 〈A, l〉



Foundations of DeLP 201

be the first move prescribed by σ and 〈B, l̄〉 the one by τ . Both of these must exist
under our hypothesis. We define a strategy σ ′ for the Proponent in the game for l̄ as
follows:

σ ′(〈B, l̄〉, 〈A, l〉, 〈B1, g1〉, 〈A1, h1〉, . . . 〈Bk, gk〉) =

σ(〈A, l〉, 〈B1, g1〉, 〈A1, h1〉, . . . 〈Bk, gk〉) = 〈Ak, hk〉
where the arguments Ai, 1 ≤ i ≤ k are the ones played by the Proponent and the
B j, 1 ≤ j ≤ k are played by the Opponent.

The strategy σ ′ is well defined for the histories of the form 〈B, l̄〉, 〈A, l〉, . . . 〈Bk, gk〉
that appear in the game for l̄ because then 〈B, l̄〉, 〈A, l〉, . . . 〈Bk, gk〉 is an admissible
history and so is 〈A, l〉, . . . 〈Bk, gk〉, and all such admissible histories must appear in
the warrant game for l.

We extend σ ′ to a strategy for Proponent in any way: we don’t care what happens
in other branches of the game tree since we won’t consider them in the reasoning of
this proof.

Now let 〈B, l̄〉, 〈A, l〉, 〈B1, g1〉, 〈A1, h1〉, . . . 〈Bk, gk〉 be the terminal history that
results from playing σ ′ against τ . It must end with 〈Bk, gk〉 because τ is a winning
strategy for Opponent. As a consequence, 〈A, l〉, 〈B1, g1〉, 〈A1, h1〉, . . . 〈Bk, gk〉 is a
terminal history in the game for l. If it wasn’t terminal, there would exist 〈Ak, hk〉 =
σ(〈A, l〉, . . . 〈Bk, gk〉) such that the history 〈B, l̄〉, 〈A, l〉, . . . 〈Bk, gk〉〈Ak, hk〉 is not
admissible. But this can only happen if 〈Ak, hk〉 is a subargument of 〈B, l̄〉 and that
was shown to be impossible in Proposition 8.

So we have the terminal history 〈A, l〉, 〈B1, g1〉, 〈A1, h1〉, . . . 〈Bk, gk〉 in which the
Opponent wins, and it is obtained in the game for l using the strategy σ , which was a
winning strategy for Proponent, a contradiction. ��

In our interpretation of truth values this means that in both cases the information
about l (and l̄) is never excessive. That is, a literal can only be true, false or
ambiguous, but never self-contradictory.

This is a consequence from the fact that both players are using the same defeating
relation, and reminds us that they are just a useful construct to determine one agent’s
reasoning.

Another important lesson to be drawn from this result is that the truth values
depend heavily on the admissibility protocol. To see this, assume that the protocol
adjudicates a win to a player if they can put forward an argument. Then, for any of
the examples we have considered in this paper we would have that PO is the truth
value of the query.

For the special case in which the pre-defeating relation is empty, we have the
following result, which provides a computational shortcut:

Proposition 10 If the relation ≺ is the empty set, then the f irst player has a winning
strategy for a warrant game for a given literal l if and only if there exists at least one
argument for the literal which has no attacking arguments.

Proof Since all attacking arguments are blocking defeaters, the branches of the tree
game will have length at most two. The first player has a winning strategy if and only
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if there is a branch of length one, and this can only happen if an argument for the
literal l has no attackers. ��

Now that we know that warrant games under the DeLP protocol only yield one
of three truth values, we may streamline the procedure for determining the truth
value of each literal. Given a query for a literal l, if there exists a winning strategy
for the Proponent in warrant game for l, then the Proponent will also have a winning
strategy in the game for l̄ and no further calculation is needed. If the Opponent is
the one who has a winning strategy in the warrant game for l, we need to analyze the
warrant game for l̄. This fully justifies the procedure described in [7].

7 Conclusions and future work

We have re-casted the basic definitions of DeLP in a simple mathematical language
so that we can analyze its underlying assumptions anew. We hope that the proposed
formal framework can shed some light on how the warrant mechanism works and
in particular, on the protocol that defines admissibility of an argumentation line. We
have borrowed a page from game theory to present the dialectical process in what we
believe is a natural way. By initially dropping all restrictions in the dialectical process
we uncovered more possibilities for the outcome of a proposed query. We can see
these outcomes as truth values, yielding more information on the nature of what a
given DeLP program concludes about each literal.

We checked that the facts of the program get a positive answer before turning to
the conditions that make our warrant games finite. These conditions can come either
from the defeating relation itself or from an imposed protocol on the way the games
are constructed. Once we have assumptions that guarantee the games considered are
finite, we have fewer truth values.

The inference procedure associated with finding winning strategies has a natural
“semantical” counterpart. That is, the pair of winners, one for each of the two games
can be immediately associated to a truth value as described in the table in section 4.
This depends on the admissibility protocol and the defeating relation adopted.

Game semantics for DeLP have already been introduced in [2] and [3]. The main
differences with our approach are that, on one hand, they do not apply standard
notions of game theory, while on the other hand they restrict themselves to a single
game, that may yield only three truth values, one of which only applies when the
program has nothing to say about a literal.

The protocol of DeLP allows a variant of the “strategy stealing” procedure that
makes the winner in the game for l the winner in the game for l̄ and viceversa [19].

DeLP is usually seen as a representation of skeptical reasoning [19]. This is so,
since as we have seen, positive literals with truth value PP are warranted. Therefore,
contrary to what happens in more credulous formalisms, ambiguously valued literals
do not become warranted. Nevertheless, since the inception of Dung’s [6] abstract
framework of argumentation, skepticism has been associated with the grounded
semantics of an argument system. In this sense, we will see that DeLP is not skeptical,
due to the properties of the warrant protocol.

In order to build this case, let us consider Arg(P) with the defeating relation ≤
defined on it. Then, a function F : P(Arg(P)) → P(Arg(P)) can be defined, such that
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for any S ⊆ Arg(P), F(S) = {α ∈ Arg(P) : for every β such that α ≤ β, there exists
γ ∈ S, β ≤ γ }. A complete extension of Arg(P) is a fixed point of F. The grounded
extension is the least of those fixed points. It obtains iterating F up from ∅. That is, as
the limit of the sequence F(∅), F(F(∅)), . . ..

If DeLP were a skeptical formalism in terms of the grounded extension, we would
have that a literal l is warranted if and only if the argument 〈A, l〉 that yields a win
for the Proponent in the warrant game for l belongs to the grounded extension of
〈Arg(P),≤〉. The following example shows that this is not necessarily the case:

Example 16 Consider a program in which �F = {a, c}, �R = {k ← l} and � =
{l –≺a,∼ l –≺c,∼k –≺ ∼ l}. Consider four arguments: A1 = {∼ l –≺c} for ∼ l; A2 =
{l –≺a} for l and k, and A3 = {∼ l –≺c,∼k –≺ ∼ l} for ∼k. Suppose furthermore that
the pre-defeating relation is as follows: 〈A2, l〉 ≺ 〈A1, ∼ l〉; 〈A3,∼k〉 ≺ 〈A2, l〉; 〈A2, k〉
≺ 〈A1,∼ l〉; 〈A3,∼k〉 ≺ 〈A2, k〉. Consequently, the defeating relation is as follows:
〈A2, l〉 < 〈A1,∼ l〉; 〈A3,∼k〉 < 〈A2, l〉; 〈A2, k〉 < 〈A1, ∼ l〉; 〈A3, ∼k〉 < 〈A2, k〉. No-
tice that all the defeaters are proper.

It is easy to see that the literal ∼k is not warranted, since in the game starting with
〈A3,∼k〉, the Opponent can respond with either 〈A2,∼k〉 or 〈A2, ∼ l〉 to which the
Proponent cannot respond with 〈A1,∼ l〉 since A1 ⊆ A3.

On the other hand, F(∅) = {〈∅, a〉, 〈∅, c〉, 〈A1, ∼ l〉} while the grounded extension
is F(F(∅)) = {〈∅, a〉, 〈∅, c〉, 〈A1,∼ l〉, 〈A3,∼k〉}.

This framework of analysis can be extended to other argumentative systems. In a
system like DeLP, where arguments support certain logical formulas3 any defeating
relation among these arguments may be applied to yield games for a formula and
its negation. The defeating relation and the properties of the protocol determine the
actual partition of the class of formulas. In a more general setting, as shown in [6],
when arguments are abstract entities there is no “negation” involved. But then, we
can still partition the class of arguments in terms of a single game for an argument. If
there is a winning strategy for it, it is deemed true.

It would be interesting to analyze settings in which infinite games could be con-
sidered, to make full use of the possible truth values in the most general framework
we have given. Another interesting line of study is to look for conditions the pre-
defeating relation should satisfy in order give a defeating relation that yields games
with interesting properties (such as finiteness, concordance or s-acyclicity) without
resorting to a somewhat arbitrary protocol.
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