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Abstract
The serine protease α-thrombin (FIIa) plays a fundamental role in blood clotting. In the present report, a FIIa precursor (pFIIa)
was expressed in Nicotiana benthamiana Domin. The expression construct featured the Kozak consensus sequence and the 2S2
Arabidopsis thaliana (L.) Heynh. signal peptide to direct the protein into the secretory pathway (sec-pFIIa). A version carrying
the KDEL endoplasmic reticulum (ER) retention signal (pFIIa-ER) was also constructed. Transient expression of pFIIa in
N. benthamiana leaves was achieved by Agrobacterium tumefaciens infiltration. The influence of post-transcriptional gene
silencing (PTGS) was analyzed by co-infiltrating with an A. tumefaciens strain carrying the construct for the Turnip Crinkle
Virus-coat protein (TCV-CP) known for interfering with PTGS. Reverse transcription polymerase chain reaction and Western
blot analyses confirmed the presence of the corresponding messenger RNA and the recombinant pFIIa protein in plant extracts. A
positive effect of the addition of the PTGS inhibitor was demonstrated. The accumulation of sec-pFIIa and pFIIa-ER was
estimated to be 6 μg g−1 fresh weight (FW) (0.07% (w/w) total protein concentration; TPC) and 17 μg g−1 FW (0.21% (w/w)
TPC), respectively. Furthermore, stably transformed callus and suspension cultures were obtained. The recombinant protein was
detected only in the biomass of the pFIIa-ER cell suspension line at a concentration of 0.25 μg mL−1 (0.017% (w/w) of total
soluble protein). This appears to be the first report describing the expression of a precursor of FIIa in plants.
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Introduction

Blood clotting is a complex mechanism that results from inter-
actions between blood, vessels, platelets, and coagulation fac-
tors. The blood-clotting cascade is triggered by any injury,

ultimately resulting in the conversion of prothrombin into
the proteolytic enzyme α-thrombin (FIIa) as one of its last
steps. Then FIIa activates fibrinogen to fibrin, participates
in the activation of platelets and other blood coagulation
factors (V, VIII, IX, and XIII), and plays a role in the
activation of factor C in the presence of thrombomodulin.
Platelets aggregate on the fibrin clot, collagen, and endo-
thelial cells from the injured vessels, initiating sealing that
prevents bleeding (DiBella et al. 1995; Heemskerk et al.
2002; Adams and Huntington 2016). If any of the men-
tioned steps fail, the consequence is a hemorrhage.

The pharmaceutical industry is attracted by the production
of proteins involved in the blood coagulation mechanism
(Moura et al. 2011; Casademunt et al. 2012; Rech et al.
2014; Santagostino et al. 2014). Particularly, the production
of recombinant FIIa, or any of its precursors, is considered of
interest for the manufacture of hemostatic sealants.
Prethrombin-2, corresponding to amino acids Thr272 to
Glu579 of the human prothrombin, is the smallest single-
chain precursor of FIIa. The difference between
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prethrombin-2 and FIIa is a cleavage at the position Arg320-
Ile321, followed by the release of a 13 amino acid peptide from
the N-terminus. Recombinant prethrombin-2 was already
expressed in Escherichia coli (Choi et al. 1989; So et al.
1992; DiBella et al. 1995; Soejima et al. 2001; Osadská
et al. 2014). However, that recombinant protein aggregates
into inclusion bodies and has to be solubilized and refolded,
hindering the recovery of an active, properly folded enzyme.
A recombinant FIIa was also expressed in yeast, but the prod-
uct was not identical to human FIIa (Holly and Foster, 1996).
Finally, other precursors of FIIa were expressed inmammalian
cell cultures (Le Bonniec et al. 1992; Russo et al. 1997; Oates
et al. 2001; Yonemura et al. 2004).

There is an interest in obtaining a reliable source of FIIa
utilizing plants as biofactories for recombinant proteins. One
of the remarkable traits of plants is that their protein synthesis
machinery produces mammal proteins with often only slight
differences from the original source. Additionally, plants can
perform complex post-translational modifications, such as the
formation of disulfide bridges and folding, plant-made pro-
teins do not aggregate as inclusion bodies, and the final prod-
uct does not carry any risk of contamination with prions, on-
cogenes, toxins, or human pathogens (Twyman et al. 2012;
Fischer et al. 2013; Sabalza et al. 2014; Sack et al. 2015).

When it comes to production, plant systems have the ad-
vantage of an easy and economical scale-up. Additionally, in
the case of confined production (greenhouses or in vitro cul-
tures), the process can be conducted in environmentally con-
trolled conditions, following good manufacturing practices
and good laboratory practices, if required (Sharma and
Sharma 2009; Fischer et al. 2012; Twyman et al. 2012;
Merlin et al. 2014).

As for the drawbacks, plant-made proteins may have gly-
cosylation modifications (Lerouge et al. 1998; Gomord et al.
2010, Batra and Rathore 2016), and the yields of the recom-
binant proteins are usually low (Ullrich et al. 2015).
Subcellular targeting can enhance protein stability, thus in-
creasing the accumulation of heterologous proteins in plants
(Ferraro et al. 2008; Nelson et al. 2012). Endoplasmic reticu-
lum (ER)-retention via the addition of lysine-aspartic acid-
glutamic acid-leucine (KDEL) to the C-terminus is often used
to minimize foreign protein degradation since the ER provides
a relatively protected environment, with a high concentration
of molecular chaperones and a low presence of proteases
(Fischer et al. 2004; Laguia Becher et al. 2010). Meanwhile,
the secretion of foreign proteins into the medium of plant cell
cultures, where metabolites and contaminant proteins are gen-
erally absent, makes for an easier and cheaper protein recov-
ery (Conrad and Fiedler 1998; Doran 2006).

Another factor that influences the yield of recombinant
proteins in plants is gene silencing, which can take place at
the transcriptional or translational level. Post-transcriptional
gene silencing (PTGS) is a defensive response that recognizes

foreign RNA, triggering its degradation (Stam et al. 1997;
Vaucheret et al. 2001). Some plant viruses have evolved strat-
egies to elude this defense mechanism by expressing proteins
that suppress PTGS. Turnip crinkle virus (TCV)-coat protein
(CP), not only has a structural role but it also functions as a
strong suppressor of PTGS (Qu et al. 2003).

The aim of the present work was to clone and evaluate the
expression of two versions of a FIIa precursor (pFIIa), sec-
pFIIa (secretory), and pFIIa-ER (ER-retained) in Nicotiana
benthamiana Domin. The influence of PTGS on recombinant
protein production in a transient expression system by co-
expressing TCV-CP was evaluated. Additionally, pFIIa ex-
pression was analyzed in stably transformed callus and cell
suspension cultures.

Materials and Methods

Construction of plant expression vectors Dr. David G. Ross
from the University of British Columbia (Vancouver, Canada)
kindly provided the human prothrombin coding region (acces-
sion no. MN_000506). Two synthetic sequences, comprised
of amino acids Thr285 to Glu579 of the human prothrombin
(pFIIa), were designed. First, a secretory version (sec-pFIIa)
was constructed by adding the signal peptide 2S2 from the
seed storage protein of Arabidopsis thaliana (L.) Heynh. to
the N-terminus of the pFIIa-coding sequence (Krebbers et al.
1988). Secondly, the endoplasmic reticulum-retention version
(pFIIa-ER) was obtained by adding the ER-retention motif
KDEL to the C-terminus of sec-pFIIa. In both versions (sec-
pFIIa and pFIIa-ER) the Kozak consensus sequence (accatgg)
was placed before the 2S2 signal and a six histidine tag
(6xHis) was added to the C-terminus (Fig. 1A).

The sec-pFIIa and pFIIa-ER transgenes were amplified by
a polymerase chain reaction (PCR) using the following
primers: forward (Fw) 5′-aaccatggcaaacaagctcttcctc-3′
(underlined is an incorporated 5’ NcoI restriction site) and
r e v e r s e ( R v ) s e c - p F I I a 5 ′ - c t c g a g -
tcattaatgatgatgatgatgatgctctccaaactgatc-3′ for the secretory
v e r s i o n , o r R v p F I I a - E R 5 ’ c t c g a g -
tcattatagctcatctttatgatgatgatgatgatgctctccaaactgatc-3′ for the
ER-retention version (underlined is an incorporated 3’ XhoI
restriction site). The PCR products were cloned into the
pGEM®-T Easy vector (Promega®, Madison, WI). To con-
firm the correct synthesis of the genes, both inserts were se-
quenced using specific primers for the promoters T7 and Sp6.
The sec-pFIIa and pFIIa-ER inserts were digested with NcoI
and XhoI enzymes and cloned into the entry vector pENTR4
(Invitrogen™, Carlsbad, CA), previously digested with the
same enzymes. The resulting plasmids, pENTR4:sec-pFIIa
and pENTR4:pFIIa-ER, were each recombined with the plant
binary expression vectors pK7WG2 (pK) and p35SGATFH
(p35S) (Karimi et al. 2002; Zanetti et al. 2005) using the
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Gateway® LR Clonase™ II EnzymeMix (Invitrogen™). The
pK vector contained the Cauliflower Mosaic Virus 35S pro-
moter and terminator (p35S and t35S); meanwhile, the p35S
vector contained the same promoter (p35S) with the transla-
tional enhancer sequence Ω from Tobacco Mosaic Virus and
the Agrobacterium tumefaciens octopine synthase terminator
(OCS 3′; Fig. 1B). In both cases, neomycin phosphotransfer-
ase II (nptII) was the selectable marker gene that confers re-
sistance against kanamycin. In the pK vector, the nptII gene
was under the transcriptional regulation of A. tumefaciens
nopaline synthase (nos) promoter and terminator (Hellens
et al. 2000). In the p35S vector, the nptII gene was under the
control of p35S and t35S (Hajdukiewicz et al. 1994). The
resulting four final plant expression vectors were checked by
PCR and restriction endonuclease mapping (data not shown).

Agrobacterium tumefaciens infiltration The obtained plant
expression vectors pK:sec-pFIIa, pK:pFIIa-ER, p35S:sec-
pFIIa, and p35S:pFIIa-ER were separately introduced into
A. tumefaciens strain EHA101 by electroporation. Fresh sin-
gle colonies of recombinant A. tumefaciens clones were inoc-
ulated in 10 mL of Luria-Bertani (LB, Bertani 1951) medium
autoclaved for 20 min at 0.1 MPa of pressure (Arcano, LS-

B75L; Ningbo, China). After the sterilization procedure, the
medium was supplemented with 20 μg mL−1 rifampicin,
50 μg mL−1 kanamycin, and 100 μg mL−1 spectinomycin
(for pK vectors) or 50 μg mL−1 chloramphenicol (for p35S
vectors). The antibiotics were filter-sterilized by Millipore
MILLEX-GV® 0.22 μm Filter unit (Biopore, Buenos Aires,
Argentina). Agrobacterium tumefaciens cultures were incu-
bated overnight at 28 °C and 210 rpm in an environmental
shaking incubator (Labnet®, 311DS; Edison, NJ). Cultures
were centrifuged at 4000×g for 15 min and the pellets were
resuspended in an infiltration buffer (10 mM 2-(N-
morpholino) ethanesulfonic acid (MES) pH 5.5, 10 mM
MgCl2, 100 μM acetosyringone) to a final optical density at
600 nm (OD600nm) of 0.8 (Tatineni et al. 2012).

For co-expression experiments, suspensions containing a
pFIIa construction were mixed with an equal volume of
A. tumefaciens (OD600nm = 0.8) carrying the PTGS inhibitor
TCV-CP (Qu et al. 2003). As a negative control, a wild-type
(WT) A. tumefaciens culture was used. The A. tumefaciens
suspensions were kept at 24 ± 2 °C for 2 h after being used
for plant transient expression. Nicotiana benthamiana plants
were grown from seeds in pots filled with soil and were main-
tained at 22 to 24 °C under a 16-h photoperiod using

Figure 1. Schematic representation of the constructions used to express
the α-thrombin precursor pFIIa in Nicotiana benthamiana Domin. (A)
Characteristics of the secretory (sec-) and endoplasmic reticulum (ER)
retained pFIIa transgenes. Kozak, Kozak consensus sequence; 2S2, signal
peptide from the seed storage protein of Arabidopsis thaliana (L.)
Heynh.; 6xHis, six histidine tag; KDEL, ER-retrieval motif; NcoI and

XhoI, restriction enzyme sites. (B) Expression vector transfer-DNA (T-
DNA) regions. RB and LB, right and left borders of the T-DNA; p35S and
t35S,CauliflowerMosaic Virus 35S promoter and terminator;Ω, Tobacco
Mosaic Virus 5′ leader sequence; OCS 3′, Agrobacterium tumefaciens
octopine synthase terminator; nptII, neomycin phosphotransferase II
(kanamycin resistance gene); attB1 and attB2, recombination sites.
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fluorescent daylight lamps (Narva T8 LT 18W/760–010 day-
light, Schwandorf, Germany) with an irradiance intensity of
13.5 μmol m−2 s−1 in a growth room. Six-week-old-plants
with six to eight leaves were gently infiltrated with the
A. tumefaciens suspensions by inoculation with a 1-mL sy-
ringe without a needle into the abaxial side of the lamina
(Leuzinger et al. 2013). The A. tumefaciens-infiltrated plants
were maintained in a growth room as described before. A
minimum of three plants per experimental group was infiltrat-
ed (three leaves per plant). For sampling, three leaves per
experimental group (one leaf per plant) were harvested at 3
and 5 d post-infiltration (dpi), frozen in liquid nitrogen, and
stored at − 80 °C until use. Agrobacterium tumefaciens infil-
trations, and their corresponding Western blot analyses (see
below) were repeated at least three times.

Protein extraction and Western blot analysis Frozen
A. tumefaciens-infiltrated leaves were ground in liquid nitro-
gen to a fine powder using a mortar and pestle and extracted
with three volumes of cold Laemmli (1970) buffer (0.5 M
tris(hydroxymethyl)aminomethane (Tris)-HCl pH 6.5, 4%
(w/v) sodium dodecyl sulfate (SDS), 20% (v/v) glycerol,
10% (v/v) 2-mercaptoethanol (Bio-Rad®, Hercules, CA),
and 0.1% (w/v) bromophenol blue). Protein extracts were cen-
trifuged at 17,968×g for 20 min at 4 °C and total protein
concentration (TPC) in the supernatant was measured using
the reducing agent and detergent compatible (RC-DC) protein
assay (Bio-Rad®) with bovine serum albumin (BSA) as a
standard.

Protein samples were boiled for 5 min and separated by
SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
was performed with a 12% separating gel and a 5% stacking
gel and run in a Mini-Protean® Tetra cell (Bio-Rad®) at
150 V for 2 h. The gels were transferred onto Immobilon-P
polyvinylidene fluoride (PVDF) membranes (Millipore™,
Billerica, MA) in a Mini Trans-Blot® cell (Bio-Rad®) at
80 V for 1 h. The membranes were blocked overnight at
4 °C with 0.5% (w/v) casein in Tris-buffered saline, pH 7.5
containing 0.05% (v/v) Tween® 20 (TBST) and then probed
for 1 h at 24 ± 2 °C with sheep polyclonal anti-human throm-
bin antibody (PAHT-S; Haematologic Technologies Inc.,
Essex Junction, VT) diluted 1:1000 in TBST with 0.5%
(w/v) casein. After three washes in TBST, the membranes
were probed for 1 h at 24 ± 2 °C with anti-sheep IgG-peroxi-
dase antibody produced in donkey (A3415; Sigma-Aldrich®),
diluted 1:15,000 in TBST with 0.05% (w/v) casein.
Immunoreactive complexes were detected by chemilumines-
cence using Clarity™ Western enhanced chemiluminescence
(ECL) substrate (Bio-Rad®) and the membrane was exposed
to Kodak® BioMax® Light Film (Carestream, Rochester,
NY) for 3 min before it was developed and fixed. The accu-
mulation of pFIIa in N. benthamiana, A. tumefaciens-

infiltrated leaves was estimated by comparing plant protein
samples with a serial dilution of a known concentration of
purified human thrombin (hT; T1063; Sigma-Aldrich®) elec-
trophoresed on the same polyacrylamide gel. The band inten-
sity of hT detected by Western blot was estimated with the
Gel-Pro® analyzer software (Media Cybernetics, Rockville,
MD) and used as a standard to build a calibration curve, as
previously described by Del L Yácono et al. (2012) and
Albarracín et al. (2015). The pFIIa band intensity detected
by Western blot was also estimated using the Gel-Pro® ana-
lyzer software and compared with the calibration curve ob-
tained by the band intensity of hT. This analysis allowed an
estimation of the concentration of pFIIa expressed in the
A. tumefaciens-infiltrated leaves.

Relat ive quanti f icat ion by real-t ime PCR Frozen
A. tumefaciens-infiltrated leaves (100 mg) were ground to a
fine powder in a 1.5-mL microcentrifuge tube using a plastic
pestle. Total RNA was extracted using RNeasy® Plant Mini
Kit (Qiagen®, Valencia, CA) according to the manufacturer’s
instructions. The RNA concentration was determined by spec-
trophotometric analysis. For the complementary DNA
(cDNA) synthesis, 2 μg of total RNA was reverse-
transcribed using Invitrogen™ Superscript® IV First Strand
Synthesis System (Thermo Fisher Scientific®,Waltham,MA)
and random primers. Transcript quantification was performed
on the ABI 7500 real-time PCR system (Applied
Biosystems™, Foster City, CA). The pFIIa specific primers
(Fw pFIIa 5′-tacaagcctgatgaagggaaac-3′ and Rv pFIIa 5′-
tgagacgatgcccatttgatac-3′) were designed with the software
PrimerQuest Tool (Integrated DNA Technologies, Skokie,
IL). The N. benthamiana 60S ribosomal protein L23 was used
as the endogenous reference gene (Liu et al. 2012).
Polymerase chain reaction amplification efficiency (E) was
estimated for each primer set by standard curve measuring
tenfold serial dilutions of 100 ng of pool cDNA. The slopes
from the regression line plot of cycle threshold (CT) value vs.
log of input cDNAwere related with PCR amplification effi-
ciency by the formula (− 1 ÷ slope).

Real-time PCR was carried out in a final volume of
25 μL using 2.5 μL of 1:15 diluted cDNA (5 ng),
12.5 μL Power SYBR® Green PCR Master Mix 2X
(Applied Biosystems™), and 2.5 μL of each primer set.
The final concentrations of primers used were: 150 nM
Fw pFIIa–300 nM Rv pFIIa and 150 nM Fw L23–150 nM
Rv L23. The amplification program consisted of a DNA
polymerase activation step of 10 min at 95 °C, followed
by 40 cycles of 15 s denaturation at 95 °C with a 1 min
annealing and an extension step at 60 °C. Three indepen-
dent A. tumefaciens-infiltrated leaf samples of each con-
struct combination (pK:sec-pFIIa, pK:pFIIa-ER,
p35S:sec-pFIIa, and p35S:pFIIa-ER ± TCV-CP) were
used with three technical replicates each.
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The relative quantification (RQ) of gene expression was
performed using the comparative CT (ΔΔCT) method in
which the amount of pFIIa, normalized to an endogenous
reference (L23) and relative to a calibrator (WT), was given
by the formula 2–ΔΔCT (Schmittgen and Livak 2008). Relative
quantification for the three biological samples and the corre-
sponding technical replicates was calculated using the SDS
software V. 1.3 (Applied Biosystems™). The error bars
displayed the calculated maximum (RQMax) and minimum
(RQMin) expression levels that represented the standard error
of the mean expression level (RQ value). Collectively, the
upper and lower limits defined the region of expression within
which the true expression level value was likely to occur.
Prism 5.0 software (GraphPad Software Inc., La Jolla, CA)
was used for statistical analysis. Data were compared by one-
way analysis of variance (ANOVA) followed by the
Bonferroni’s multiple comparison tests. A P value < 0.05
was considered as statistically significant.

Callus cultures N. benthamiana plants were A. tumefaciens-
infiltrated with the p35S:sec-pFIIa and p35S:pFIIa-ER plas-
mids as previously described. After 3 d, A. tumefaciens-infil-
trated leaves were washed in running tap water, dipped in
diluted commercial bleach (55 g Cl L−1, Ayudin®, Buenos
Aires, Argentina) at 3.5% (v/v) sodium hypochlorite final con-
centration for 10 min and rinsed four times in sterilized dis-
tilled water to eliminate bacterial cells. Sterilized leaf explants
(1 cm2) were placed in Petri dishes containing solid
Murashige and Skoog (MS, Murashige and Skoog 1962) me-
dium supplemented with 30 g L−1 sucrose, 8 g L−1 agar
(A296, PhytoTechnology Laboratories®, Shawnee Mission,
KS), and 2 mg L−1 naphthaleneacetic acid (NAA) and
0.2 mg L−1 kinetin (KIN) as plant growth regulators. The
pHwas adjusted to 5.7 to 5.8 with 1MKOH prior to autoclav-
ing as described before. The medium also contained the filter-
sterilized antibiotics 50 mg L−1 kanamycin and 500 mg L−1

carbenicillin added after autoclaving. The explants were incu-
bated in a growth room in the same conditions described be-
fore. After 2 wk., the explants started to show hyperplasia and
after 4 wk. calluses were produced. Calluses were separated
and transferred to identical fresh medium without
carbenicillin. Each callus was transferred every 3 wk. to fresh
medium (López et al. 2010, Alvarez et al. 1993). After 6 mo
of culture, independent callus lines showing kanamycin resis-
tance were established.

Molecular analysis of transgenic callus lines Genomic DNA
was isolated from putative transgenic callus lines. Briefly,
200mg of callus was ground in a 1.5-mLmicrocentrifuge tube
using a plastic pestle and extracted with 350 μL of DNA
extraction buffer (50 mM Tris-HCl pH 8, 10 mm ethylenedi-
aminetetraacetic acid (EDTA; Genbiotech SRL, Buenos
Aires, Argentina), 100 mM NaCl, 1% (w/v) SDS, and

10 mM 2-mercaptoethanol). After 10 min at 65 °C, 300 μL
of 3 M potassium acetate pH 5.5 was added and incubated on
ice for 20 min. The samples were centrifuged at 17,968×g for
10min at 4 °C. The supernatant was collected, mixed with one
volume of isopropanol, and centrifuged at 17,968×g for
15 min. The pellet was washed with 80% (v/v) ethanol and
resuspended in 40 μL of dH2O. The insertion of the pFIIa
transgene into the callus genome was confirmed by PCR
screen ing us ing the fo l lowing pr imers : Fw 5 ′ -
c a c c a t g g c a a a c a a g c t c t t c c t c - 3 ′ a n d R v 5 ′ -
atgatgatgatgatgatgctctccaaactgatc-3′.

Transformation efficiency (%) was calculated as: (the total
number of PCR positive calluses) ÷ (total number of kanamy-
cin resistant calluses) × 100.

Finally, for the calluses that exhibited the correct DNA
pFIIa transgene fragment of 973 bp, the presence of the re-
combinant protein was analyzed by Western blot as described
before. For callus protein extraction, 300 mg of fresh callus
tissue was weighed into a 1.5-mL microcentrifuge tube and
extracted with 300 μL of cold Laemmli buffer using a plastic
pestle. Protein extracts were centrifuged at 17,968×g for
20 min at 4 °C.

Cell suspension cultures Fresh friable calluses from the lines
that expressed higher amounts of pFIIa were transferred to a
225-mL Erlenmeyer flasks containing 50 mL of MS medium
with 2 mg L−1 NAA and 0.2 mg L−1 KIN as plant growth
regulators and shaken at 100 rpm on an orbital shaker (Mod
Bm023, Biomint, Buenos Aires, Argentina) in a growth room
as described before. Every 3 wk. during a 3-mo period, an
inoculum of 5% (w/v) was transferred to fresh medium and
maintained in the same culture conditions (Lopez et al. 2010).
Based on the characteristics of cell growth (homogeneous
growth with small cell clusters, optimal biomass yield, and
lack of oxidation) and the presence of the recombinant protein
pFIIa, cell suspension cultures were selected to be scaled up in
a stirred-tank bioreactor (Minifors; Infors HT, Bottmingen,
Switzerland). An inoculum size of 2% (w/v) of 10-d-old cell
suspensions was transferred to a 2-L vessel containing 1.5 L of
the culture mediumwith the same composition used before. A
marine propeller providedmechanical agitation (100 rpm) and
a porous metal sparger supplied a bubble aeration system. The
process was performed at 24 ± 2 °C, 0.1 gas volume flow per
unit of liquid volume min−1 (VVM) set point aeration, and a
starting oxygen mass transfer coefficient (kLa) value of
42.7 h−1. The O2 relative partial pressure (OxyFerm 225;
Hamilton, Reno, NV) and pH (Mettler Toledo, Columbus,
OH) were monitored in line; O2-electrode calibration was
made with pure N2. The oxygen uptake rate (OUR) was esti-
mated at 4.57 mmol O2 (L h)−1. The whole process was mon-
itored by the Iris Explorer software version 5.2 (Polyhedron
Software & Services LTD., Standlake, United Kingdom).
Samples (10 mL per duplicate) were harvested at 0, 2, 4, 6,
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8, 10, 13, and 15 d and filtered using 0.45 μm filter discs with
a low protein binding Durapore (PVDF) membrane (Merck
Millipore™, Sao Paulo, Brazil) to separate the biomass from
the culture medium. The plant cells were weighed for fresh
weight (FW) assessment, which was used as a measure of cell
growth. The whole experiment was performed twice.

Protein extraction and enzyme-linked immunosorbent assay
(ELISA) Samples of cell suspensions were filtered to separate
the biomass from the culture medium. Filtered cells (300 mg)
were powdered in a 1.5-mL microcentrifuge tube in the pres-
ence of liquid nitrogen with a plastic pestle and extracted with
300 μL of cold Tris-buffered saline (TBS). The homogenized
material was placed on ice for 15 min and centrifuged at
17,968×g for 20 min at 4 °C. Total soluble protein (TSP)
concentration (in the biomass and the culture medium) was
determined according to Bradford (1976) using BSA as the
standard protein. Quantification of pFIIa was performed by
ELISA sandwich using commercial antibodies. Briefly, 96-
well Maxisorp® immuno plates (Nunc; Roskilde, Denmark)
were coated with 100 μL per well of mouse monoclonal anti-
human prothrombin antibody (AHP-5013; Haematologic
Technologies Inc.) diluted to 2 μg mL−1 in carbonate buffer
(50 mM pH 9.6) and incubated overnight at 4 °C. Plates were
blocked with 250 μL per well of TBS containing 1% (w/v)
BSA for 2 h at 24 ± 2 °C. For each plate, a standard curve was
prepared with 0, 0.16, 0.31, 0.62, 1.25, 2.5, and 5 μg mL of
purified human prothrombin (HCP-0010; Haematologic
Technologies Inc.) diluted in TBS with 0.25% (w/v) BSA.
Plates were incubated with 100 μL per well of samples and
standards for 2 h at 24 ± 2 °C. After five washes with TBST,
the plates were probed for 1 h at 24 ± 2 °C with sheep poly-
clonal anti-human prothrombin antibody conjugated to horse-
radish peroxidase (P9115-16A; United States Biological,
Salem, MA) diluted 1:1000 in TBS with 0.25% (w/v) BSA.
The washes with TBST were repeated and the plates were
incubated with a 3,3′,5,5´-Tetramethyl-benzidine liquid sub-
strate for ELISA (T0440; Sigma-Aldrich®). The reaction was
stopped by the addition of 100 μL of 1 N HCl and the absor-
bance was measured at 450 nm with a microplate reader
(μQuant; BioTek Instruments Inc., Winooski, VT). Each sam-
ple and standard was assayed in triplicate and the concentra-
tions were interpolated in the linear portion of the standard
curve.

All chemical, standards, and solvents were purchased from
Sigma-Aldrich® (Saint Louis, MO).

Results and Discussion

Agrobacterium-mediated transient expression Transformed
A. tumefaciens clones were used to infiltrate leaves of
N. benthamiana. The A. tumefaciens-infiltration experiment

was carried out independently three times. The expression of
pFIIa was confirmed by Western blot analysis of leaf protein
extracts using a polyclonal antibody against human thrombin.
As shown in Fig. 2A and B, pFIIa was visualized as a faint
single band of approximately 35 kDa only at 3 dpi, with the
exception of pK:pFIIa-ER, where it could not be detected
(Fig. 2A). Transient expression usually peaks at 2–3 d after
A. tumefaciens infiltration and then declines quickly as a result
of PTGS (Voinnet et al. 2003).

In order to enhance pFIIa expression, co-infiltration with
A. tumefaciens containing the silencing suppressor TCV-CP

Figure 2. RepresentativeWestern blot analysis of theα-thrombin precur-
sor pFIIa transient expression in Nicotiana benthamiana Domin leaves.
(A) Endoplasmic reticulum (ER)-retained pFIIa version; (B) secreted
pFIIa version. (C) Semi-quantification of pFIIa co-expressed with
Turnip Crinkle Virus-coat protein (TCV-CP). Total proteins were extract-
ed fromAgrobacterium tumefaciens-infiltrated leaves with Laemmli buff-
er and 15 μg was electrophoresed in a 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a
polyvinylidene fluoride membrane, and probed with a sheep anti-
human thrombin polyclonal antibody. d, days post-A. tumefaciens infil-
tration; +CP, leaves co-A. tumefaciens-infiltrated with TCV-CP; WT,
wild-type N. benthamiana; hT, human thrombin. The pFIIa accumulation
was calculated by densitometry analysis on immunoblots using the Gel-
Pro analyzer software. Calibration curvewasmadewith 50, 100, 200, and
400 ng human thrombin. TheWestern blot results presented are represen-
tative of three independent experiments.
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was tested. The Western blot analysis showed that pFIIa ex-
pression increased and was maintained up to 5 dpi (Fig. 2A
and B, lanes + CP). A higher protein accumulation in
A. tumefaciens-infiltrated leaves was achieved when pFIIa
expression was driven by p35S vector (Fig. 2A and B). The
amount of p35S:pFIIa accumulated inA. tumefaciens-infiltrat-
ed leaves was estimated by comparing the intensity of the
immunoreactive bands corresponding to pFIIa with a standard
curve of purified human thrombin (50, 100, 200, and 400 ng;
Fig. 2C). The expression level of p35S:pFIIa from the secreted
and ER-retained versions was estimated to be 6 and 17 μg g−1

FW, which correspond to 0.07 and 0.21% TPC, respectively,
at 5 dpi in the presence of TCV-CP (Fig. 2C). These results
indicated that the addition of the KDEL tetra-peptide to the C-
terminus of sec-pFIIa and co-expression with TCV-CP had a
positive effect on pFIIa accumulation in A. tumefaciens-infil-
trated leaves. As it has been previously reported, TCV-CP
seems to act as a strong silencing suppressor, preventing
PTGS that might have been triggered by recombinant pFIIa
production (Qu et al. 2003).

Relative quantification of pFIIa expression by real-time PCR
The ΔΔCT method was used to assess and compare pFIIa
expression levels in A. tumefaciens-infiltrated leaves. The in-
ternal reference gene used was the 60S ribosomal protein gene

L23. To ensure the comparability of transcripts, all real-time
PCR reactions were performed with equal quantities of cDNA
(5 ng). Polymerase chain reaction amplification efficiencies of
pFIIa and L23 primer sets were 110 and 105%, respectively.
In all cases, when comparing the same construction with or
without the silencing suppressor TCV-CP, a significant in-
crease in pFIIa expression levels in the presence of the TCV-
CP was observed. This result showed that the silencing sup-
pressor TCV-CP could efficiently enhance transient expres-
sion of pFIIa in N. benthamiana, A. tumefaciens-infiltrated
leaves by increasing pFIIa transcript levels (Figs. 2 and 3).

Callus culture Stable transgenic calluses were generated with
the constructs that yielded the highest accumulated levels in
A. tumefaciens-infiltrated N. benthamiana leaves (p35S:sec-
pFIIa and p35S:pFIIa-ER). Initial attempts to obtain trans-
formed calluses were made by standard leaf disk transforma-
tion using the antibiotics cefotaxime and carbenicillin as bac-
teriostatic agents. However, the effective concentration of an-
tibiotics needed to suppress A. tumefaciens growth resulted in
explant death during the process of callus formation.
Therefore, A. tumefaciens-infiltrated N. benthamiana leaves
were sterilized with 3.5% sodium hypochlorite solution and
used as initial explants for callus cultures. Carbenicillin was
added to the medium at 500 mg L−1, a concentration that does

Figure 3. Relative quantification (RQ) of theα-thrombin precursor pFIIa
expression inNicotiana benthamianaDomin using quantitative polymer-
ase chain reaction analysis (qPCR). Results shown as fold change (log 10
RQ) relative to the wild-type calibrator (CAL). The data error bars rep-
resent the standard error of the mean expression level. pK, Cauliflower
Mosaic Virus 35S promoter and terminator; p35S, Cauliflower Mosaic

Virus 35S promoter followed by translational enhancer sequence Ω from
the Tobacco Mosaic Virus 5′ leader sequence and terminated by the
Agrobacterium tumefaciens octopine synthase terminator; pFIIa-ER, en-
doplasmic reticulum (ER)-retained pFIIa version; +CP, leaves co-
Agrobacterium-infiltrated with Turnip Crinkle Virus-coat protein; sec-
pFIIa, secretory pFIIa version.
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not affect callus formation. This alternative method was effec-
tive for eliminating A. tumefaciens. The growth of
A. tumefaciens was not detected even after removing the an-
tibiotic. After 6 mo of culture, a total of 23 s-pFIIa and 21
pFIIa-ER putative transgenic callus lines were established. To
verify the insertion of the pFIIa transgene into the callus ge-
nome, a PCR-based method was carried out for the fast
screening of callus clones (Fig. 4A). The transformation effi-
ciency was 52.2 and 66.7% for sec-pFIIa and pFIIa-ER, re-
spectively. In order to select the callus lines for the establish-
ment of cell suspension cultures, the expression of pFIIa was
evaluated byWestern blot. Figure 4B shows a weak signal for
pFIIa in transgenic callus lines, with different levels of accu-
mulation. These differences in the expression levels of pFIIa
might be due to position effects which maybe conducive to
gene silencing (Finnegan and McElroy 1994; Gelvin 2003).
This result indicated that the yields obtained in calluses were
lower than those attained by Agrobacterium-mediated tran-
sient expression. Usually, plant cells infected with recombi-
nantA. tumefaciens presented multiple copies of transcription-
ally active T-DNA molecules that produced large amounts of
recombinant protein in a short period of time (Narasimhulu
et al. 1996).

Cell suspension cultures Seven transgenic callus lines for each
version showing high levels of pFIIa accumulation were se-
lected to establish plant cell suspension cultures. Only two
(sec-pFIIa) and four (pFIIa-ER) cell lines were successfully
adapted to growth in suspension cultures in Erlenmeyer flasks,

having only one of each a good performance in the bioreactor
(Fig. 5). The other cell lines, when scaled up exhibited differ-
ent problems, such as micro-callus formation, cell deposit on
the vessel walls, and/or slow growth that hampered the forma-
tion of dispersed cell suspensions. The two cell lines that had a
good performance in the bioreactor were selected to evaluate
their pFIIa production. The line pFIIa-ER showed a cell
growth curve with a 4-d lag phase, followed by an exponential
phase extended up to the 13th day when the stationary phase
started (Fig. 5A). Line sec-pFIIa had a longer lag phase (8 d), a
shorter exponential growth period, and started its stationary
phase at the 13th day of culture as well (Fig. 5A). In line sec-
pFIIa, the final biomass was sevenfold higher (approximately
150 g FW L−1) than the initial biomass, whereas, for line
pFIIa-ER, the final biomass was fivefold higher than the initial
biomass, corresponding to a growth index (GI) of 6.17 and
3.7, respectively (Table 1). The specific growth rate (μ) was
higher in the sec-pFIIa line (0.264 d−1) than in the pFIIa-ER
line (0.152 d−1), with a doubling time of 2.63 d and 4.57 d for
sec-pFIIa and pFIIa-ER, respectively (Table 1). The recombi-
nant pFIIa protein from these cell lines was quantified by
ELISA. The secreted version of pFIIa remained negligible in
the biomass, whereas the ER-retained version of pFIIa in-
creased during the exponential phase, reaching a maximum
concentration of 0.25 μg mL−1 (0.017% TSP) at the 13th day
of the culture (Table 1 and Fig. 5B). In both cases, the recom-
binant protein pFIIa was undetectable in the culture medium
(data not shown). One possible explanation for the lack of
recoverable sec-pFIIa during suspension cultures might be

Figure 4. (A) Representative polymerase chain reaction (PCR) amplifi-
cation for the secretory (sec-) and endoplasmic reticulum (−ER) retrained
α-thrombin precursor (pFIIa) sec-pFIIa and pFIIa-ER transgenes from
transformed Nicotiana benthamiana Domin callus genome. WT, wild-
type callus; M, molecular weight standards; lanes 1 to 5, kanamycin
resistant callus lines; (−), negative PCR control; (+), positive control
(p35S:sec-pFIIa plasmid). The arrows indicate the expected 973 bp size
of the amplification product. (B) Representative Western blot analysis of

sec-pFIIa and pFIIa-ER expression from transgenic callus lines. Total
proteins were extracted from callus with Laemmli buffer. The equivalent
to 25 mg of fresh callus per lane were electrophoresed in a 12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), trans-
ferred to a polyvinylidene fluoride membrane, and probed with a sheep
anti-human thrombin polyclonal antibody. hT, human thrombin; WT,
wild-type N. benthamiana callus; M, molecular weight standards; lanes
1–7, transgenic callus lines.
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that the secreted protein was degraded by host proteases
(Doran 2006). Therefore, ways to increase pFIIa accumulation
in the culture medium could be achieved by the addition of
protease inhibitors and/or by minimizing the effect of extra-
cellular proteases (Huang et al. 2009). From these present
results, it was clear that obtaining a suitable line to grow in
suspension culture required the screening of a large number of
cultures from different callus lines. Additionally, the

productivity of the recombinant protein in suspension cultures
did not necessarily correlate to the expression level obtained in
callus cultures. Callus is a mixture of dedifferentiated cells
with different transgene copy numbers and insertion sites
(Nocarova and Fischer 2009). If in the present study hetero-
geneity at the callus stage occurred, then this might account
for the variable recombinant protein yields observed in sus-
pension cultures (James and Lee 2006).

The production of pFIIa in stable-transformed suspen-
sion cultures was lower than that attained by transient
expression in A. tumefaciens-infiltrated leaves. In addition
to inherent differences between these two expression sys-
tems, PTGS reduction by co-expression with TCV-CP de-
monstratively enhanced transient pFIIa expression levels.
Thus, pFIIa yield in suspension cultures could be enhanced by
using PTGS silencing suppressors (Sudarshana et al. 2006;
Boivin et al. 2010).

Conclusions

The present study reports for the first time that a precursor of
the human α-thrombin was expressed in plants. Transient ex-
pression was attained after 3 d post-A. tumefaciens infiltration
and the yields were higher when co-infiltration with a PTGS
inhibitor was performed (0.07 and 0.21% (w/w) TPC for the
secreted and retained version, respectively). As for the stable
expression, pFIIa yields were only detected in the version
retained in the ER (0.017% (w/w) TSP). In no case was the
recombinant protein found in the culture medium. Clearly,
transient expression yielded higher amounts of pFIIa com-
pared to the stable transformation in the conditions of this
present work. Future experiments will be performed in order
to optimize the growth parameters, including the culture con-
ditions (light source and intensity, culture medium composi-
tion, plant growth regulators, and stabilizing agents) for in-
creasing pFIIa yields in in vitro plant cultures.
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