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Abstract—Despite extensive studies in action recognition and
categorization, it remains a challenging problem to accurately
detect and locate actions in videos, especially in dynamic and
cluttered scenes. Without requiring background subtraction and
human body tracking, we characterize a video as a collection
of spatio-temporal interest points, and propose to detect actions
via searching spatio-temporal video subvolumes. Several novel
techniques are proposed to enable efficient and robust action
detection. First, a random forest based mutual information
estimation method is proposed to provide efficient mutual in-
formation voting of individual interest points. To find video
subvolumes of highest mutual information scores, we propose
a top-K subvolume search to detect multiple action instances
simultaneously. Finally, to enable efficient spatial localization, we
perform subvolume search on the down-sampled score volumes.
A theoretical analysis is developed to bound the error between
the optimal solution of the down-sampled volume and that of
the original volume. The experiments on a challenging MSR
action dataset II show that our proposed multi-class action
detection method is robust to handle action variations caused
by performing speed and style changes, spatial scale changes,
as well as the cluttered and moving backgrounds. Excluding the
feature extraction cost, our method can search an one hour long
video in less than half a hour.

Index Terms—Action Detection, Random Forest, Branch and
Bound, Top-K search.

I. INTRODUCTION

Understanding human behaviors is one of the core problems
in many video-based applications, such as video surveillance,
event-based video indexing and search, and intelligent human
computer interaction. Despite extensive studies in human
action recognition and categorization [3] [4] [6], the detection
and accurate localization of human actions remains a chal-
lenging problem. Different from action categorization which
only requires to identify which type of action occurs in a video
clip, action detection needs to identify not only the occurrences
of a specific type of actions, but also where (spatial location
in the image) and when (temporal location) it occurs in the
video [7] [8] [9] [10]. An example is the detection of a
person waving hands in a crowded and dynamic scene. It is
in general a much more useful and challenging problem than
categorization.

To robustly detect human actions, some early methods rely
on the tracking of human bodies. With the accurate tracking
of a human body and its movements, one can recognize
and detect actions. This category of methods, however, is of
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limited use in real applications, because reliable body tracking
remains a difficult problem in crowded and dynamic scenes.
For example, in a supermarket with many pedestrians, it is
very difficult to detect and track all of the people, let alone to
recognize their actions, e.g. someone raising his/her hands.

Instead of tracking human bodies, some other methods treat
videos as spatio-temporal three-dimensional data, and perform
action detection as the spatio-temporal template matching (3-
dimensional matching). Similar to the sliding window based
object detection, given an action template, the re-concurrences
of the query action can be found by evaluating all of the
possible video subvolumes. Despite previous successes of this
approach, there still remain two major challenges.

First of all, in the template matching method, usually
only a single template is provided to perform action detec-
tion [21] [41]. In such a case, a single template cannot well
characterize the intra-class variations of an action and is not
discriminative enough for classification. Second, different from
object detection, the search space in the spatio-temporal video
space is extremely large. It thus greatly increases the computa-
tional cost for these template based approaches. For example,
it is very time consuming to search actions of different spatial
scales and different temporal durations in the video space.
Although the recently proposed spatio-temporal branch-and-
bound search method [9] [12] can significantly improve the
search speed, it is still not fast enough to handle higher-
resolution videos (e.g. 320 × 240 and higher.) Considering that
the spatial localization is computationally more demanding
for high resolution videos, it is important to provide efficient
solutions to search the high-resolution videos. Moreover, given
a video dataset containing multiple action instances, it requires
an efficient method to detect all of them in one round of search.

To address the above challenges in action detection, we
propose a random forest based template matching method
to detect actions, as shown in Fig. 1. Without performing
background subtraction and human body tracking, each video
sequence is characterized by a collection of spatio-temporal
interest points (STIPs). During the training phase, a random
forest is built to model the distribution of the STIPs from both
positive and negative classes in the high-dimensional feature
space. During the testing phase, each individual point matches
the query class through the pre-built random forest, and
provides an individual voting score toward each action type.
Following the mutual information maximization formulation
in [9], action detection becomes to find the spatio-temporal
video subvolume with the maximum total mutual information
score.

Compared with the nearest neighbor based matching scheme
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Fig. 1. The overview of our random forest based video subvolume search.

in [9], our proposed random forest based approach enables a
much more efficient interest point matching without degrading
the matching quality. Meanwhile, as multiple positive and
negative action samples are utilized in building the random
forest, our proposed method not only well handles intra-class
action variations, but also provides more discriminative match-
ing to detect action instances. To reduce the computational
overhead in searching high resolution videos, we improve
the original spatio-temporal branch-and-bound search method
in [9] on two aspects: first of all, instead of performing branch-
and-bound search in the original score volume, we propose
to search a down-sampled score volume for efficient action
localization. Our theoretical analysis shows that the error
between the optimal solution of the down-sampled volume and
that of the original volume can be well bounded. Secondly,
we propose a top-K search method to enable the detection of
multiple action instances simultaneously in a single round of
branch-and-bound search. It provides an efficient solution for
multi-class multiple instance action detection.

To evaluate the efficiency and generalization ability of
our proposed method, we perform the cross-dataset action
detection: training on the KTH dataset, while testing on the
MSR action dataset II, which contains 54 challenging video
sequences of both indoor and outdoor scenes. The extensive
multi-class action detection results show that, ignoring the
feature extraction cost, our proposed method can search a one-
hour 320 × 240 video sequence in less than half an hour.
It can detect actions of varying spatial scales, and can well
handle the intra-class action variations including performing
style and speed variations, and even partial occlusions. It also
can handle the cluttered and dynamic scenes. The proposed
Top-K volume search algorithm is general and can be used
for any other applications of video pattern search.

II. RELATED WORK

Even though there has been a large body of work in action
categorization [30] [31] [33] [34] [39] [42], action detection is
much less addressed in the literature. Different from action cat-
egorization, action detection is more challenging as it needs to
localize the actions both spatially and temporally in cluttered
or dynamic background [7] [8] [9] [12] [10] [19] [20] [40].

Even with good action categorization scheme, it can be time-
consuming to search the video space and accurately locate the
action. Compared with event detection [28] [29] [32] [43], ac-
tion detection focuses on the various activities and movements
performed by humans, which has a wide potential applications
in our daily life.

There are mainly two types of existing approaches for
action detection. The first is the template-based pattern match-
ing [11] [7] [13] [21] [35]. Two types of temporal templates
are proposed in [11] for characterizing actions: (1) the motion
energy image (MEI), which is a binary image recording
where the motion has occurred in an image sequence; and
(2) the motion history image (MHI), which is scalar valued
image whose intensity is a function of the recency of motion.
In [14], the motion history volume (MHV) is introduced as
a free-viewpoint representation for human actions. To better
handle the cluttered and dynamic backgrounds, an input video
is oversegmented into many spatio-temporal video volumes
in [8]. An action template is matched by searching among
these over-segmented video volumes. However, because only
one template is utilized, previous template-based methods
usually have difficulties in handling intra-class action vari-
ations. Some discriminative methods have been developed
to improve template matching. In [15] [16], Haar features
are extended to 3-dimensional space, and boosting is applied
to integrate these features for final classification. In [18], a
successive convex matching scheme is proposed for action
detection. In [17], a prototype-based approach is introduced,
where each action is treated as a sequence of prototypes. The
computation costs of these algorithms are extremely high, for
example, it takes several minutes or even hours to handle a
single short video clip. More specifically, due to the need
to enumerate all the possible subvolumes in a video clip,
the computational complexity grows rapidly as the templates
become more complex.

The second strategy is the tracking based action detec-
tion. It relies on human tracking to provide a subvolume
for categorization. In [10], multiple instance learning based
approach is applied to human action detection, which relies
on head detection and tracking. Similarly, the techniques
presented in [37] and [38] also require human tracking as a
pre-processing step.

Generally speaking, both the template based and tracking
based detection approaches have their own limitations. Track-
ing based approach is largely constrained by the tracking
precision. Since human tracking in a complex and dynamic
environment is itself a challenging problem, it is not practical
to rely on tracking to solve the action detection problem.
On the other hand, the template matching based approach,
however, is usually computationally intensive. The template
mainly relies on positive samples thus not discriminative.
Although the branch and bound search proposed in [9] can
speed up the action detection, the computational cost is still
very high for high resolution videos (such as 320 × 240 or
higher) due to the large search space. Thus, more efficient
algorithm is required.
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III. MULTI-CLASS ACTION RECOGNITION

A. Mutual Information based Classification

We represent an action as a collection of spatio-temporal
interest points (STIPs) [1], where d ∈ RN denotes an N -
dimensional feature vector describing a STIP. Denote C =
{1, 2, ..., C} as the class label set.

In order to recognize different action classes, we evaluate
the mutual information between a testing video clip Q = {dq}
and one action class c ∈ C:

MI(C = c,Q) = log P (Q|C=c)
P (Q)

= log

∏
dq∈Q P (dq|C=c)∏

dq∈Q P (dq)

=
∑
dq∈Q log

P (dq|C=c)
P (dq)

,

(1)

where dq refers to the STIP point in Q and we assume dq

is independent from each other. Each sc(dq) = log
P (dq|C=c)
P (dq)

can be considered as the mutual information between a STIP
point dq and a specific class c.

In the previous work [9], sc(dq) is computed as follows:

sc(dq) = MI(C = c, dq) = log
C

1 +
P (dq|C6=c)
P (dq|C=c)

(C − 1)
, (2)

where C is the number of classes. The likelihood ratio in Eq. 2
is calculated by:

P (dq|C 6= c)

P (dq|C = c)
≈ λcexp−

1
σ2

(||dq−dc−NN ||
2−||dq−dc+NN ||

2), (3)

where dc+NN and dc−NN are the nearest neighbors of dq in the
positive class and negative class, respectively, and λc is the
ratio of the number of positive STIP to the number of negative
STIP in the training dataset.

Despite its good performance, Eq. 3 has two limitations:

• In order to calculate the likelihood ratio in Eq. 3, we need
to search the nearest neighbors dc+NN and dc−NN . Although
locality sensitive hash (LSH) has been employed for fast
nearest neighbor search, it is still time consuming for
large high dimensional dataset.

• Only two STIPs are used to approximate the likelihood
ratio in Eq. 3, which is not accurate.

To address the two problems, we reformulate the voting
score sc(dq) in Eq. 1 with:

Sc(dq) = MI(C = c, dq) = log
P (dq|C=c)
P (dq)

= log
P (C=c,dq)

P (C=c)P (dq)

= log
P (C=c|dq)
P (C=c)

= logP (C = c|dq)− logP (C = c).

(4)

As P (C = c) is a constant prior, the problem boils down to
computing the posterior P (C = c|dq). To enable an efficient
computation, we approximate this probability with a random
forest.

B. Random Forest based Voting
Random forest was first proposed to solve the classifica-

tion problem [24]. Later, it is extended to handle regression
problems and is used for many multimedia applications,
like [5] [25] [26] [27] [6] [36]. In our paper, random forest is
employed to estimate the posterior probability P (C = c|dq).

To build the forest from a training dataset, we use a method
motivated by [5]. However, compared with [5], which treats
a random forest as a classifier and votes for the hypothesis
given a feature point, our random forest is used to estimate
the posterior of each STIP point.

Two kinds of descriptors for STIP: HoG (Histogram of
Gradient) and HoF (Histogram of Flow), are used to build
the random forest. In the following, we first describe how
to build a single decision tree, then the forest is constructed
by M independent trees. Assume we have N STIP points in
the training set, defining them as {(xi, yi), i = 1, 2, · · · , N},
where xi = (x1i , x

2
i ); x1i ∈ R72 and x2i ∈ R90 refer to

the HOG feature and HOF feature, respectively; yi ∈ C is
the label of the STIP. In order to build a tree and split the
training set, a random number τ ∈ {1, 2} is first generated to
indicate which kind of feature to use for splitting (xτ=1

i refers
to HOG feature and xτ=2

i refers to HOF feature). Then two
more random integer numbers e1 and e2 will be generated,
indicating the dimension indices of either HOG or HOF
feature. After that, a “feature difference” can be evaluated with
Di = xτi (e1)−xτi (e2), i = 1, 2, · · · , N . For each xi, we assign
it to the left child node if xτi (e1)− xτi (e2) ≥ θ or right child
node if xτi (e1)− xτi (e2) < θ.

The threshold θ is selected by minimizing the binary clas-
sification error:

θ∗ = argminθ( min{E(c)L+E(c̄)R, E(c)R+E(c̄)L} ), (5)

where:
E(c)L =

∑N
i=1 I(yi 6= c)I(xτi (e1)− xτi (e2) ≥ θ)

E(c)R =
∑N
i=1 I(yi 6= c)I(xτi (e1)− xτi (e2) < θ)

E(c̄)L =
∑N
i=1 I(yi = c)I(xτi (e1)− xτi (e2) ≥ θ)

E(c̄)R =
∑N
i=1 I(yi = c)I(xτi (e1)− xτi (e2) < θ).

(6)

In Eq. 6, I(x) is a indicator function, that is I(x) = 1 if
x = 1 and 0 otherwise. And c is the action type we want
to detect. The first two terms refer to the misclassification
errors of the left node and right node, respectively, when the
labels of the nodes are both c. The last two terms refer to
the misclassification errors of the left node and right node,
respectively, when the labels of the nodes are not c.

The above three parameters (τ, e1 and e2) can be integrated
into a single hypothesis. For example, we can generate a
hypothesis to partition the dataset using the following three
steps:
• Generate τ ∈ {1, 2} to indicate the feature type to use
• Generate the dimension index e1 and e2 and compute the

feature difference Di = xτi (e1)−xτi (e2), i = 1, 2, · · · , N
• Split the dataset into two parts based on a threshold on

feature difference and obtain a misclassification error
We generate γ hypotheses independently (γ = 200 in our

experiments) and select the one with the smallest misclassifi-
cation error. After this, one node will be built and the training
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set will be partitioned into two parts. For each part, a new node
will be further constructed in the same way. This process is
repeated until any of the two conditions below is satisfied:
(1) the depth of the tree reaches the maximum number or (2)
the number of points in the node is smaller than a predefined
threshold.

Now, we discuss how to compute P (C = c|dq) with a
random forest. Suppose we have M trees in a forest and the
STIP dq will fall in one of the leaves in each tree. Assume that
for a tree Ti, the STIP point dq falls in a leaf with N+

i positive
samples and N−i negative samples. The posterior distribution
of dq can be approximated by the average density of the M
nodes in M different trees:

P (C = c|dq) ≈
1

M

M∑
i=1

N+
i

N+
i +N−i

. (7)

Then Eq. 4 can be replaced with:

Sc(dq) = logP (C = c|dq)− logP (C = c)

= log 1
M

∑M
i=1

N+
i

N+
i +N−i

− logP (C = c).
(8)

In the training dataset, the positive and negative data are
unbalanced, and also the numbers of STIP points are dif-
ferent for different action classes. Therefore, it is inaccurate
to compute the prior probability P (C = c) directly from
the distribution of training dataset. In our experiments, we
introduce the parameter A = −logP (C = c) and optimize it
in the experiments.

The benefits of using the random forest are numerous.
First, each tree in the forest is independent to other trees
when evaluating P (C = c|dq) in Eq. 7. The average of them
thus reduces the variance of the estimation. Second, random
forest is fast to evaluate during the testing stage. The runtime
cost for each STIP only depends on the depth of each tree
and the number of trees. It is not affected by the number
of points in the training data. Hence, it is much faster than
LSH based nearest neighbor search. In the experiment section,
we will show that random forest based voting approach is
over 4000 times faster than the LSH based approach. Another
advantage of random forest compared with LSH is that, when
constructing the trees, the label information of xi can be
integrated. Thus, the trees follow the data distribution of the
training data. This improves the generalization ability. Finally,
the construction of random forest is flexible. Besides the
label information, it is easy to combine other types of feature
descriptors and spatial information of STIPs.

After obtaining the individual voting score of each STIP,
the spatio-temporal location and scale of the target action will
be determined by the branch-and-bound search as described
in next section.

IV. ACTION DETECTION AND LOCALIZATION

The purpose of action detection is to find a subvolume
V with the maximum similarity to the pre-defined action
type. Following [9], with each STIP being associated with an
individual score sc(d), our goal is to find the video subvolume
with the maximum score:

V ∗ = argmaxV⊂Vf(V ), (9)

Where, V = [T,B] × [L,R] × [S,E] is a video subvolume,
where L, R, T, B, S and E are the left, right, top, bottom, start
and end positions of V ; f(V ) =

∑
d∈V s

c(d) and V is the
whole video space. A subvolume V is said to be maximal if
there does not exist any other subvolume V ′ such that f(V ′) >
f(V ) and V ′∩V 6= ∅. The action detection problem is to find
all the maximal subvolumes whose scores are above a certain
threshold.

A spatio-temporal branch-and-bound algorithm was pro-
posed in [9] to solve the single subvolume search problem.
Instead of performing a branch-and-bound search directly in
the 6-dimensional parameter space Λ, the method performs a
branch-and-bound search in the 4-dimensional spatial parame-
ter space. In other words, it finds the spatial window W ∗ that
maximizes the following function:

F (W ) = max
T⊆T

f(W × T ), (10)

Where W = [T,B]× [L,R] is the spatial window; T = [S,E]
is the temporal segment, and T = [0, t− 1].

One advantage of separating the parameter space is that
the worst case complexity is reduced from O(m2n2t2) to
O(m2n2t). The complexity is linear in t, which is usually the
largest of the three dimensions. For this reason, it is efficient
in processing long videos, but when the spatial resolution
of the video is increased, the complexity goes up quickly.
The method of [9] was tested on videos with low resolution
videos (160 × 120). In this paper we are interested in higher
resolution videos (320 × 240 or higher). We found that
for videos taken under challenging lighting conditions with
crowded background such as those in the publicly available
MSR Action dataset II 1, the action detection rates on 320
× 240 resolution are much better than those on 160 × 120.
Unfortunately, the subvolume search for 320 × 240 videos is
much slower. For example, [9] takes 20 hours to search the
MSR Action dataset II which consists of 54 video sequences
of 1 minute long each with 320×240 resolution.

Moreover, in [9], the multi-instance detection problem was
converted to a series of single subvolume search problem.
They first find the optimal subvolume V1 such that f(V1) =
maxV f(V ). After that, it sets the scores of all the points in
V1 to be 0, and finds the optimal subvolume V2, and so on.
To further speed up the search process during the branch-and-
bound iterations, a heuristic was used in [12]. If a candidate
window W with a score larger than the detection threshold is
found, the subsequent searches are limited to the subwindows
contained in W. It guarantees that it will find a valid detection,
but the detected subvolume is not guaranteed to be optimal.

In the next two subsections, we present two techniques to
speed up the subvolume search algorithm. The combination of
the two techniques allow us to perform subvolume search on
320×240 videos in real time.

A. Spatial Down-Sampling

To handle high-resolution videos, the technique is to spa-
tially down-sample the video space by a factor s before

1 The MSR action dataset II is available at
http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/default.htm

http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/default.htm
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Fig. 2. Approximation of the spatial down-sampling. Left figure shows the
score image in the original resolution and right figure shows the down-sampled
score image. Every four small pixels in a cell from the original resolution sum
up to one score in the low resolution, for example, the value in the top-left
pixel from the right figure 0.5 = 0.1 + 0.3− 0.4 + 0.5. We notice that the
optimal solution found in the down-sampled video space is worse than that
in the original space (fs(Ṽ ∗) = 1.1 < f(V ∗) = 1.4)

the branch-and-bound search. Note that the interest point
detection, descriptor extraction, and the scores are all done
in the original video sequence.

For a video volume V of size m × n × t, the size of the
down-sampled volume Vs with scale factor s is m

s ×
n
s × t.

For any point (i, j, k) ∈ Vs where i ∈ [0, ms − 1], j ∈ [ns − 1],
and k ∈ [0, t−1], its score is defined as the sum of the scores
of the s× s points in V , that is, fs(i, j, k) is defined as

fs(i, j, k) =

s−1∑
x=0

s−1∑
y=0

f(s ∗ i+ x, s ∗ j + y, k). (11)

Given any subvolume V s = [L,R]× [T,B]× [S,E] ⊂ Vs,
where L,R, T,B, S and E are the left, right, top, bottom, start
and end positions of V s, respectively, denote ξ(V s) to be its
corresponding subvolume in original video V , that is,

ξ(V s) = [s∗L, s∗(R+1)−1]×[s∗T, s∗(B+1)−1]×[S,E].
(12)

As they are the same subvolume, it is easy to see that

fs(V s) = f(ξ(V s)). (13)

A subvolume V = [X1, X2] × [Y1, Y2] × [T1, T2] ⊂ V is
called an s-aligned subvolume if X1 and Y1 are multiples of
s and the width X2−X1 + 1 and height Y2−Y1 + 1 are also
multiples of s. Eq. 12 provides a one-to-one mapping between
the volumes in Vs and the s-aligned subvolumes in V .

Instead of searching the original video space, we can search
the down-sampled video space Vs of a much smaller size
m
s ×

n
s × t. However, as the down sampling process also intro-

duces the approximation errors, it affects the search results. In
general, for any V s ⊂ Vs, there exists a V = ξ(V s) ⊂ V . It
thus shows that the maximum subvolume found in the down
sampled space is at most as good as the one found in the
original space:

maxV s⊂Vsf
s(V s) ≤ maxV⊂Vf(V ). (14)

We illustrate a concrete example in Fig. 2. For simplicity,
in Fig. 2, we choose the down sampling factor s = 2 and
discuss the problem in the 2D space (only one frame is
considered). The left figure shows the original video space
and its down sampled version is in the right figure. Each
pixel is associated with a voting score. The orange rectangle
highlights the optimal solution in the original video space,

namely the bounding box of the highest total sum. After the
down-sampling, the grey rectangle is the detection result in
the down-sampled video. By mapping to the original space,
we obtain an approximate solution highlighted by the red
rectangle. It overlaps with the optimal solution in the original
space, but the total sum is slightly less. To further quantify
the approximation error, we derive the upper bound of the
error caused by the down sampling, as explained in Theorem 1.

Theorem 1: Bound of the approximation error
Let V ∗ denote the optimal subvolume in V , that is, f(V ∗) =

maxV⊂Vf(V ). Assume V ∗ = [x1, x1 + w − 1] × [y1, y1 +
h − 1] × [t1, t2] where w and h are the width and height of
V ∗, respectively. Then, there exists an s-aligned subvolume Ṽ
satisfying:

f(Ṽ ) ≥ (1− s ∗ h+ s ∗ w + s2

wh
)f(V ∗). (15)

The proof of this theorem is in the appendix.

Let Ṽ ∗ = argmaxV ∈Vsfs(V ) denote the optimal subvolume
in Vs. Based on Eq. 15, we have

fs(Ṽ ∗) ≥ (1− s ∗ h+ s ∗ w + s2

wh
)f(V ∗). (16)

As an example, suppose spatial dimension of V is 320×240,
and the scale factor s = 8. The spatial dimension of the down-
sampled volume is 40× 30. If we assume the window size of
the optimal subvolume V ∗ is 64×64, then the average relative
error is at most

s ∗ h+ s ∗ w + s2

wh
=

8 ∗ 64 + 8 ∗ 64 + 82

642
≈ 25%. (17)

We have run numerical experiments to measure the relative
error of the optimal solutions in the down-sampled volumes.
We used 30 video sequences of resolution 320 × 240. There
are three action types. For each video sequence and each
action type, we obtain a 3D volume of scores as defined in
Eq. 8. We choose s = 8, and down-sample each 3D volume
to spatial resolution of 40×30. There are 113 actions in total.
For each action, we compute its corresponding downsampled
subvolume, and evaluate the relative error which is the score
difference divided by the original action score. The mean
is 23% and the standard deviation is 26%. We can see that
the numerical experiments are consistent with the theoretical
analysis.

B. Top-K Search Algorithm

The multi-instance search algorithm in [9] repeatedly ap-
plies the single-instance algorithm many times until some stop
criteria is met. In practice, there are typically two different
stop conditions that can be used. The first is to stop after k
iterations where k is a user-specified integer. The second is to
stop when the detection score is smaller than a user-specified
detection threshold λ. In either case, suppose the number of
detected instances is k, then the worst case complexity of the
algorithm is O(kn2m2t).
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We notice that in 1D case, Stolting and Gronlund [2]
developed a algorithm that finds the Top-K subarrays in
O(n + k) time. This is much more efficient than repeatedly
applying the single-instance algorithm k times which has the
complexity O(kn). In 3D case, we would also like to have
an algorithm that is more efficient than simply applying the
single-instance algorithm k times. We consider two different
variants corresponding to the two stop criteria. The first, called
λ search, can be applied when we are interested in finding
all the subvolumes above a user-specified threshold λ. The
second, called Top-K search, can be applied when we are
interested in finding the Top-K subvolumes.

1) λ Search: In this section we describe an algorithm that
finds all of the subvolumes with scores larger than a user-
specified threshold λ. The pseudo-code of the algorithm is
shown in Algorithm. 1. Following the notation in [9], we use
W to denote a collection of spatial windows, which is defined
by 4 intervals that specify the parameter ranges for the left,
right, top, and bottom positions, respectively. Given any set of
windows W, we use F̂ (W) to denote its upper bound which is
estimated in the same way as in [9]. We use Wmax to denote
the largest window among all the windows in W. Initially, W
is equal to the set of all the possible windows on the image.

Algorithm 1 λ search.
1: Initialize P as empty priority queue
2: set W = [T,B,L,R] = [0,m]× [0,m]× [0, n]× [0, n]
3: push(W, F̂ (W)) into P
4: repeat
5: Initialize current best solution F ∗,W ∗

6: repeat
7: retrieve top state W from P based on F̂ (W)
8: if F̂ (W) > λ then
9: split W into W1 ∪W2

10: if F̂ (W1) > λ then
11: push (W1, F̂ (W1)) into P
12: update current best solution {W ∗, F ∗}
13: end if
14: if F̂ (W2) > λ then
15: push (W2, F̂ (W2)) into P
16: update current best solution {W ∗, F ∗}
17: end if
18: end if
19: until F̂ (W) ≤ F ∗
20: T ∗ = argmaxT∈[0,t]f(W ∗, T );
21: add V ∗ = [W ∗, T ∗] to the list of detected subvolumes.

22: for each point (i, j, k) ∈ V ∗, set f(i, j, k) = 0.
23: until F̂ (W) ≤ λ

In terms of the worst case complexity, the number of
branches of this algorithm is no larger than O(n2m2) since the
algorithm does not re-start the priority queue P . Each time it
branches, the algorithm has to compute the upper bound whose
complexity is O(t). Therefore the worst complexity involved
in branch and bound is the same as [9]: O(n2m2t). In addition,
each time when it detects a subvolume, the algorithm has to

update the scores of the video volume which has complexity
O(nmt). If there are k detected subvolumes, the complexity
for updating the scores is O(kmnt). Overall, the worst case
complexity of this algorithm is O(n2m2t) +O(kmnt). When
k is large, this is much better than O(kn2m2t).

2) Top-K Search: In this section we describe how to modify
Algorithm 1 for the case when we are interested in finding the
Top-K actions, and we assume we do not know the threshold
λ.

The pseudo-code of the algorithm is shown in Algorithm 2.
The algorithm is similar to Algorithm 1. There are four
major differences. First, instead of maintaining a single current
best solution, it maintains k-best current solutions. Second, it
replaces the criteria F̂ (W) > λ with F̂ (W) > F ∗k to determine
whether we need to insert W1 or W2 into the queue P .
Third, it replaces the inner-loop stop criteria F̂ (W) ≤ F ∗ with
F̂ (W) ≤ F ∗c . Finally, the outer-loop stop criteria F̂ (W) ≤ λ
is replaced with c > k. In this algorithm, the number
of outer loops is k. So the worst case complexity is also
O(n2m2t) +O(kmnt).

Algorithm 2 Top-K Search.
1: Initialize P as empty priority queue
2: set W = [T,B,L,R] = [0,m]× [0,m]× [0, n]× [0, n]
3: push(W, F̂ (W)) into P
4: c=1
5: repeat
6: Initialize ({W ∗i , F ∗i })i=c...k where F ∗k ≤ ... ≤ F ∗c
7: repeat
8: retrieve top state W from P based on F̂ (W)
9: if F̂ (W) > F ∗k then

10: split W into W1 ∪W2

11: if F̂ (W1) > F ∗k then
12: push (W1, F̂ (W1)) into P
13: update ({W ∗i , F ∗i })i=c...k
14: end if
15: if F̂ (W2) > F ∗k then
16: push (W2, F̂ (W2)) into P
17: update ({W ∗i , F ∗i })i=c...k
18: end if
19: end if
20: until F̂ (W) ≤ F ∗c
21: T ∗ = argmaxT∈[0,t]f(W ∗, T );
22: output V ∗c = [W ∗, T ∗] as the c-th detected subvolume
23: for each point (i, j, k) ∈ V ∗c , set f(i, j, k) = 0.
24: c = c+1
25: until c > k

V. EXPERIMENTS

A. Action Classification

To evaluate our proposed random forest based approach for
multi-class action classification, we test on the benchmark
KTH dataset. The experiment setup is the same as [1] [9]
where clips from 16 persons are used for training and the
other 9 persons are used for testing. The confusion matrix is
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listed in Table I. We also compare our results with the state-of-
the-art results in Table. III. With the same input features, our
method performs as well as the method using support vector
machine for classification [4]. Although our performance is
slightly worse than the nearest neighbor based classification
in [9], as will be shown later, our approach is significantly
faster as it avoids the nearest neighbor search.

B. Action Detection

To evaluate our multi-class action detection and localization,
we perform cross-dataset training and testing. We first build
a random forest using the KTH dataset (with the 16 persons
in the training part) and then test on a challenging dataset
(MSRII) of 54 video sequences where each video consists of
several actions performed by different people in a crowded en-
vironment. Each video is approximately one minute long. The
videos contains three different types of actions: handwaving,
handclapping and boxing.

For all of our experiments we have fixed K = 3, λ =
3.0. Moreover, unless explicitly mentioned we downsample
the score volume to 40 × 30 pixels.

Fig. 3 compares the precision-recall for the following meth-
ods (the original videos are of high resolution 320 × 240).
Except for (vii), which uses our random forest based voting
score, the other methods apply the LSH based nearest neighbor
voting score as in [9]:
(i) ASTBB (Accelerated Spatio-Temporal Branch-and-

Bound search) of [12] in low resolution score volume
(frame size 40 × 30),

(ii) ASTBB of [12] in 320× 240 videos,
(iii) multi-round branch-and-bound search of [9] in low-

resolution score volume (frame size 40 × 30),
(iv) Top-K search at original size 320× 240,
(v) Top-K search at down-sampled score volume (size 40×

30),
(vi) λ search at down-sampled score volume (size 40× 30),

(vii) random forest based weighting followed with Top-K
search at down-sampled score volume (size 40× 30).

clap wave box run jog walk
clap 137 1 6 0 0 0
wave 7 137 0 0 0 0
box 0 0 144 0 0 0
run 0 0 0 95 47 2
jog 0 0 0 4 136 4
walk 0 0 0 0 0 144

TABLE I
CONFUSION MATRIX FOR KTH ACTION DATASET. THE TOTAL ACCURACY

IS 91.8%.

Method Mean accuracy
Our method 91.8%
Yuan et al’s [9] 93.3%
Reddy et al’s [6] 90.3%
Laptev et al’s [4] 91.8%

TABLE II
COMPARISON OF DIFFERENT REPORTED RESULTS ON KTH DATASET

The parameter A = −logP (C = c) in Eq. 8 for method
(vii) is set to 2.1, 1.7 and 0.9 for handclapping, handwaving
and boxing respectively. Also, we use the walking actions from
KTH as the negative dataset when constructing forests. For the
purpose of generating precision-recall curves, we modified the
outer-loop stop criteria (line 25, algorithm 2) to repeat until
F̂ (W) ≤ λ where λ is a small threshold. In this way, it outputs
more than K subvolumes which is necessary for plotting the
precision-recall curve. Some sample detection results obtained
by our approach (vii) are shown in Fig. 5.

The measurement of precision and recall is the same as what
is described in [9]. For the computation of the precision we
consider a true detection if : Volume(V ∗∩G)

Volume(G)
> 1

8 where G is
the annotated ground truth subvolume, and V ∗ is the detected
subvolume. On the other side, for the computation of the recall
we consider a hit if: Volume(V ∗∩G)

Volume(V ∗)
> 1

8 .

We first compare the results based on LSH voting ap-
proaches. Fig. 3 lists the Precision-Recall curves for the
three different action classes, respectively. Fig. 4 shows the
average PR curve for the three actions. The average PR
curve is computed by averaging precision and recall results
among the three action types while adjusting a threshold.
This can give a general idea of the overall performance for
different algorithms. From the precision-recall curves, we can
see that although the accelerated search of [12] provides
excellent results in high resolution videos, its performance on
downsampled low resolution videos is poor compared with
other search schemes. Moreover, all the methods applied to
the high resolution videos provide similar performance. In
particular, the methods of Top-K search with branch-and-
bound search at down sampled size (v) and λ search with
branch-and-bound search at down-sampled size (vi) are among
the best ones. These results justify our proposed λ-search and
Top-K search algorithms. Although the branch-and-bound is
performed in the down-sampled size videos, it still provides
good performance. However, the search speed is much faster.
To compare the performance of action detection between LSH
and Random forest, (v) and (vii) are two search schemes
with the same environment but different voting approaches.
Random Forest (vii) is superior to LSH (v) in Handwaving but
poorer in Boxing. Since the boxing action is highly biased in
KTH dataset (much more boxing actions are performed from
right to left), it reduces the discriminative ability of the trees.
For LSH, however, because it can search only one nearest
positive and negative in the neighborhood, the affection of
this kind of bias can almost be ignored.

C. Computational Cost

The feature extraction step is performed with publicly
available code in [1]. Although their code may not be very
fast, there are faster implementations available. Therefore,
the computation time for feature extraction is not considered
in this paper. We suppose all the STIP points are already
extracted and stored in the memory. Then, the computational
time of our algorithms can be mainly dominated by two
operations, computing the score for each STIP and branch-
and-bound search. For the first part, LSH takes 18.667ms
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(a) Handclapping (b) Handwaving (c) Boxing

Fig. 3. Precision-recall curves for the three actions in the database and the different methods.

Fig. 5. Detection results (Random Forest+Top-K) of handclapping (1st row), handwaving (2ed row) and boxing (3rd row) are listed in 2-5 columns with
red, green and blue colors to show the bounding boxes respectively. The cyan dash regions are from the ground truth. The first column are sample images
used for training.

Method Voting Time (ms) One sequence (s)
LSH 18.667±8.4105 186.67
Random Forest 0.0042±0.0032 0.042

TABLE III
TIME CONSUMED FOR VOTING ONE STIP AND ONE VIDEO SEQUENCE(FOR

EXAMPLE, 10000 STIP POINTS). ONLY CPU TIME IS CONSIDERED.

on average per STIP point while random forest only takes
0.0042ms. To deal with a video clip with 10000 STIPs, it
will take around 186.67s for LSH but only 42ms for random
forest. That is, random forest based approach is 4000 times
faster than LSH based approach.

Table IV shows the time consumed for the second part
operation. All of the algorithms are implemented using C++,
performed on a single PC of dual-core and 4G main memory:
(a) accelerated λ search of [12] in low resolution videos

(frame size 40 × 30), (b) accelerated λ search of [12] in high
resolution videos, (c) multi-round branch-and-bound search
of [9] in low-resolution videos (frame size 40 × 30), (d) λ
search, with branch-and-bound search at down sampled size
40 × 30, (e) Top-K search, with branch-and-bound search at
down-sampled size 80 × 60, (f) Top-K search, with branch-
and-bound search at down-sampled size 40× 30.

Table IV shows that although the method of [12] works
well for low resolution videos, the search speed becomes much
slower for high resolution videos. Moreover as shown in Fig. 4,
when performing on the down-sampled score volumes, the
heuristic method of [12] (curve (i)) is a lot worse than the
other methods. This is an indication that it is not a good idea
to perform heuristic search on down-sampled score volumes.
In comparison, λ search provides much better search quality.
Among all the search schemes, the fastest method is the Top-K
search with branch-and-bound at down-sampled score volume
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Fig. 4. Comparisons of Average Precision-Recall curves

Method Running Time
Low resolution (40× 30) [12] 40 mins
High resolution (320× 240) [12] 20 hours
Down-sampled B&B (40× 30) 10 hours
λ search + Down-sampled B&B (40× 30) 1 hour 20 mins
Top-K + Down-sampled B&B (80× 60) 6 hours
Top-K + Down-sampled B&B (40× 30) 26 mins

TABLE IV
TIME CONSUMED FOR EACH METHOD FOR FINDING ACTIONS IN THE 54

VIDEOS.

of 40×30. It takes only 26 minutes to process the 54 sequences
whose total length is about one hour in total.

Finally, we compare LSH and random forest in terms of
total computation time in Table. V, including the runtime cost
for computing scores and the runtime cost for top-K search.
For the previous method [12], it takes at least 1471 minutes
to search all the actions for 54 videos in MSRII. However,
the total computation time of our proposed algorithm is 26.62
minutes.

VI. CONCLUSIONS

We have developed a new system for the spatio-temporal
localization of human actions in video sequences. The system
improves upon the state of the art on two aspects. First, we
proposed a random forest based voting technique to compute
the scores of the interest points, which achieves multiple
orders-of-magnitude speed-up compared to the nearest neigh-
bor based scoring scheme. Second, we proposed a top-k
search technique which detects multiple action instances si-
multaneously with a single round of branch-and-bound search.
To reduce the computational complexity of searching higher
resolution videos, we performed subvolume search on the
down-sampled score volumes. We have presented experiment
results on challenging videos with crowded background. The
results showed that our proposed system is robust to dynamic
and cluttered background and is able to perform faster-than
real time action detection on higher resolution videos.

APPENDIX

We prove the Theorem 1 here. Let V ∗ denote the optimal
subvolume in V , that is, f(V ∗) = maxV⊂Vf(V ). Assume
V ∗ = [x1, x1 +w−1]× [y1, y1 +h−1]× [t1, t2] where w and
h are the width and height of V ∗, respectively. Let |V | denote
the number of voxels in V . It can be shown that there exists
an s-aligned subvolume Ṽ = [x̃1, x̃1 + w̃− 1]× [ỹ1, ỹ1 + h̃−
1]× [t1, t2] such that

|(V ∗ \ Ṽ ) ∪ (Ṽ \ V ∗)| ≤ (s ∗ h+ s ∗w + s2)(t2 − t1). (18)

Therefore

|(V ∗ \ Ṽ ) ∪ (Ṽ \ V ∗)|
|V ∗|

≤ s ∗ h+ s ∗ w + s2

wh
. (19)

If we assume the total score of a subvolume is on average
proportional to its size, then

f(|(V ∗ \ Ṽ ) ∪ (Ṽ \ V ∗)|)
f(V ∗)

≤ s ∗ h+ s ∗ w + s2

wh
. (20)

Therefore

f(V ∗)− f(Ṽ )

f(V ∗)
≤ s ∗ h+ s ∗ w + s2

wh
. (21)

After a re-arrangement of the items, we have:

f(Ṽ ) ≥ (1− s ∗ h+ s ∗ w + s2

wh
)f(V ∗) (22)
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