Journal of Molecular Structure 982 (2010) 91-99

Contents lists available at ScienceDirect

o
MOLECULAR
STRUCTURE

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Effect of fluorine substitution on the crystal structures and vibrational properties
of phenylthiourea isomers

Aamer Saeed **, Mauricio F. Erben®, Ulrich Florke ¢

2 Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
> CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962 (1900), La Plata, Argentina
¢ Department Chemie, Fakultit fur Naturwissenschaften, Universitat Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 8 June 2010

Received in revised form 5 August 2010
Accepted 5 August 2010

Available online 11 August 2010

The 1-(2-chlorobenzoyl)-3-(isomeric fluorophenyl)thiourea derivatives (1-3) were prepared by the reac-
tion of 2-chlorobenzoyl isothiocyanate produced in situ with isomeric fluoroanilines in excellent yields.
The novel compounds are characterized by multinuclear (*H and '>C) NMR, GC-MS, elemental analyses
and FTIR spectroscopy techniques. Structural and conformational properties of compounds 1-3 are ana-
lyzed using a combined approach including X-ray diffraction, vibrational spectra (solid FTIR and FT-
Raman) and theoretical calculation methods. The crystal structures have been determined by X-ray dif-
fraction methods. The three species crystallize in the monoclinic C2/c space group with and Z = 8 mole-
cules per unit cell. The carbonyl and thiourea groups are almost planar and the conformation adopted by
the C=S and the C=0 double bonds is antiperiplanar. The crystal lattices show the presence of centro-
symmetric dimeric units held by N—H---S hydrogen bonds stacked along the [0 1 0] plane. The effect of
fluorine substitution on the vibrational properties and on the conformational space has been determined
by quantum chemical calculations (B3LYP functional in connection with the 6-311+G" basis sets) and
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1. Introduction

1-Aroyl-3-arylthioureas containing both carbonyl and thiocar-
bonyl groups can coordinate to metals using both sulphur and oxy-
gen atoms, the presence of these hard and soft donor sites offer a
huge bonding potential [1,2]. Thus, besides the academic interest,
N,N-dialkyl-N-aroyl thioureas are efficient ligands for the separa-
tion of platinum group metals [3]. Thiourea complexes are starting
materials in chemical spray pyrolysis (CSP) processes which are
used to produce thin films of binary and ternary sulfides [4].

Moreover, fluorinated aryl thioureas represent a new class of
potent anti-trypanosomal agents [5] and also a novel class of po-
tent influenza virus neuraminidase inhibitors [6]. 1,3-Dialkyl or
diaryl thioureas exhibit significant antifungal activity against plant
pathogens Pyricularia oryzae and Drechslera oryzae [7].

N-aryl N-phenyl thioureas have been developed as anion-bind-
ing site in a hydrogen-bonding receptor [8]. Thiacalix[4]arenes
containing thioureas are neutral receptors towards o,a-dicarboxyl-
ate anions [9] and N-4-substituted-benzyl-N'-ter-butylbenzyl thio-
ureas are vanilloid receptors ligands and antagonists in rat DRG
neurons [10]. 1-Benzoyl-3-(4,6-disubstituted-pyrimidinyl) thio-
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ureas have shown excellent herbicidal activity [11]. Thioureas have
also extensively been used in enantioselective synthesis, such as
nitro-Mannich reactions, Aza-Henry reaction and the Michael
Addition [12-14]. Fabbrizzi et al. reported that substituted-phenyl
urea compounds interacts through hydrogen bonding with a vari-
ety of oxoanions to give bright colored complexes [15]. A variety of
receptors containing the urea and the thiourea groups have been
designed for anion recognition [16]. In this context, the molecular
structure and conformational flexibility are important properties
for determining the donor-acceptor capabilities [17]. Also the thio-
ureas can denature proteins, and inhibit the formation of micelles.
Therefore the conformational issues in thioureas are comparable to
those arising in folded proteins, and a complete understanding of
these effects require understanding the effects of intermolecular
hydrogen bonding interactions and hydrophobic interactions [16].

Recently, fluorinated thioureas have been reported as conve-
nient synthons for preparation of versatile fluorine-containing het-
erocycles [18]. Taking into consideration the aforementioned
biological, synthetic and theoretical importance of thioureas, here
we report the synthesis and structural characterization of three no-
vel 1-(2-chlorobenzoyl)-3-(isomeric fluorophenyl)thiourea deriva-
tives (1-3). The vibrational properties have been studied by
infrared and Raman spectroscopy along with quantum chemical
calculations.
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2. Results and discussion
2.1. X-ray structure

ORTEP [19] drawing of the molecular structures of compounds
1-3 as determined in the crystalline phase are shown in Figs. 1-
3, respectively and Table 1 includes selected geometric parameters
derived from the structure refinement, as well as those obtained
from quantum chemical calculations.

The three molecular structures differ from the fluoro-substitu-
tion pattern of the benzamide ring. Minor differences have been
observed in the molecular geometry determined for the three iso-
mers when the crystal structure is compared. For example, the two
aromatic planes form dihedral angles each of 26.94(6)°, 23.93(8)°
and 42.64(5)° for 1-3, respectively. The carbonyl and thiourea
groups O1/C1/N1/C8/S1/N2 are almost planar, largest deviations

from mean planes are 0.148(1), 0.121(1) and 0.092(1) A for 1, 2
and 3, respectively. Associated are intramolecular N2-H---01=C1
hydrogen bonds forming six-membered rings for all three struc-
tures. Dihedral angles between these carbonyl thiourea planes
and the chlorophenyl/fluorophenyl rings measure for 1:
69.59(3)°/43.34(4)°, for 2: 71.94(5)°/48.11(5)° and for 3:
74.83(4)°/39.91(4)°. The different fluoro substitution has no signif-
icant effect on N2-C9 or N2-C8 bond length parameters.

Crystal packing shows for 1-3 intermolecular N1-H:.-S=C
hydrogen bonds, forming centro-symmetric dimers that are
stacked along the [0 1 0] plane, as shown in Figs. 4-6, respectively.
Intermolecular N1---S short distances amount 3.364(1), 3.379(1)
and 3.348(1) A for compound 1-3, respectively. The shortest inter-
molecular C-H.---F distances are in the 2.53-2.63 A range, a short
intramolecular N2-H---F distance in 1 measures 2.53 A. The Cl
atoms are not involved in hydrogen bonding.

Fig. 3. Molecular structure of 3. Displacement ellipsoids are shown at the 50% probability level.



A. Saeed et al./Journal of Molecular Structure 982 (2010) 91-99

Table 1
Experimental and calculated (B3LYP/6-311+G*) selected geometric parameters for the most stable conformer of compounds 1-3.
1 2 3
Experimental Calculated Experimental Calculated Experimental Calculated

Bond lenghts
C12-F1 1.3564(13) 1.359 1.3571(19) 1.355 1.3553(16) 1.356
N2-C9 1.3894(14) 1.408 1.4250(19) 1411 1.4237(16) 1413
C8-N2 1.3366(15) 1.351 1.334(2) 1.350 1.3333(16) 1.347
C8=S1 1.6729(11) 1.670 1.6729(15) 1.668 1.6730(13) 1.670
N1-C8 1.4181(14) 1412 1.3896(19) 1415 1.3920(16) 1.416
C1-N1 1.3753(14) 1377 1.3700(19) 1.375 1.3706(16) 1.374
C1=01 1.2200(13) 1.225 1.2181(19) 1.227 1.2231(16) 1.228
C1-C2 1.5012(15) 1.504 1.504(2) 1.504 1.5003(18) 1.504
c7-cl 1.7368(13) 1.762 1.735(2) 1.762 1.7371(14) 1.761
Bond angles
F1-C12-C11 118.10(10) 117.7 117.69(15) 1183 118.48(12) 119.0
F1-C12-C13 119.09(10) 119.0 119.02(15) 119.0 118.73(12) 119.3
C8-N2-C9 125.63(9) 1311 125.43(13) 132.3 127.01(10) 132.3
N2-C8=S1 125.98(9) 1294 125.80(12) 129.7 126.49(10) 129.7
N1-C8=S1 118.26(8) 116.4 118.18(11) 116.5 117.68(9) 116.4
C8-N1-C1 128.28(10) 130.2 128.57(13) 130.3 128.71(11) 130.2
N1-C1=01 122.54(10) 123.0 123.62(14) 1231 123.94(12) 123.1
C2-C1=01 123.81(10) 120.3 122.64(14) 120.1 122.52(11) 120.1
Cl1-C7-C2 120.16(9) 122.1 119.05(15) 122.1 119.41(11) 1221
Cl1-C7-C6 118.64(10) 116.8 119.74(15) 116.8 119.20(10) 116.8
Dihedral angles
C9N2-C8=S1 6.3(4) 0.9 —4.8(4) 0.5 7.3(5) 0.6
C1N1-C8N2 —6.1(5) 12 4.7(5) 12 —2.8(4) 13
C7C2-C1=01 116.3(4) 140.1 113.0(5) 139.6 108.5(5) 139.6
C10C9-N2C8 45.8(4) 7.6 50.3(5) 0.6 40.0(5) 0.0

2.2. Quantum chemical calculations

Prompted by the similar conformations found for the isomers
(1-3) in the crystalline state, it was decided to examine the molec-
ular structure of the studied compounds by using quantum chem-
ical calculations at the DFT-B3LYP level of approximation. The
comparison between experimental X-ray results with the corre-
sponding computed structure for the molecule isolated in a vac-
uum could serves to better understand the conformational
transferability observed for these substituted thioureas.

In principle the studied compounds may adopts several confor-
mations mainly depending on the orientation around the thiourea
moiety, the relative position of the C=0 double bond and the ori-
entation of substituted phenyl rings. Thus, to inspect the potential
energy surface, in a first approximation the potential energy func-

Fig. 4. Crystal packing of 1 viewed along [0 10] with intermolecular hydrogen
bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen
bonding are omitted.

Fig. 5. Crystal packing of 2 viewed along [0 10] with intermolecular hydrogen
bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen
bonding are omitted.

tion for internal rotation around five central dihedral angles, i.e.
around the N1-C8 and N2-C8 (for the thiourea group), the N1-
C1 (for the relative orientation of the carbonyl bond) and N2-C9
and C2-C1 (F- and 2Cl-substituted phenyl rings) single bonds
was calculated. The B3LYP method with the moderate 6-31G basis
sets has been applied allowing geometry optimizations with the
corresponding dihedral angle varying from 0° to 180° in steps of
20°. The potential energy curves are shown in Fig. 7 (for atom num-
bering see Figs. 1-3).

Very similar potential energy curves are obtained for the three
compounds, except for the rotation of the fluorinated phenyl group
(Fig. 7B). The curve obtained as a function of the dihedral angle
around the C2—C1 bond, which is related to the formal rotation
of the 2Cl-phenyl group, shows a deep minimum at
6(C7C2—C1N1) ~ 20°, corresponding to a structure with the C=0
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Fig. 6. Crystal packing of 3 viewed along [0 1 0] with intermolecular hydrogen
bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen
bonding are omitted.

and C-Cl bonds in mutual synclinal orientation (Fig. 7A). The max-
ima observed at (C7C2—C1N1) = 180° correspond to planar struc-
tures with the C-Cl and the C=0 bond in a mutual eclipsed
position for the three species.

The curves obtained by rotation of the F-phenyl group show
minima at 6(C8N2-C9C10) = 0° for the three studied isomers, cor-
responding to molecular structures having the F-CgH4-ring and
the thiourea group in a planar arrangement. As expected, the curve
obtained for the 4-F species shows equivalent minima at dihedral
angle values of 0° and 180°, whereas the second conformation is
slightly preferred for isomer 3. In contrast, a pronounced maxima
is observed for 2 at §(C8N2-C9C10)=180°, when the C-F and
C=S bond are eclipsed, denoting strong repulsive interactions be-
tween the fluorine atom and the C=S double bond. These curves
are shown in Fig. 7B.

The potential energy curves for the rotation around the N1-C(S)
bond in the thiourea moiety are very similar for the three studied
species, with minima at 5(C1N1-C8S1) dihedral angle values of ca.
30° and 180° corresponding to synclinal and anti forms, respec-
tively, with a local planar arrangement for this moiety. As can be
observed in Fig. 7C, the anti conformation of the C=S bond with re-
spect to the N1-C1 bond is more stable by ca. 14.5 (1) and 15.5 (2,
3) kcal mol~! than the synclinal conformer [6(C1N1-C8S1) ~ 30°].
When the second dihedral angle involving the thiourea group is
studied, i.e. §(C9N2-C8S1), the potential energy curves show the
presence of two minima at §(C9N2-C8S1) = 0° and a second mini-
mum at ca. 160°, as observed in Fig. 7D. The last one, higher in en-
ergy by ca. 10 kcal mol~, corresponds to a structure with both C-N
bonds antiperiplanar with respect to the C=S double bond.

Finally, the potential energy curve obtained for variation of the
J6(C8N1-C101), showed in Fig. 7E is similar to those expected for a
typical amide moiety, showing two minima for conformers having
syn and antiperiplanar orientation of the C=0 and N-C(S) bonds,
the former being much more stable than the second one.

Additionally, full geometry optimizations and frequency calcu-
lations were computed for each of the minima previously found
for the three compounds with the B3LYP method adding polariza-
tion and diffuse basis sets at the B3LYP/6-31+G* level of approxi-
mation. The conformational properties are very similar to the
previously described. Although the predicted relative energies
AE° (corrected by zero-point energy) between the main conform-
ers are lower than that computed at the B3LYP/6-31G level the
trend is similar and both calculations favor the conformer similar
to that found in the X-ray molecular structure by at least

8 kcal mol~!. For each molecule here studied, the most stable con-
former has been further optimized by using the more extended tri-
ple-zeta 6-311+G" basis sets. Selected geometrical parameters are
given in Table 1. In general, this method predicts geometrical
parameters for the molecular skeleton with values similar to those
obtained from the X-ray analysis. Main differences are associated
with the orientation of both the fluorinated and chlorinated phenyl
rings with respect to the central carbonyl-thiourea moiety. Thus,
computed dihedral angles around the C2-C1 bond are systemati-
cally higher than the experimental ones, by ca. 27°. On the other
hand, while a nearly planar arrangement for the F-phenyl group
is computed, dihedral angle of 45.8(4)°, 50.3(5)° and 40.0(5)° are
determined from the X-ray molecular structure for compounds
1-3, respectively.

2.3. Vibrational analysis

Experimental and calculated (B3LYP/6-311+G") frequencies and
intensities are given in Table 2. A tentative assignment of the ob-
served bands was carried out by comparison with spectra of re-
lated molecules [20-28]. Very recently, the vibrational properties
of the thiourea molecule - the idealized parent species — were
revisited by Srinivasan et al. [29].

Quantum chemical calculations for compounds 1-3 isolated in a
vacuum compute that the v(N1-H) stretching mode appears
shifted to higher frequencies as compared with the v(N2—H) fun-
damental, whereas the integrated intensity is much higher for
the later. The experimental infrared spectra present intense and
very broad IR absorptions centered at 3158 cm~!, which are as-
signed to the N—H stretching modes. These values agree with the
corresponding ones in the IR spectrum of substituted thiourea
[30] and thiocarbamate [27,31] compounds where v(N-H) is typi-
cally observed in the 3200 cm™! region. The broad features ob-
served in the infrared spectra suggest that in solids 1-3 the
amidic and ureasic protons do take part in intramolecular and/or
intermolecular hydrogen bonding, in agreement with the results
found in the crystal structure determination.

The strong IR absorptions at 1684, 1682 and 1682 cm™! for
compounds 1-3, respectively, were assigned to the v(C=0) modes.
Very strong counterparts are observed in the Raman spectra at
1685, 1682 and 1682 cm™! for the studied compounds. Calculated
(B3LYP/6-311++G**) frequencies for this mode are also very similar
for the three isomers (1724, 1720 and 1719 cm™!), indicating that
the F-substituted phenyl rings have a little influence on the amide
group. It is worthy to mention that the C=0 stretching mode is
appreciably coupled with the C-N stretch and with the N-H bend,
as observed for related compounds [32,33].

In relation to the spectroscopic peculiarities of substituted phe-
nyl groups, characteristic group wave numbers are observed. One
of them is the 1595 cm™! (1 and 2) and 1591 cm ™! (3) absorptions
that mainly originates in an antisymmetric stretching mode of the
benzene ring. As reported for the related species [33], these modes
are calculated to be also strongly coupled with other vibrational
modes.

It is well-known that both the amide and thiourea groups pres-
ent a characteristic band in the 1500-1600 cm™! range of the IR
spectrum, originated by the N-H deformation mode [§(N—H)].
For the title species, very strong IR absorptions with defined max-
ima at 1536cm™! (1 and 2) and 1542 cm™! (3), are assigned to
these modes. Strong signals are also observed in the Raman spectra
at 1540, 1539 and 1544 cm™!, respectively. Taking compound 1 as
illustration, B3YLP/6-311+G* computations predict a strong band
due to the 5(N2—H) normal mode at 1607 cm~!, whereas the
5(N1—H) is predicted at lower wave numbers (1569 cm ™).

A well-defined strong absorption can be observed in the
1400-1300 cm™! region in the infrared spectra of the studied
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compounds. Taking into account the vibrational properties re-
ported for the simple thiourea molecule [29], it is expected that
the C-N stretching modes, which are usually coupled in symmetric
and antisymmetric motions, appear in this region [32]. The situa-
tion becomes more complicated if, as for compounds 1-3, there
are inequivalent C-N bonds. Thus, the NCN antisymmetric stretch-
ing mode of the thiourea moiety is assigned to the intense bands
centered at 1335, 1335 and 1345 cm™! in the infrared spectra of
compounds 1-3, respectively. Computed values at the B3LYP/6-
311+G* level of approximation are 1385, 1386 and 1394 cm™',
respectively, slightly higher than the experimentally observed
ones. The symmetric counterparts, with lower intensity, appear
at ca. 1280 cm™~! in the IR spectra of compounds 1-3 (computed
values are 1277, 1284 and 1275 cm™ !, respectively). These modes
are better defined in the Raman spectra, where strong signals ap-
pear at 1281, 1280 and 1285 cm™!. The C-N stretching related with
the N1-C1 in the amide group appears in the same region and were
tentatively assigned to the absorptions observed at 1261 (1257,
Raman), 1275 (1267, Raman) and 1258 (1256, Raman) cm™! in

the IR spectrum of the title compounds, respectively, in assign-
ments with reported data for related species [24,28,30].

The IR absorptions observed at 1099, 1078 and 1099 cm~! were
assigned to the v(C=S) mode for compounds 1-3, in good agree-
ment with the calculated values (Table 2). In the thiourea mole-
cule, this mode appeared in the 1094 cm~! in the infrared
spectrum (1105 cm~! Raman) [30], while higher values - up to
1325cm™' - have been also reported [25]. The formation of
C=S..-H-X intermolecular hydrogen bonds seems to strongly affect
the frequency of the v(C=S) mode [20]. The values for the v(C=S)
stretching mode observed in the IR spectra of the title compounds
can be associated with the formation of intermolecular hydrogen
bonds involving the thiocarbonyl group, as determined in the X-
ray analysis.

Finally, the v(C—F) stretching mode is quite insensitive to the
position of the fluorine atom, and originates medium intensity
infrared absorptions at 1239, 1245 and 1236 cm™', for the studied
isomers, with the corresponding signals appearing at 1240, 1242
and 1234cm™! in the Raman spectra, respectively. Similarly,
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Table 2

Observed and theoretical vibrational data (cm
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1) for isomers 1-3.

FTIR? FT-Raman? Calculated® Proposed assignment/
1 2 3 1 2 3 1 2 3 EERR
description
3232 sh 3225 sh 3225 sh 3605 (42.4) 3604 (42.3) 3605 (41.8) V(N1-H)
3158 vsbr 3158 vsbr 3157 vsbr 3372 (288.3) 3389 (285.0) 3390 (273.1) V(N2-H)
3251 (7.1) 3256 (6.8) 3249 (8.1) V(C-H, F-Ph)
3077 m 3076 sh 3087 m 3209 (7.2) 3208 (7.8) 3209 (7.4) V(C-H, CI-Ph)
3072 sh 3205 (2.9) 3206 (5.2) 3205 (3.0) v(C-H, CI-Ph)
3058 m 3058 m 3060 m 3060 m 3062 s 3060 s 3204 (8.3) 3204 (3.4) 3204 (4.4) v(C-H, F-Ph)
3192 (10.4) 3192 (9.7) 3199 (5.5) v(C-H, Cl-Ph)
3022 m 3015 m 3015 m 3012 w 3191 (19.3) 3187 (0.1) 3192 (10.5) v(C-H, F-Ph)
31,785 (2.5) 3182 (10.9) 3178 (2.3) v(C-H, CI-Ph)
3177 (2.4) 3178 (2.2) 3169 (6.2) V(C-H, F-Ph)
1684 vs 1682 vs 1682 vs 1685 vs 1682 vs 1682 vs 1724 (136.6) 1721 (113.1) 1719 (136.9) ¥(C=0)
1616 w 1610 m 1617 vs 1613 m 1607 s 1648 (133.9) 1669 (207.9) 1665 (401.9) v(C~C, F-Ph)
1635 (51.3) 1635 (49.9) 1653 (0.4) ¥(C-C, CI-Ph)
1595 m 1595 m 1591 m 1589 1595 m 1592 sh 1623 (344.4) 1652 (405.2) 1635 (332.6) v(C-C, F-Ph)
1556 vs 1551 vs 1555 vs 1567 w 1591 sh 1568 w 1607 (173.3) 1609 (205.5) 1620 (202.8) S(N2-H)
1569 w 1606 (92.2) 1606 (17.0) 1606 (17.2) v(C-C, CI-Ph)
1536 vs 1536 vs 1542 vs 1540 s 1539 m 1544 s 1569 (399.7) 1568 (454.8) 1570 (464.7) S(N1-H)
1492 vs 1492 vs 1507 vs 1513 w 1509 sh 1511 m 1524 (143.8) 1529 (170.) 1545 (310.5) v(C-C, F-Ph)
1458 m 1472 m 1470 m 1493 w 1493 m 1494 w 1503 (14.1) 1503 (14.9) 1503 (15.2) v(C-C, CI-Ph)
1436 s 1436 s 1436 s 1494 (34.7) 1471 (40.1) 1469 (40.9) ¥(C-C, F-Ph)
1414 1437 w 1413 w 1468 (33.1) 1466 (14.1) 1450 (2.3) ¥(C~C, CI-Ph)
1335s 13355 1345 s 1385 (646.8) 1386 (695.1) 1394 (563.4) Vas(NCN)
1334 w 1339 1349 (57.2) 1354 (58.7) 1346 (34.7) v(C~C, F-Ph)
1304 m 1304 m 1320 (3.7) 1334 (16.4) 1332 (7.2) v(C-C, CI-Ph)
1291 s 1291 sh 1293 m 1318 (3.4) 1321 (3.5) 1320 (5.9) ¥(C~C, F-Ph)
1290 sh 1293 sh 1300 (54.9) 1300 (56.6) 1301 (84.1) V(C1-C2)
1280 s 1280 s 1282 s 1281 s 1280 m 1285 m 1277 (35.3) 1284 (72.6) 1275 (128.3) vs(NCN)
1261 m 1275 m 1258 m 1257 s 1267 w 1256 s 1251 (112.3) 1258 (105.4) 1246 (94.6) V(C1-N1)
1239 m 1245 m 1236's 1240 s 1242 m 1234 s 1216 (110.6) 1201 (36.7) 1238 (73.8) V(C-F)
1209 m 1214m 1207 w 1192 (82) 1193 (1.9) 1192 (1.6) v(C-C, CI-Ph)
1187 w 1169 w 1171 sh 1188 w 1174 m 1187 (38.4) 1178 (151.0) 1188 (38.9) 5(C-H, F-Ph)
1164 s 1160 s 1160 s 1158 s 1161 m 1158 s 1172 (171.3) 1166 (111.1) 1172 (236.1) v5(CN1C)
1128 w 1140 m 1130 w 1128 w 1139 m 1148 (13.3) 1149 (14.2) 1149 (12.9) 5(C-H, Cl-Ph)
1108 w 1106 w 1106 w 1103 w 1122 (16.9) 1106 (47.0) 1135 (5.1) 5(C-H, F-Ph)
1099 m 1078 m 1099 m 1099 m 1078 w 1099 m 1102 (29.4) 1100 (18.0) 1101 (55.7) V(C=S)
1047 w 1047 w 1047 w 1036 sh 1047 vw 1061 (7.5) 1060 (16.5) 1060 (17.9) V(C9-N2)
1028 w 1032 w 1030 vs 1029 s 1032 s 1058 (15.9) 1055 (34.4) 1055 (33.1) 8(CCC, ClI-Ph)
1006 w 1014 m 1006 vs 1055 (34.7) 1023 (4.4) 1031 (5.0) 5(CCC, CI-Ph)
999 (0.7) 1008 (1.9) 999 (0.7) 5(C-H, Cl-Ph)
984 w 986 vw 983 m 984 (0.4) 1000 (0.7) 970 (4.3) 5(C-H, F-Ph)
955 w 949 w 955 m 971 (3.8) 980 (0.2) 966 (9.9) 5(N-C-N)
940 m 940 m 944 s 943 m 967 (8.4) 968 (1.0) 965 (0.2) 5(C-H, CI-Ph)
944 (3.8) 910 (38.2) 942 (0.3) 8(C-H, F-Ph)
894 m 873 w 860 w 897 w 864 s 882 (1.9) 898 (0.2) 882 (1.7) 5(C-H, CI-Ph)
871 (9.1) 882 (2.0) 873 (8.9) J(NC=0)
853 m 861 m 861 m 860 vw 869 (1.2) 874 (70.5) 852 (107.5) 5(C-H, F-Ph)
840 m 842 w 852 (58.7) 829 (40.7) 834 (13.6) p(N2-H)
811 m 815 m 811 m 813 w 814 vw 810's 821 (22.7) 824 (5.8) 826 (32.2) 5(CCC, F-Ph)
788 w 790 w 784 w 791 (22.5) 789 (9.7) 806 (0.2) 500p(C=0)
767 sh 767 sh 768 sh 785 vw 763 (58.4) 784 (71.8) 787 (25.1) S(N2C=S)
753 s 753 s 753 s 763 m 748 m 752'm 762 (45.7) 756 (29.9) 754 (38.9) 5(C-N2-C)
753 m 742 m 754 (25.1) 752 (10.2) 746 (12.5) 3(N1C=S)
722m 722'm 728 m 715w 711w 725 w 735 (30.4) 735 (30.0) 736 (30.5) v(C-Cl)
699 sh, w 732 (0.3) 703 (8.1) 714 (0.1) p(C-H, F-Ph)
702 (7.7) 688 (15.0) 703 (6.9) 5(CCC, F-Ph)
708 w 707 w 705 vw 672 (10.4) 677 (7.0) 668 (13.9) 5(CCC, Cl-Ph)
690 w 685 w 693 w 692 w 694 w 660 (50.7) 661 (55.9) 659 (50.4) p(N1-H)
656 w 659 w 656 m 654 w 660 m 654 m 645 (4.8) 650 (5.6) 648 (6.5) 5(CCC, CI-Ph)
632 w 638 w 634 w 631w 640 w 633 w 607 (10.7) 608 (0.1) 620 (3.0) 500pC=S
621 m 625 m 624 m 620 w 576 (5.2) 602 (11.6) 600 (11.1) 8(CCC, F-Ph)
572 w 569 w 609 617 w 620 w 563 (0.2) 566 (7.5) 548 (11.1) 5(CCC, F-Ph)
554 m 551 w 555 vw 559 w 538 (8) 527 (5.3) 525 (21 4) 5(CCC, F-Ph)
525m 524 m 515's 524 vw 519w 512 (7.2) 492 (15.6) 487 (17.8) 5(CCC, CI-Ph)
469 w 480 w 468 w 469 m 460 m 469 w 481 (7.8) 468 (4.4) 450 (10.5) s(c-cl)
455 m 460 m 450 m 447 w 463 (5.8) 464 (4.0) 435 (13.9) 5(CCC, F-Ph)
445 vw 451 vw 444 m 447 w 436 w 444 (6.6) 446 (4.0) 425 (0.1) 5(CCC, CI-Ph)
419 m 419 m 413 w 416 w 425 (4.9) 425 (5.3) 420 (0.5) p(CCC, CI-Ph)
410 vw 401 vw 382w 404 (18.6) 415 (10.7) 412 (15.7) 5(C1C2C3)
362 m 360 m 361 m 373 (5.7) 375 (5.4) 373 (10.3) p(C=0)
323m 327w 316 vw 315 (0.6) 313 (3.8) 338 (0.1) 5(C10CON2)
285 w 302 vw 310 (2.6) 273 (0.7) 310 (1.6) p(C-F)
256 m 258 m 259 m 262 (4.4) 266 (2.7) 281 (1.2) p(CCC, CI-Ph)
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Table 2 (continued)

97

FTIR? FT-Raman? Calculated® Proposed assignment/
1 2 3 1 2 3 1 2 3 o
description
223w 235m 220w 228 (0.6) 238 (0.1) 243 (3.4) p(CCC, F-Ph)
227 (1.1) 232 (1.5) 228 (1.2) p(C=S)
205 w 203 w 200w 198 (4.2) 206 (0.7) 181 (0.2) p(CCC, F-Ph)
177 m 174 m, sh 180 m 185 (4) 194 (9.0) 179 (5.3) p(CCC, CI-Ph)
158 sh 157 sh 155 (0.7) 157 (0.4) 153 (0.2) p(C=Cl)
131s 134 sh 112 (2.8) 111 (3.2) 112 (3.3) p(C1-C2)
95 (3.2) 95 (2.1) 95 (3.0) p(N2-Ph)
82 (0.7) 85 (1.5) 73 (1.8) T
58 (1.1) 55 (0.5) 54 (0.5) T
31(0.7) 31 (0.5) 28 (0.2) T
17 (0.5) 19 (1.0) 16 (0.2) T
10 (0.8) 12 (0.5) 12 (0.2) T

2 FTIR of solid in KBr pellets.
> B3LYP/6-311+G* level of approximation.

medium intensity bands at 722 cm~' (compounds 1 and 2) and

728 cm~! (compound 3) were assigned to the v(C—Cl) stretching
modes.

3. Conclusions

Three novel 1-(2-chlorobenzoyl)-3-(isomeric fluorophenyl)-
thiourea derivatives (1-3) were prepared by treating 2-chloroben-
zoyl isothiocyanate produced in situ with isomeric fluoroanilines in
excellent yields. Conformational and structural properties were
determined by using experimental techniques which include infra-
red spectroscopy as well as X-ray diffraction analysis. Results de-
rived from the quantum chemical calculations show that the
central - C=0-NH-C=S-NH - moiety adopts a planar structure
with a preferred antiperiplanar orientation of both (=0 and C=S
double bonds. This form is present in crystalline 1-3 compounds
as centro-symmetric dimeric units mainly held by N—H...S=C
hydrogen bonds. The conformational preference is conserved for
the three studied isomers and fluorine substitution slightly affects
the preferred orientation adopted by the fluoro-phenyl group with
respect to the thiourea group.

4. Experimental
4.1. Synthesis and characterization
The 1-(2-chlorobenzoyl)-3-(substituted fluorophenyl)thiourea

derivatives (1-3) were prepared by the reaction of 2-chlorobenzoyl
isothiocyante produced in situ with isomeric fluoroanilines in

—_— Q-+
cl N=— SK
/ dry acetone
_—-———
@)

HoN \‘/

F

dry acetone
Cl

excellent yields (Scheme 1). The IR, 'H, '3C NMR and GC-MS spec-
tral data of thioureas (1-3) are given in Table 3. 2-Fluoroaniline,
the 3-fluoroaniline and 4-fluoroaniline, potassium thiocyanate as
well as 2-chlorobenzoyl, were purchased from Aldrich and used
as received. 2-Chlorobenzoyl chloride was treated in a 1:1 M ratio
with potassium thiocyanate in dry acetone to afford the 2-chloro-
benzoyl isothiocyante intermediate which was not separated. Con-
densation of the latter with isomeric fluoroanilines furnished the
1-(2-chlorobenzoyl)-3-(substituted fluorophenyl)thiourea deriva-
tives (1-3) in 75-87% yields. The melting points were recorded
using a digital Gallenkamp (SANYO) model MPD.BM 3.5 apparatus
and are as follows: 164-165, 129-130 and 170-171 °C for (1-3),
respectively. 'H and '*C NMR spectra were recorded in CDCl; at
300 MHz and 75 MHz respectively with a Bruker 300 MHz spectro-
photometer and elemental analyses were conducted using a LECO-
183 CHNS analyzer.

4.2. Vibrational spectroscopy

The reactions were monitored by measuring IR spectra of the so-
lid products on an IR Shimadzu 460 spectrophotometer as KBr pel-
lets. Moreover, after purification crystals were selected and solid-
phase IR spectra were recorded with a resolution of 2 cm™! in the
4000-400 cm™! range on a Bruker EQUINOX 55 FTIR spectrometer.

4.3. GC-MS determination

The GC-MS measurements were recorded in a GCMS-QP2010
SHIMADZU instrument using gaseous Helium as mobile phase with

O,

S—C—=N
Cl

e

i

R
3:R=4

mmm

Scheme 1. Synthesis of 1-(2-chlorobenzoyl)-3-(isomeric fluorophenyl)thioureas.
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Table 3

Infrared spectra, 'H, '*C nuclear magnetic resonance spectra and mass spectrometry data for synthesized thioureas 1-3.

IR 'H NMR

13C NMR

MS

1 3225, 3158 broad, s (vN-H), 12.48 (brs, 1H, NH), 9.34 (brs, 1H, NH),
1682 vs. (C=0), 1595 m (C=C),  8.44 (dt,J=2.1, 7.5 Hz, 1H, Ar-H), 7.83
1536 vs. (60N-H), 1335 s (vCN),  (td,J=0.9, 7.2 Hz, 1H, Ar-H), 7.55-7.18
1078 m (vC=S) (m, 7H, Ar-H)

2 3232, 3158 broad, s (vN-H), 12.49 (br s, 1H, NH), 9.33 (br s, 1H, NH),
1684 (vC=0), 1595 (vC=C), 7.79-6.97 (m, 8H, Ar-H)

1536 vs. (6N-H), 1335 s (VCN),
1099 m (vC=S)

3 3225, 3157 broad, s (vN-H),
1682 vs. (C=0), 1591 m (C=C),
1542 vs. (6N-H), 1345 s (vCN),
1099 m (vC=S)

12.29 (br s, 1H, NH), 9.34 (br s, 1H, NH),
7.77 (dd, ] = 1.2, 8.1 Hz, 1H, Ar-H), 7.70-
7.10 (m, 7H, Ar-H)

177.9 (C=S), 165.9 (C=0), 155.1 (d, '] = 247 Hz),
133.5, 131.8, 131.2, 131.0, 130.8, 127.8 (d,

3] =8.25 Hz), 127.6, 125.3, 124.1 (d, 4/ = 3.75 Hz),
125.94 (d, 3] = 10.5 Hz), 115.97 (d, ¥ = 19.5 Hz)
177.6 (C=S), 166.2 (C=0), 165.6 (d, '] = 245 Hz),
138.9 (d, 3/=10.5 Hz), 133.5, 131.9, 131.2, 131.0,
130.5, 130.6 (d, 3] = 9.75 Hz), 127.6, 119.4 (d,
47=3 Hz), 113.7 (d, ¥J = 21.75 Hz), 111.2 (d,

2] =26.25 Hz)

178.3 (C=S), 166.2 (C=0), 161.0 (d, J = 246 Hz),
133.5,133.4,132.0,131.2, 131.0, 130.5, 127.6, 126.3
(2C, d, 3] =8.25 Hz), 115.8 (2C, d, ) = 22.5 Hz)

197(1%, CICsH4CONCS"),
139(100%, CICgH,4CO"),
111(47%, CICH; ), 75(33%,
NHCSNH,?), 32(8%, S*)
197(1%, CICsH4CONCS),
139(100%, CIC5HACO™),
111(46%, CICgHS), 75(33%,
NHCSNH,?), 32(7%, S*)

197(1%, CICsH4CONCS"),
139(100%, CICsH,4CO"),
111(48%, CICH; ), 75(35%,

NHCSNH,?), 32(7%, S*)

the pressure in the column head equal to 100 kPa. The column used
was a 19091J-433 HP-5 of 30 m x 0.32 mm x 0.25 mm film thick-
ness. A 1 uL volume of the compounds dissolved in CHCl; was
chromatographed under the following conditions: injector temper-
ature was 210 °C, the initial column temperature (100 °C) was held
for 3 min, then increased to 200 °C at 20 °C/min and held for 2 min
after elevated to 300 °C at 35 °C/min and held for 2 min. In the
spectrometer the source was kept at 200 °C. One peak at retention
time 8.4 min is observed in the chromatogram, with a similar frag-
mentation pattern for three isomers (see Table 3).

4.4. Quantum chemical calculations

All quantum chemical calculations were performed with the
GAUSSIAN 03 program package [34]. The molecular geometries

Table 4
Crystal data and structure refinement for compounds 1-32
Compound 1 2 3
Formula weight  308.75 308.75 308.75
Crystal system Monoclinic Monoclinic Monoclinic
Space group C2/c C2/c C2/c
alA 20.319(3) 20.3792 20.4725
b/A 7.2553(11) 7.3148(8) 7.4141(18)
c/A 18.790(3) 18.954(2) 18.297(4)
p° 97.922(3) 98.0193 99.6874
VIA3 2743.6(7) 2797.9(5) 2737.5(11)
V4 8 8 8
Dc/Mgm 3 1.495 1.466 1.498
Absorp. coeff./ 0.438 0.429 0.438
mm~!
F000) 1264 1264 1264
Crystal size/ 0.51 x 0.49 x 0.45 0.39 x 0.30 x 0.25 0.51 x 0.50 x 0.47
mm?>

Data collection

h —26/26 —26/26 —26/26

k -9/9 -9/9 -9/9

1 —22/[24 —24/[24 —24/[24

Data collected 11,392 11,908 11,267

Unique 3277 3341 3260
reflections

R(int) 0.0183 0.0264 0.0242

Max/min 0.827/0.807 0.900/0.850 0.820/0.807
transm.

Parameters 188 188 188

GooF 1.038 1.049 1.078

R1[I>2sigma(l)] 0.0283 0.03791 0.0339

WR?2 (all data) 0.0772 0.0964 0.0929

Max/min SF/ 0.344/-0.195 0.392/-0.232 0.447/-0.329
eA

CCDC deposition 742,706 742,705 742,707
numbers

@ Further conditions and refinement comments: temperature, 120(2) K, wave-
length 0.71073 A, Theta ranges/° = 2.02-27.88, absorption correction: semi-empir-
ical from equivalents, refinement method: full-matrix least-squares on F2.

were optimized to standard convergence criteria by using a DFT
hybrid method with Becke’s non-local three parameter exchange
and the Lee, Young and Parr correction (B3LYP) using 6-31+G*
and the more extended 6-311+G" basis sets. The calculated vibra-
tional properties corresponded in all cases to potential energy min-
ima for which no imaginary frequency was found.

4.5. X-ray data collection, structure solution and refinement

Crystals of the thioureas were grown by slow evaporation of 1:1
by volume acetone-anhydrous ethanol mixtures at room tempera-
ture. Pertinent crystal and refinement data for 1-3 are given in Ta-
ble 4. Bruker-AXS SMART APEX CCD [35] graphite monochromator,
(Mo Kat)=0.71073 A. Structures solved by direct methods, full-
matrix least-squares refinement based on F2. All but H-atoms re-
fined anisotropically. Hydrogen atoms were located from differ-
ence Fourier maps and refined at idealized positions riding on
the carbon atoms with isotropic displacement parameters Ujs,
(H) = 1.2U¢q(C). H(N) atom parameters were refined freely.
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