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Nitrogen is one of the main requirements for plant growth. 
Members of the legume family (Fabaceae, order Fabales) and 
of nine additional plant families benefit from symbiosis with 
nitrogen-fixing bacteria, either phylogenetically diverse rhi-
zobia or Frankia, which are hosted inside plant cells found 
within nodules–specialized host-derived lateral organs typi-
cally found on roots. In this mutualistic nitrogen-fixing root 
nodule (NFN) symbiosis, intracellular bacteria convert at-
mospheric nitrogen into ammonium using the enzyme nitro-
genase (1). This “fixed nitrogen”, delivered to the host plant, 
is an essential building block for amino acids, DNA, RNA, 
tetrapyrroles such as chlorophyll and many other molecules. 
This symbiosis enables plant survival under nitrogen-limiting 
conditions. In agriculture, this independence from chemical  
 

nitrogen-fertilizer reduces costs and fossil fuel consumption 
imposed by the Haber–Bosch process (2). Since the discovery 
of the NFN symbiosis, with rhizobia in 1888 and with Frankia 
in 1895 (3, 4), it has been unclear why it is restricted to only 
a limited number of flowering plant species. 

A major scientific step forward in our understanding was 
the reorganization of the phylogenetic tree of angiosperms in 
1995, which revealed that plants forming the NFN symbiosis 
are restricted to the Fabales, Fagales, Cucurbitales, and 
Rosales that together form the NFN clade (5, 6). However, 
this re-organization also opened new questions, because only 
ten out of the twenty-eight plant families within the NFN 
clade contain plants that form nodules (referred here as “nod-
ulating species”), and these do not form a monophyletic 
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The root nodule symbiosis of plants with nitrogen-fixing bacteria impacts global nitrogen cycles and food 
production but is restricted to a subset of genera within a single clade of flowering plants. To explore the 
genetic basis for this scattered occurrence, we sequenced the genomes of ten plant species covering the 
diversity of nodule morphotypes, bacterial symbionts and infection strategies. In a genome-wide 
comparative analysis of a total of 37 plant species, we discovered signatures of multiple independent loss-
of-function events in the indispensable symbiotic regulator NODULE INCEPTION (NIN) in ten out of 13 
genomes of non-nodulating species within this clade. The discovery that multiple independent losses 
shaped the present day distribution of nitrogen-fixing root nodule symbiosis in plants reveals a 
phylogenetically wider distribution in evolutionary history and a so far underestimated selection pressure 
against this symbiosis. 
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group; moreover, within nine of these ten families most gen-
era do not form NFN symbiosis (7). In addition to this scat-
tered distribution, a further unsolved mystery that surrounds 
the evolution of NFN symbiosis is its diversity at multiple lev-
els: Legumes (Fabales) and the non-legume Parasponia 
(Rosales) (8) form nodules with rhizobia whereas species of 
the actinobacterial genus Frankia infect actinorhizal plants 
from eight plant families of the orders Fagales, Cucurbitales 
and Rosales (9). A diversity of infection mechanisms has been 
described (9), and root nodule structures display wide varia-
tions (5, 7). The most parsimonious hypothesis to explain the 
restricted and yet scattered distribution pattern of such di-
verse NFN symbioses predicted a genetic change in the an-
cestor of the NFN clade, a predisposition event, that enabled 
the subsequent independent evolution of NFN symbiosis spe-
cifically and exclusively in this clade (the multiple origin hy-
pothesis), along with a number of losses (5, 7, 10–12). Recent 
quantitative phylogenetic modeling studies supported sce-
narios with independent gains and switches between the 
non-nodulating and nodulating states during the evolution of 
the NFN clade (11, 13). However, none of these analyses pro-
vide direct evidence or the molecular causes of the specific 
gains and losses that explain the distribution of NFN symbi-
osis in extant genera. 

Exploring the genetic basis underlying the evolutionary 
dynamics of the NFN symbiosis in plants will improve our 
understanding of the diversity of symbiotic associations ob-
served in extant taxa and the ecosystems they inhabit, and 
potentially provide keys to engineer it in crops and to predict 
the stability of this trait over long evolutionary times. Here, 
we employed a genome-wide comparison including genomic 
and phylogenomic methods (14) to address the long-standing 
conundrum of the evolution of NFN symbiosis and to identify 
the underlying genetic players (15, 16). 
 
Results 
Genome sequencing in the NFN clade 
Sequenced genomes of nodulating species were only available 
for a few agriculturally relevant legume species belonging to 
a single subfamily (Papilionoideae), all derived from a single 
predicted evolutionary origin of NFN symbiosis, with no rep-
resentation either of taxa representing possible additional or-
igins within legumes or of non-legume nodulating species 
widely accepted as representing multiple additional origins 
(17–19). Conversely, sequenced genomes of non-nodulating 
species were restricted to the Fagales, Rosales and Cucur-
bitales, and did not include non-nodulating legume taxa (ta-
ble S1). To overcome this sampling bias which restricted the 
phylogenomic analysis, we sequenced de novo the genomes 
of seven nodulating species belonging to the Cucurbitales, Fa-
gales, and Rosales and the Caesalpinioideae subfamily of the 

Fabaceae, representing a possible second origin of NFN sym-
biosis in legumes. Three non-nodulating species from the 
NFN clade were also sequenced, notably Nissolia schotii, a 
papilionoid legume that has lost the ability to form the NFN 
symbiosis, and which therefore provides insights on the ge-
nomic consequences of losing the symbiosis (Fig. 1 and fig. 
S1). For each species, 144 to 381 Gb of Illumina reads were 
obtained covering the estimated genomes at least 189-fold 
and up to 1,113-fold, with the resulting scaffold N50 length 
between 96 kb and 1.18 Mb and an average genome complete-
ness of 96% (Fig. 1, figs. S1 and S2, and tables S2 to S29). Al-
together, the genomes of species sequenced here represent 
six families and most known nodule anatomy types and root 
infection pathways, include hosts for the main classes of nod-
ule-inducing symbiotic nitrogen-fixing alpha-proteo-, beta-
proteo- and actino-bacteria, and cover 6–7 independent evo-
lutionary origins of NFN symbiosis according to the multiple 
gains hypothesis (5, 7, 10, 11). These ten sequenced genomes, 
together with 18 other genomes from the NFN clade and nine 
genomes from other flowering plants as outgroup (Fig. 1), 
were compared to detect molecular traces supporting any of 
the three postulated events in the evolution of NFN symbio-
sis: i) predisposition to evolve it, ii) multiple independent 
gains and iii) multiple independent losses of NFN symbiosis. 
 
The putative predisposition event did not involve NFN 
clade-specific gene gains 
The predisposition event postulated by Soltis et al. in 1995 (5) 
may be based on the acquisition of one or several genes or 
sequence modifications specific for the NFN clade. This ac-
quisition would be also consistent with a single origin hy-
pothesis, in which NFN symbiosis in all taxa is predicted as a 
homologous trait. Genes acquired during the predisposition 
event are expected to be specific to the NFN clade and present 
in all nodulating species. To search for genes following this 
evolutionary pattern we identified gene families across all 37 
plant genomes in our dataset using the Orthofinder pipeline 
(20). For each of the resulting 29,433 gene family clusters we 
calculated a separate phylogeny and subsequently inferred 
orthologs for all genes of the reference species, Medicago 
truncatula (16). We selected groups for which orthologs were 
absent in the nine species outside of the NFN clade, but were 
retained in nodulating species (fig. S3). To obtain a candidate 
set for manual validation from the total of 29,213 orthologous 
groups we employed an automated filtering approach with 
relaxed criteria, which allowed for the absence of orthologs 
in a small subset of nodulating species (16). This step was 
necessary to avoid the loss of putative candidates due to 
missed gene models resulting from false negatives as they of-
ten occur in automated gene prediction pipelines. Our re-
laxed filter identified a total of 31 orthologous candidate  
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groups (table S30). All of these candidate groups underwent 
an iterative manual curation including a search for missed 
gene models and recalculation of phylogenies and orthologs 
(16). 

Not a single candidate gene was identified matching the 
evolutionary pattern expected for predisposition-related 
genes, suggesting that genes gained in the most recent com-
mon ancestor of the NFN clade have been conserved or lost 
irrespectively of the symbiotic state of the lineages. If the pre-
disposition indeed occurred, this result indicates that it did 
not involve the acquisition of novel genes but rather the co-
option of existing genes and their corresponding pathways. 
 
Gene family dynamics is compatible with multiple 
gains 
Multiple molecular mechanisms leading to the convergent 
evolution of a trait have been identified (21). Deep-homology 
(22), the independent recruitment of a homologous gene set 
for the development of non-homologous traits, has been pro-
posed for the NFN symbiosis (7, 23). Indeed, several genes 
initially identified for their symbiotic role in legumes were 
later found to also play a symbiotic role in Fagales (24–27), 
Rosales (28, 29), and Cucurbitales (30). An alternative mech-
anism for the evolution of novelty is gene family expansion, 
as exemplified by the parallel diversification of the Zn-finger 
transcription factor family in the evolution of a dominant 
yeast form in fungi (31), or the acquisition of strigolactone 
perception in parasitic plants (32). We hypothesized that if 
NFN symbiosis evolved multiple times, independent expan-
sions in the same gene family might have been involved. 
Given that our dataset covers 6–7 of the predicted independ-
ent gains of NFN symbiosis it allowed us to search for gene 
families whose evolutionary patterns are consistent and 
would support the multiple gains hypothesis (7). We analyzed 
Orthofinder clusters for copy number variation to identify 
gene family expansion events at each of these nodes (Fig. 2) 
(16). Multiple alternative models have been proposed for the 
independent gain of NFN symbiosis. In one scenario (7) a sin-
gle gain before the radiation of the legume family has been 
suggested that correlates with the expansion of 33 clusters in 
our analysis (Fig. 2). To test whether any of these clusters was 
enriched with differentially expressed genes (DEGs) in nod-
ule tissue versus root tissue, we derived for Medicago trun-
catula (Medicago) gene expression data for both conditions 
from the gene expression atlas (33) and tested for an enrich-
ment of Medicago DEGs in each cluster (table S31). We only 
found one such cluster that belongs to the nitrate transporter 
family NRT1/PTR (34). However, this gene family appears to 
be also expanded at nodes non-related to independent gains 
within and outside of the NFN clade (table S31). An alterna-
tive model proposes two independent gains within the leg-
umes: the first at the most recent common ancestor of the 

papilionoids and the clade to which Castanospermum aus-
trale belongs (21/291 enriched/expanded clusters), or at the 
base of the papilionoids (4/32) and the second gain at the 
base of the caesalpinioid/mimosoid clade (7/92). This clade 
could alternatively comprise two independent gains for 
Chamaecrista fasciculata (39/710) and mimosoids (37/723). 
Larger numbers of expanded gene families were observed for 
the predicted events in the Rosales, in the Fagales and in the 
Cucurbitales (Fig. 2 and table S31). Taken together we found 
52 gene family clusters that were enriched with differentially 
expressed genes in Medicago nodules and expanded multiple 
times at proposed independent gain nodes. However, similar 
to the NRT1/PTR family all of the enriched clusters also ex-
panded outside the NFN clade. Inside the NFN clade these 
clusters expanded beside the hypothesized gain of NFN sym-
biosis nodes at many additional nodes (table S31). In our sur-
vey of all independent gene family expansions, we did not 
identify any cluster that displayed parallel expansions, one 
possibility among others that would indicate convergent re-
cruitment for the independent gains of NFN symbiosis (7, 16). 
If NFN symbiosis indeed evolved multiple times, our genome-
wide analysis revealed hundreds of clade-specific candidate 
genes that, together with gene co-option, may have played a 
role in the putative independent evolutions of this trait. 
 
Genomic evidence for multiple losses 
Testing homologies of a trait shared by multiple taxa typically 
involves assessment of the trait in these species, and inferring 
origins of the trait once homology is accepted or rejected. 
However, information on the origin of a trait, and thus its 
homology, can also be obtained from taxa lacking the trait, 
by distinguishing primary absence (the taxon never had the 
trait) from secondary loss of the trait (23). It has been demon-
strated that genes involved in an unique biological process 
are lost following the loss of this trait, a process known as 
gene co-elimination (35–37). To test the multiple losses hy-
pothesis we searched the ortholog groups calculated above 
for an evolutionary pattern that retained orthologs in all nod-
ulating species but lost them in non-nodulating ones. To filter 
and confirm the list of candidate orthologous groups we used 
the same two-step process combining an automated pipeline 
with relaxed criteria for nodulating species followed by a 
careful manual curation and evaluation step with stringent 
criteria (presence in all nodulating species required). The au-
tomated pipeline with relaxed criteria resulted in a list of 121 
candidate groups (table S32). During our manual confirma-
tion and refinement, we rejected 31 of these candidate groups 
because orthologs were absent from one or more nodulating 
species. Another 62 candidate groups were rejected because 
orthologs of more than 50% of non-nodulating species were 
present. A weak phylogenetic signal did not allow inferring a 
reliable orthology for 27 candidate groups. A single gene, NIN 
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(NODULE INCEPTION), was confirmed in the genomes of all 
the nodulating species and in the genome of species outside 
the NFN clade, and absent from most non-nodulating ones in 
the NFN clade (Fig. 2 and fig. S4). Forward genetic screens in 
the legumes Lotus japonicus (27), Pisum sativum (38) and 
Medicago truncatula (24) identified NIN as indispensable for 
the two developmental aspects of the NFN symbiosis: initia-
tion of root nodule development and the formation of the 
plant structure facilitating intracellular uptake of bacteria 
(27). Furthermore, RNAi-based suppression of NIN expres-
sion in Casuarina glauca (Fagaceae, Fagales) impaired nod-
ule formation (25) consistent with a conservation of the role 
of NIN in NFN symbiosis in actinorhizal host plants. 
 
Confirmation of NIN absence by microsynteny 
Besides its presence in all the nodulating species in our da-
taset, synteny analysis revealed the conservation of the 
syntenic blocks surrounding the NIN locus across the NFN 
clade (Fig. 2). In contrast, ten out of 13 non-nodulating spe-
cies of the Fabales, Fagales, Cucurbitales, and Rosales under-
went partial (four species) or complete (six species) deletions 
of NIN from the conserved genomic block (Fig. 2). The leg-
ume family is divided into six subfamilies, two of which in-
clude nodulating species (39). According to previous 
estimates (7), Cercis (a member of Cercidoideae, which is sis-
ter to most or all other legumes) and Castanospermum (a 
member of a clade sister to the crown group of papilionoid 
legumes, in which nearly all members form the NFN symbio-
sis) both represent lineages in which NFN symbiosis never 
occurred. In contrast, Nissolia and its sister genus Chaetoca-
lyx are non-nodulating genera nested within the nodulating 
crown group of papilionoids, and thus have been predicted to 
represent secondary loss of NFN symbiosis (11, 40). Our 
synteny approach allowed the discovery of the complete ab-
sence of NIN from the genome of Nissolia schottii (Fig. 2). In 
addition, we confirmed the absence of NIN in three Chaeto-
calyx species (fig. S5). Since NIN was present in the most re-
cent common ancestor of the NFN clade and conserved in 
nodulating species, the absence of this gene in the Nissolia–
Chaetocalyx lineage represents a loss that correlates with, 
and is sufficient to explain, the loss of NFN symbiosis. Cercis 
canadensis harbored only a NIN pseudogene remnant in the 
genomic block, while the genome of Castanospermum aus-
trale completely lacked NIN (Fig. 2). These results demon-
strate three independent losses of NIN in the legume family. 
Similarly, the synteny analyses confirmed a minimum of 
three independent losses in non-nodulating Rosales and two 
in the Cucurbitales (Fig. 2). Together, the diversity of NIN de-
letions in the non-nodulating species is indicative of at least 
eight independent evolutionary events that led to the loss of 
NIN function (Fig. 3). Following the multiple-gains hypothe-

sis (7), NFN symbiosis was predicted to have evolved inde-
pendently at least six times in the species space sampled here 
(Fig. 2). Loss of NIN provides an alternative model with at 
least eight independent losses of NFN symbiosis (Fig. 3). 
Thus, the current distribution of NFN symbiosis might be a 
combination of these two complementary and not mutually 
exclusive models. 
 
Loss of RPG 
In parallel with these multiple confirmed losses of NIN, the 
synteny analysis also confirmed the presence of NIN in three 
non-nodulators of the NFN clade (Fig. 2). We hypothesized 
that the loss of genes other than NIN may explain the non-
nodulating state of these species and that such genes may 
have been missed by the specific and stringent criteria for the 
detection of the presence-absence patterns. In addition to 
NIN, we determined the presence/absence pattern of 21 genes 
that were identified by forward and reverse genetics to be 
critical for NFN symbiosis in legumes (Fig. 3 and table S33). 
Among these genes, 20 were conserved in nodulating species 
and most non-nodulating ones (figs. S6 to S25). By contrast, 
RHIZOBIUM-DIRECTED POLAR GROWTH (RPG) (41), which 
is present outside the NFN clade is missing in Nissolia schot-
tii and eleven other non-nodulating species from the four or-
ders of the NFN clade (Fig. 3). These losses were confirmed 
by microsynteny analyses for all non-nodulating species (fig. 
S26). In the M. truncatula rpg mutant, infection threads are 
still present but their structure is abnormal (41) indicating 
that RPG, similar to NIN, is required for proper infection 
thread progression. However, in contrast to nin mutants, 
nodules are formed on rpg roots (41). Among the nodulating 
species, RPG is absent in the papilionoid Arachis ipaensis 
(Fig. 3), a genus in which rhizobia infect nodules intercellu-
larly (42). Polymorphism in RPG may represent an interme-
diate step on an evolutionary path toward the loss of this 
symbiosis in Arachis, a genus in which NFN symbiosis is de-
scribed as a labile trait (43, 44). Absence of RPG in Arachis 
also explains why the genome-wide comparative phylo-
genomic approach did not identify this gene, given that the 
pipeline required the candidate genes to be present in all 
nodulating species. RPG was one of the genes rejected for not 
fulfilling this criterion. Among non-nodulating species, Ju-
glans regia (Fagales), Ziziphus jujuba and Prunus persica 
(Rosales) have lost RPG but retained NIN suggesting that ad-
ditional mutations might be causative for the loss of NFN 
symbiosis in these species. Some of the candidate mutation 
targets, for example LysM receptors involved in the percep-
tion of symbiotic signals produced by nitrogen-fixing nodu-
lating rhizobia, will be difficult to identify by phylogenomic 
analysis, because of the rapid evolution and expansionary dy-
namics of these gene families (45). In contrast to other sym- 
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biosis-relevant genes involved in infection, NIN and RPG are 
only known to have NFN symbiosis-specific functions while 
the mutation of other genes may have more pleiotropic ef-
fects. For example, the key signaling components SYMRK, 
CCaMK and CYCLOPS are involved in both NFN symbiosis 
and arbuscular mycorrhizal symbiosis, the most widespread 
symbiosis in land plants (46). Mutations in any of these three 
genes would also affect arbuscular mycorrhizal symbiosis. Il-
lustrating this dual selection pressure, retention of these 
genes has been described in the genus Lupinus that lost the 
arbuscular mycorrhizal symbiosis but retained NFN symbio-
sis (37, 47, 48). Given that both NIN and RPG are present in 
species outside the NFN clade (Fig. 3 and figs. S4 and S6), 
their consistent losses in non-nodulating species suggest the 
shift in constraints on sequence evolution specifically in the 
NFN clade. While the ancestral function of both genes re-
mains unknown, such relaxation might be mirrored by signa-
ture of relaxed or positive selection on both genes at the base 
of the NFN clade. We investigated the selective pressure act-
ing on the NFN clade for these two genes using the PAML 
package (49). Results did not reveal a significant positive or 
relaxed selection occurring in the NFN clade that would have 
reflected a putative neo functionalization for NFN symbiosis-
specific functions (table S34). 
 
Discussion 
In recent decades, the favored model to explain the scattered 
occurrence of NFN symbiosis in flowering plants predicted a 
single predisposition event at the base of the NFN clade fol-
lowed by up to sixteen origins, even though the occurrence of 
multiple losses was never excluded (7, 11). 

Our genome-wide comparative analysis did not detect 
gene gains specific to the NFN clade and maintained in all 
nodulating species. Such genes would have been ideal candi-
dates for either the predisposition event (in the multiple 
gains hypothesis) or the evolution of NFN symbiosis itself in 
the hypothesis that NFN symbiosis evolved only once in the 
most recent common ancestor of the NFN clade (the single 
gain hypothesis). This indicates that this step involved either 
fast evolving genes that were not captured by our phylo-
genomics pipeline or more subtle genetic changes. Evolution-
ary developmental genetics in plant, fungal and animal 
systems have revealed that even more than gains of genes, 
novelty often arises from the rewiring of existing gene net-
works via gains or losses of cis regulatory elements leading to 
the co-option of ancestral genes (50). A similar mechanism 
may have acted in the most recent common ancestor of the 
NFN clade. 

Co-option of different, or homologous in the case of deep-
homology, genetic components may lead to the convergent 
evolutions of non-homologous traits in multiple species (50). 
Deep-homology has been invoked for the evolution of NFN 

symbiosis, either during the predisposition or the following 
putative multiple gains (7). Our results support this hypothe-
sis given that all the genes characterized for their involve-
ment in NFN symbiosis in legumes were already present in 
the most recent common ancestor of the NFN clade and that 
we did not detect genes specific to the NFN clade that were 
conserved in all nodulating species (Figs. 2 and 3). For the 
putative multiple gains of NFN symbiosis, it cannot be ex-
cluded that gene gains were also involved in addition to co-
option of ancestral pathways. We identified hundreds of such 
lineage-specific candidate genes (Fig. 2). However, consider-
ing that most of the predicted gains in our analysis are lo-
cated in terminal taxa, that are known to accumulate orphan 
genes and species-specific duplications in comparative ap-
proaches, it can be anticipated that only a subset of them par-
ticipated in the evolution of NFN symbiosis (in the multiple 
gains hypothesis) or in lineage-specific refinements of the 
trait (in the single gain hypothesis). 

Our results validate another hypothesis: multiple inde-
pendent losses of NFN symbiosis in the four orders of the 
NFN clade. In a classical model of evolution, if the number of 
losses necessary to explain the distribution of a trait in a 
given clade outnumbers the predicted gains, multiple gains 
will be favored over multiples losses to explain the distribu-
tion of the trait. In legumes, up to six gains of NFN symbiosis 
were predicted (7) while the clear losses that we identified in 
Cercis canadensis, Castanospermum australe, and Nissolia 
schotii now argue for a single origin before the radiation of 
the family (Fig. 3). Beyond legumes, the number of validated 
losses of NFN symbiosis is consistent with a single gain of 
this symbiosis in the most recent common ancestor of the 
NFN clade, even though it does not reject the possible occur-
rence of multiple gains. The recent identification of loss of 
NFN symbiosis in the Rosales Trema orientalis brings further 
support to this hypothesis (51). Besides NFN symbiosis, the 
single or multiple origin(s) of other traits, such as the evolu-
tion of complex multicellularity in fungi, are currently de-
bated with the accumulating evidence of multiple-losses 
demonstrated by the loss of associated essential genes (52). 
Thus multiple gains and multiple losses are not mutually ex-
clusive scenarios to explain the evolution of complex traits 
such as NFN symbiosis. This also suggests that reduction, 
similarly to the evolution of complexity, might be a major 
driver of the phenotypic diversity observed in extant organ-
isms (36, 53). 

The fixation of loss of function alleles of NIN (either com-
plete loss or pseudogenization) in non-nodulating species 
provides the genetic explanation for the loss of NFN symbio-
sis in ten species representing eight non-nodulating lineages. 
Fixation of such alleles requires ecological conditions in 
which the cost of symbiotic nitrogen-fixation, involving infec-
tion, building nodules to host bacteria, and providing carbon 
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to feed them, outweighs the benefit to the plant. In most ter-
restrial habitats nitrogen is limiting (54), suggesting that the 
scale should be tipped toward the conservation of NFN sym-
biosis once this complex trait evolves. In nitrogen-rich habi-
tats NFN symbiosis is known to be inhibited in legumes (55). 
Long-term fertilizer application would make NFN symbiosis-
specific genes superfluous, leading to their eventual muta-
tional inactivation and loss. In addition to this abiotic con-
straint, NFN symbiosis may be undermined by “cheating” 
bacteria that gain entry into root nodules and are fed by the 
plant, but do not deliver nitrogen (56–58). Cheaters may 
therefore imbalance the tradeoff between the costs and ben-
efits of the association, as already proposed based on patterns 
of legume NFN symbiosis in Africa (59). This would result in 
the loss of NFN symbiosis being adaptive thus providing an 
ecological explanation for the occurrence of this symbiosis in 
a few flowering plant species. In this context, the finding that 
NIN participates in shaping the root microbiome beyond 
NFN symbiosis makes it a target of adaptive selection against 
this symbiosis (60). 

Engineering biological nitrogen-fixation in crops remains 
a goal of plant synthetic biologists, with the aim to improve 
food production in developing countries in which the appli-
cation of nitrogen-fertilizer is limited by economic and infra-
structural constraints. Our results supporting the occurrence 
of multiple independent losses indicates that the apparent 
selection against NFN symbiosis must be taken into account 
by projects whose aim is to improve legumes and, even more, 
when considering the engineering of nitrogen-fixation in 
other crops. 
 
Materials and Methods 
Plant material and sample preparation 
The origin of the plant material used for DNA or RNA extrac-
tion in this study is summarized in Data S2. 

Methods for plant growth, DNA extractions and RNA ex-
tractions are described in the supplementary material online. 
 
Genome sequencing 
Figure S1 describes the overall strategy and results of the da-
taset production in this study. 

Whole genome sequencing for the ten genomes was per-
formed using Illumina sequencing technology (HISEq. 2000 
and HISEq. 4000) at BGI-Shenzhen. Hierarchical library con-
struction strategy was applied that typically included multi-
ple paired-end libraries with insert sizes of 170, 250, 350, 500, 
and 800bp and mate-pair libraries with insert sizes of 2, 5, 10, 
and 20 Kb. Most of the paired-end and mate-pair libraries 
were prepared from large genomic fragments, typically of size 
20-40 Kb, or even larger. For some species, more small-insert-
size PE libraries were constructed to complement the limited  
 

mate-pair libraries. The library construction for each species 
is summarized in table S36. Deep genome sequencing was 
performed for the majority of species, with at least 110-fold 
coverage after a stringent data filtering and the highest se-
quencing depth reached 535-fold in cleaned data. 

The overview statistics of data production are summa-
rized in table S2 and fig. S1. 

To minimize sequencing errors and reduce genome as-
sembly artefacts, several quality control steps were taken to 
filter out low-quality sequencing reads: 

Removal of N-rich reads: Reads that contained more than 
10 percent of ‘N’s bases or polyA structure were removed; 

Removal of low quality reads: Reads that had 40% of 
the bases are low-quality (quality scores ≤ 7) were filtered 
out; 

Filtering of reads with ≥10nt aligned to the adapter se-
quences: adaptor sequences were aligned to read1 and read2 
using a dynamic programming approach, if the aligned frag-
ments from read1 or read2 were reverse complementary to 
each other, the pair was also removed. 

Filtering of small insert size reads with insert size (170-
800 bp): the overlapping length between read1 and read2 is 
≥ 10bp, 10% mismatch was allowed. 

Filtering of PCR duplicates: if the PE read1 and read2 were 
100% identical, these reads were treated as duplicates and 
only one was retained. 

Trimming of read end: the low-quality bases from read 
ends (5′-5bp, 3′-8bp) were directly trimmed. 

This filtering process was carried out using an in-house 
Perl program. After filtering, in average 150-fold sequencing 
coverage were generated. For each species, clean reads were 
then passed to the genome assembler pipeline for de novo 
genome assembly. 

The statistic of clean data are also summarized in table 
S2. 
 
Genome assembly 
To optimize the strategy for genome assembly, a genome sur-
vey is necessary to estimate the genome complexity. Some ge-
nomes are abundant in repetitive content and/or maintain a 
high heterozygosity rate through genome kmer-analysis. A k-
mer refers to a continuous sequence with k base pairs, typi-
cally extracted from the reads (thus shorter than the read 
length, e.g., 17 bases per k-mer). If an ‘ideal’ sequencing data 
set is produced from randomly whole genome shotgun pro-
cess without sequencing errors or coverage bias, the start po-
sitions of reads along the genome will follow Poisson 
distribution (61). Supposing that the read length is far shorter 
than the genome size, the k-mer can be regarded as randomly 
generated from the genome and their occurrence (sequencing 
depth) also is expected to be Poisson distributed (fig. S3A).  
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Based on this assumption, the genome size can be estimated 
as (62): 

k-mer numberGenome size = 
Average sequencing depth

 

 
For a ‘normal’ diploid genome, the k-mer frequency pro-

duced from adequate reads would follow Poisson distribu-
tion. For genomes which are either repeat-rich or highly 
heterozygous, an additional peak either indicative of highly 
repetitive content (typically two-fold depths of the main 
peak) or of highly heterozygosity (63) (typically half depths of 
the main peak) is expected next to the ‘main peak’ (indicative 
of the normal diploid genome) from the frequency distribu-
tion, or some even more complex scenarios either caused by 
the unexpected non-canonical genomic characteristics (e.g., 
degree of heterozygosity, complexity of the size and distribu-
tion of repetitive content, etc.) coupled with the use of differ-
ent k-mer size. 

K-mer statistics and distributions are presented in fig. S2 
and tables S6 to S25. 

During de novo genome assembly, we tried different k–
mers (from 23-mer to 33-mer) to construct contigs and the 
best k-mer (with the largest contig N50 length) was selected 
for the final run. Due to differences in genome complexities 
between species, multiple genome assemblers were applied 
to achieve the optimal assembly result. As described in fig. S1, 
SOAPdenovo2 (version 2.04) (64) was the most frequently 
used assembler and Platanus (version 1.2.4) (65) for highly 
heterozygous genomes. After several rounds of assembly eval-
uations regarding contig contiguity and genome complete-
ness, the best assemblies (largest contig N50 and highest 
BUSCO gene mapping rate) were selected for the downstream 
gap-closing step by Gapcloser (version 1.2) (64). For the as-
sembly of Discaria trinervis genome, we employed the Celera 
assembler CA8.3rc1. Because the Celera assembler (66) is sen-
sitive to excessive coverage, library sizes were down-sampled 
to equal sized batches with a total coverage of approximately 
50-fold. In a subsequent step the entire sequence information 
was used to generate scaffolds and close gaps with SSpace 
(67) and Gapcloser, respectively. 

Table S3 indicates the assembly strategy for each genome. 
The statistics of genome assemblies are summarized in ta-

ble S3 and the details for each species are presented in tables 
S6 to S25. 
 
Genome assembly evaluation 
The assembly evaluations for all of the genomes are provided 
in table S4. 

Basically, mapping of the 1,440 ultra-conserved core eu-
karyotic genes from the BUSCO (68) data set, resulted in 
>90% of the core eukaryote genes recovered for the majority 

of the genome assemblies. Taken together, these results indi-
cate good genome assembly qualities for most of the newly 
sequenced species in this study, especially with respect to the 
genic regions (Fig. 1). 
 
Genome annotation 
A schematic workflow for genome annotation is given in fig. 
S1. 
 
Repeat identification 
Identification of transposable elements (TEs) was carried out 
by RepeatMasker (version 4-0-5) (69). A custom repeat library 
was constructed for each species by careful self-training. To 
construct the repeat custom library, we first collected the 
miniature inverted repeat transposable elements (MITEs) 
from many closely-related species, created a lineage-specific 
custom library by MITE-hunter (70) with default parameters. 
For the prediction of long terminal repeats (LTR), we used 
LTRharvest (71) integrated in Genometools (version 1.5.8) 
(72), defining LTR in the length of 1.5 kb to 25 kb, with two 
terminal repeats ranging from 100 bp to 6000 bp with ≥ 99% 
similarity. Elements with intact PPT (poly purine tract) or 
PBS (primer binding site) were necessary to define LTR, 
which were identified by LTRdigest (71) using an eukaryotic 
tRNA library (http://gtrnadb.ucsc.edu/), while elements 
without appropriate PPT or PBS location were removed. In 
order to remove false positives such as local gene clusters and 
tandem local repeats, 50 bp flanking sequences on both sides 
of the LTRs of each candidate element were aligned using 
MUSCLE (73) with default parameters; if the identity ≥ 60%, 
the LTR element was considered as a false positive and re-
moved. LTR elements nested with other inserted, but unre-
lated components were also removed. Exemplars were built 
using a cutoff of 80% identity in 90% of element length from 
an all vs. all BLASTn search. Terminal repeat retrotransposon 
in miniature (TRIM) libraries, with length of 70 bp to 500 kb, 
were built following a similar prediction strategy. Further-
more, the genomic sequence was masked to run RepeatMod-
eler (version 1-0-8) (69) to extensively de novo predict 
repetitive sequences for each species. The MITE, LTR and 
TRIM repetitive sequence libraries were integrated together 
to make a complete and non-redundant custom library. This 
custom repeat library was taken as the input for Repeat-
Masker to identify and classify transposable elements ge-
nome-wide for each species. 
 
Gene annotation 
Repeat elements were masked for each genome assembly be-
fore gene model prediction. Protein-coding genes were iden-
tified using the MAKER-P pipeline (version 2.31) (74) with 
two rounds of iterations. To obtain an optimal gene predic- 
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tion, series of trainings was performed. First, for genomes 
that have RNA samples sequenced, a set of transcripts was 
generated by a genome-guided approach using Trinity and 
then mapped back to the genome using PASA (version 2.0.2) 
(75). This process generated a set of complete gene models 
from each genome assembly, and thus obtained real gene 
characteristics (size and number of exons/introns per gene, 
distribution of genes, features of splicing sites, etc.) by Au-
gustus (76). Genemark-ES (version 4.21) (77) was self-trained 
with default parameters. SNAP (78) was trained using RNA- 
or protein-based gene models from the first iteration of 
MAKER-P pipeline. For RNA-seq aided gene annotation, RNA 
clean reads were assembled into inchworms using Trinity 
(79). For some species, transcriptome/ESTs data were ob-
tained from NCBI or 1KP database if available 
(https://sites.google.com/a/ualberta.ca/onekp/). An optimal 
core protein set was collected from several closely-related 
species for homolog-based gene prediction for each species. 
For example, gene models from the model plants like Ara-
bidopsis thaliana, Oryza sativa, as well as from some well-
annotated legumes like Medicago and Glycine max. Default 
parameters were used to run MAKER-P with all integrated 
annotation sources and to produce the final set of gene mod-
els for each species. Number of gene models for each species 
is summarized in table S26 and detailed statistics are sum-
marized in table S28. BUSCO evaluation suggests complete 
and reliable gene annotation for all newly-sequenced ge-
nomes (tables S4 and S5). 

HMMER-based engineer InterproScan (version 5.11) (80) 
was used to predict gene function from several functional da-
tabases. The motifs and domains of genes were determined 
by searching against protein databases. An integrated gene 
functional annotation is summarized in table S29 for all spe-
cies. 
 
Transcriptome sequencing 
RNA samples were sequenced for seven species to assist gene 
prediction in this study. The overview of total RNA samples 
with various tissues is summarized in table S37. For each 
RNA sample, a pair-end library with insert size of ~200bp 
was constructed following the manufacturer protocol. Librar-
ies were barcoded and pooled together as input to the Illu-
mina Hiseq 4000 platform for sequencing. All of the RNA 
samples were sequenced in-depth, with an average of 6 Gb 
sequences per sample, to ensure a complete coverage for each 
transcriptome. 
 
Genome-wide comparative phylogenomic analysis 
Clustering of gene families 
Clustering of gene families are based on predicted proteomes 
of the gene annotation of 37 species (table S1). To generate a 
set of non-redundant representative sequences, we removed 

multiple isoforms of a gene applying a cd-hit clustering using 
an identity threshold of 99.5% (81). Subsequently, homologs 
were identified with an all versus all blastp (v.2.2.30+) search 
of the 37 species preoteomes. For each query-subject-pair we 
summed up the aligned sequence of all its HSPs (blast high 
scoring pair) ignoring overlaps and compared it with the se-
quence length of both subject and query. We removed all 
query-subject-pairs from the blast tables for which the align-
ment coverage was less than 40% of either the total query or 
subject sequence length. According to Yang and Smith (82) 
this hit fraction filter step with the used cutoff of 40% signif-
icantly improves phylogenetic trees and orthology inference 
in the subsequent steps. Based on these modified blast tables 
we clustered the remaining homologs to gene families with 
OrthoFinder (inflation parameter of 1.3) (20). The resulting 
29,433 gene families were used as a starting point for the ge-
nome-wide phylogeny-based ortholog presence/absence anal-
ysis and candidate confirmation. We also calculated gene 
family clusters without applying the 40% hit fraction filter 
and used these 23,869 gene family clusters for the analysis of 
gene copy number variation. Figure S3 provides an overview 
both for the individual steps and the complete pipeline. 
 
Genome-wide phylogeny-based ortholog presence/absence 
analysis 
For each OrthoFinder gene family cluster a separate phylog-
eny was calculated with FastME (83). As suggested by Yang 
and Smith (82), unreliable or wrongly resolved super-long 
branches were removed from each family tree by the follow-
ing way: for each tree, average length and standard deviation 
of terminal branches were calculated and branches longer 
than the mean of the average terminal branch length plus 
three-fold standard deviation were removed. A python script 
was written to root pruned trees with farthest-oldest out-
group method (implemented in the Python package ETE 3 
(84)) and ortholog/paralog relationships were inferred with 
the species overlap algorithm (implemented in the Python 
package ETE 3) (84). We then searched lists of orthologs of 
each gene of the reference species, the well-characterized 
nodulating legume Medicago, in total 29,213 ortholog lists, 
for the presence or absence of orthologs in all remaining 36 
species of our dataset. The following criteria were applied to 
identify candidates: 

a) Orthologs present in at least 66% of the nodulating spe-
cies (10 of 15), 

b) Orthologs present in a fraction of nodulating species 
from each order of the NFN clade (at least 7 of 10 nodulating 
Fabales, at least 1 of 2 nodulating Rosales, at least 1 of 2 nod-
ulating Fagales, 1 of 1 nodulating Cucurbitales), 

c) (Only for predisposition hypothesis) orthologs absent 
from ALL outgroup species outside of the NFN clade. 

d) (Only for multiple losses hypothesis) orthologs absent 
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from more than 50% of the non-nodulating species (at least 7 
of 13). 

Instead of filtering for the presence of orthologs of all nod-
ulating species (10/10 Fabales, 2/2 Rosales, 2/2 Fagales and 
1/1 Cucurbitales) we used relatively relaxed criteria (as de-
fined in a and b) for nodulating species to avoid missed po-
tential candidates due to erroneous gene annotations (e.g., 
false negatives from gene annotation pipelines). Each of the 
candidates resulting from these criteria (predisposition hy-
pothesis: 31 candidates; multiple losses hypothesis: 121 can-
didates) underwent a refined candidate analysis described 
below with stricter criteria for nodulating species. 

Besides the candidates of the genome-wide presence/ab-
sence analysis of phylogeny-based orthologs, we collected 22 
candidate genes (table S33) that have been reported to be in-
volved in root nodule symbiosis mostly from the model leg-
ume organisms Medicago and Lotus japonicus. For each 
OrthoFinder gene family cluster containing one of these 
genes we calculated maximum likelihood gene family trees 
(RaxML v.8.2.4 Model: CATWAG). Based on the topology of 
the gene family tree and its protein alignment (MAFFT 
v.7.222 L-INS-I (85), trimming: BMGE gap-rate cut-off 80%) 
(86) we manually selected the subtree that contained the 
gene of interest (orthogroup). Subsequently we realigned 
(MAFFT v.7.222 L-INS-i, trimming: BMGE gap-rate cutoff 
20%) and recalculated the phylogenetic tree (RaXML v.8.2.4 
Model: GAMMAJTT, 200 bootstraps) (87) of the orthologous 
group to improve the quality of the subtree. Trees were 
rooted manually. Starting from the gene of interest and trav-
ersing to the root of the tree we marked all nodes as duplica-
tion or speciation events. If the two subclades of a node 
shared genes that were originating from the same species, 
this node was interpreted as a duplication, otherwise as a spe-
ciation event. Based on speciation nodes we inferred the 
orthologs of the gene of interest. At duplication nodes all 
genes in the subclade lacking the query gene were inferred as 
paralogs. In case of a speciation node all genes belonging to 
both subclades of that particular node were inferred as 
orthologs of the query gene unless they were annotated as 
paralogs at a previous node. All orthologs with incomplete 
gene models were removed as long as they had paralogs 
among the species they were derived from keeping at least 
one ortholog per species. We defined gene models as incom-
plete/fragmented, if more than 20% of the conserved amino 
acid sequence was absent. As conserved amino acid se-
quences we used the trimmed alignments (BMGE 20% gap-
rate cutoff). To avoid false conclusions for missing orthologs, 
we retested a potential absence of genes by a homolog search. 
In such a case and in case of still remaining incomplete gene 
models we searched the complete genome sequence of the 
corresponding species (tblastn v2.2.30+, default parameters) 

with the closest homolog from the gene tree for regions con-
taining potential gene loci of putative orthologs. These re-
gions were then used to predict gene models (fgenesh+) (88). 
The resulting gene models were included in the set of se-
quences of the orthologous group and another round of align-
ment and tree calculation was performed (same settings and 
tools as last round). These identified sequences complement-
ing the species gene annotation are provided as a separate 
fasta-formatted file in Data S1. The resulting tree was then 
used for a final round of ortholog inference so that the final 
set of orthologous genes is the result of an iterative process 
with constant improvement of gene models and phylogenies. 
If a complete gene model was not detected, the fragmented 
model was used and the ortholog was annotated as ‘frag-
mented’ for the respective species. Fragmented models were 
only annotated as complete, if the different fragments 
merged to a complete model and the fragmentation could be 
explained by the fragmentation of genomic scaffolds. 

For the pre-filtered candidates from the genome-wide 
phylogeny-based ortholog presence/absence analysis we used 
more strict criteria than in the fully automated approach that 
led to the pre-filtered candidates. We only kept such candi-
dates from the genome-wide phylogeny-based automated 
presence/absence pipeline for which orthologs of all nodulat-
ing species were present and orthologs in more than 50% of 
non-nodulating species (7 of 13) were absent. Orthologs ab-
sent from the orthofinder output were independently 
searched by microsynteny to exclude the possibility that the 
ortholog could not be found because the syntenic region of 
the ortholog was not in the corresponding genome assembly 
(for more detail see “synteny analysis” section). The presence, 
absence and fragmentation of orthologs for each of the 22 se-
lected known symbiosis genes and each species is summa-
rized in Fig. 3. The diversification times shown in the 
chronogram are based on estimates from Bell et al. (Out-
group, BEAST, 36 minimum age constraints treated as log-
normal distributions) (89), Xi et al. (Malpighiales, BEAST, un-
correlated lognormal model) (90, 91) and Li et al. (NFN clade, 
r8s, 1008 taxatree) (13). Phylogenetic trees for all candidate 
genes are provided in figs. S4 and S6 to S25. 
 
Analysis of gene copy number variation 
OrthoFinder gene family clusters (see above “1. Gene family 
clusters”) were used to identify nodes in the species tree of 
our dataset, where gene family expansions or contractions in 
fast evolving gene families occurred. The number of genes for 
each species of each cluster were counted and analyzed em-
ploying the software tool CAFE (92). Following instructions 
given in the CAFE manual we removed gene family clusters 
with strong outliers in gene copy number. Therefore, we ex-
cluded 193 gene family clusters from the analysis for which  
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the difference between maximum copy number and median 
copy number was greater than or equal to 50 copies which 
meet the elbow criterion to identify the optimal number of 
clusters in a clustering problem (fig. S27). To avoid overesti-
mation of gene family contractions, we only used gene family 
clusters that contained orthologs from at least 28 species. 
This enabled us to analyze gene families that lost all genes in 
0 up to 9 species. We chose this cut-off, because of the 9 out-
group species in the dataset. In the extreme case that all these 
9 outgroups have a gene count of 0 we could still analyze gene 
families originating from the last common ancestor of the 
NFN clade. After applying this cut-off a total of 10,237 gene 
families were kept for the gene family evolution analysis (au-
tomatic λ and μ estimation, significance level for fast evolving 
families 5%). The results of the analysis are shown in Fig. 2. 

From the Medicago Gene Expression Atlas we obtained all 
differentially expressed probesets that were either upregu-
lated with a fold change of 2 or downregulated with a fold 
change of 0.5 in root nodule tissue of different age (7, 10 14 
and 28 dpi) compared to untreated root tissue . We associated 
all of these 18,131 regulated probesets to 17,521 Medicago v4.0 
gene IDs using the mapping file provided by MtGEA. For each 
of the 14 hypothesized independent gain of NFN symbiosis 
nodes (Fig. 2, blue boxes) we extracted all gene family clusters 
that showed expansions at these nodes. For each of these 
clusters we counted the number of transcriptionally regu-
lated und not regulated Medicago genes ignoring all genes 
that could not be mapped to probesets. To test whether a 
gene family cluster was enriched for Medicago genes differ-
entially expressed in nodulating versus mock control roots we 
performed Fisher’s exact test on a significance level of 5%. 
 
Synteny analysis 
Genome-wide syntenic and collinear blocks were identified 
across the 37 selected genomes in this study. First, all vs. all 
Blastp (E-value ≤ 1e−10) was performed on the translated pro-
tein sequences of the 37 set of annotated gene models, result-
ing in a database of protein similarity. We then used the 
Multiple Collinearity Scan (Mcscan toolkit version 1.1, 2016, 
≥ 5 homologous gene pairs/block) to identify conserved col-
linear blocks between the 37 genomes, creating a 
syntenic/collinear block database across all of the 37 species. 
In order to find all of the homologous syntenic blocks of in-
terest, we first used Medicago genome as reference, searching 
and locating the target genes along the syntenic blocks with 
the flanking genes surrounding up-/down-100 kb genomic re-
gions as well as the counterparts from different genomes. For 
any other given genome, the optimal collinear block (the 
highest score if multiple duplicated blocks were found) was 
defined according to conservation of gene content (the larg-
est number of orthologous gene pairs) and consistency of  
 

gene order. If a corresponding ortholog was present in the 
collinear block from other aligned genome, this was called 
scenario-1 (indicating synteny supports gene presence and 
consistent with the genome-wide gene family ortholog pre-
diction), if the target orthologous gene was absent from the 
collinear blocks of the given genome, this was called scenario-
2 (synteny supports gene absence). After this first round was 
finished, to complete any missing genes/blocks due to weak 
alignment signals, we classified these identified orthologous 
genes as well as the corresponding collinear blocks, and re-
peat the searching and locating process between genomes ac-
cording to their evolutionary proximity in phylogenetic 
position (using the most closely-related genome as query). By 
this process, we updated scenario-1 and scenario-2 as de-
scribed above. In addition, for some species, no collinear 
block was identified around the possible target gene, we man-
ually re-visited the protein similarity database, and searched 
the genomic regions flanking the Medicago gene to confirm 
the gene presence or absence supported by synteny. Finally, 
if no synteny was identified, but the candidate ortholog gene 
was predicted from the genome-wide gene family analysis, we 
called this as scenario-3 (gene presence without synteny sup-
port, which indicates possible gene translocation and synteny 
erosion). 
 
Detecting selection pressure on gene trees 
For NIN and RPG, protein sequences were aligned using 
MAFFT v7.380 (85). The protein alignment served as matrix 
for codon alignment performed using the Perl script pal2nal 
v14 with the –nogap option enabled to remove all gapped po-
sitions. Codon alignments were then subjected to a maximum 
likelihood analysis using IQ-TREE v1.6.1 (93) with 10,000 Ul-
trafast bootstraps replicates (94). The best-fitted evolutionary 
model was previously investigated using ModelFinder (95). 
The unrooted tree obtained was controlled to fit with the evo-
lutionary frame of species and the NFN clade labeled as the 
foreground branch that was tested for being under positive 
selection. This latter was investigated using the branch-site 
model A implemented in the codeml module from the PAML 
package v4.9 g (49). An alternative hypothesis (NFN clade 
may have proportion of sites under positive selection) was 
compared to the null hypothesis (NFN clade may have differ-
ent proportion of sites under neutral selection compared to 
the other clades). For the null model, the parameters were set 
as follows: “model=2, NSites=2, fix_kappa=0, fix_omega=1 
and omega=1” while the parameters for the alternative model 
were: “model=2, NSites=2, fix_kappa=0, fix_omega=0 and 
omega=1.5”. The two hypotheses were compared using the 
likelihood ratio test based on a chi2 distribution with one de-
gree of freedom. If the alternative hypothesis was validated, 
codon sites likely to fall under positive selection were identi- 
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fied using the Bayes Empirical Bayes procedure (49). 
 
PCR-validation of the absence of NIN in non-nodulat-
ing legumes 
A nested PCR approach was undertaken using primers de-
signed on an alignment of NIN gDNA from Medicago and Mi-
mosa pudica. These primers are designed to amplify ~120 bp 
on Exon 4, ~170 bp on Exon 5 and the intron in between. Size 
of this intron ranges from 133bp in Medicago to 397 bp in 
Mimosa pudica. For the first PCR we used the degenerated 
primer pair NIN-Fwd-3 5′- GGAGAAAGTCMGGCGASAA and 
NIN-Rev-3 5′- GRAARCTGGCATAGAATGA. The Nested PCR 
was run with 0.2 μl of the PCR reaction and primers NIN-
Fwd-2 5′- CGAACCAAGGCTGAGAAGAC and NIN-Rev-2 5′-
ATCTGTATGGCACCCTCTGC. The first PCR run was as fol-
low: 94°C 30s, 45°C 1 min, 72°C 1 min for 35 cycles; and for 
PCR two: 94°C 30s, 50°C 1 min, 72°C 1 min for 35 cycles. For 
all species the PCR was run on >2 samples. In addition, a PCR 
on the 28S was run to confirm the quality of the samples. All 
PCRs were run using a GoTaq DNA polymerase. 
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Fig. 1. Genome features of species used in this study. Genome statistics are shown as 
pictograms for species used in this study, with nodulating species highlighted by blue 
sectors. Species names are shown as four letter abbreviations at the outer circle, with their 
taxonomic order color coded shown at the top right legend. Newly sequenced species are in 
bold blue letters. The next two circles show as pie charts the proportion of complete BUSCO 
genes detected in the genome assembly (light grey) and the percentage of assembled 
sequence relative to the estimated genome size (dark grey), respectively. Scaffold N50 
values are depicted as bubble charts (black) capped to a maximal N50 of 1 Mb to reduce 
graphical biases by finished genomes assembled to pseudo-chromosomes. Note that even 
for assemblies in this study with low contiguity, the BUSCO results suggest that the gene 
space has been well covered (tables S4 and S5). The innermost circle represents the genome 
size by proportional chromosome pictograms. 
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Fig. 2. Gene family expansions and contractions in the NFN clade. In the left panel, a species phylogeny 
of the used dataset is depicted. For each node, the number of gene family showing expansions (+, blue) and 
contractions (-, red) are given. Blue boxes point out nodes hypothesized to be positions of independent gain 
events of the NFN symbiosis including all suggested alternative models in the given dataset (7). For example, 
among the Fabales the dataset could comprise one, two or three independent gains. A black arrow marks 
the base of the NFN clade. The right panel depicts syntenic relationships of the NIN region. NIN genes are 
colored in green. NIN gene IDs are shown above the gene symbol. The synteny analysis upholds orthologous 
relationships drawn from the phylogenetic analysis and supports the absence of NIN in several species by 
verifying the existence of contiguous NIN regions without NIN genes. Enlarged gene models are only shown 
for fragmented NIN genes in comparison to the full Medicago truncatula NIN gene. Blocks with no and  
green filling represent parts absent and present, respectively, when compared to Medicago NIN. 
Insertions/deletions and premature stop codons (*) are symbolized by a vertical red line. 
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Fig. 3. Phylogenetic pattern of NFN symbiosis-related genes. The chronogram contains 
nodulating (blue text) and non-nodulating species (grey) from all four orders of the NFN 
clade (blue dot), to which NFN symbiosis is limited. Nine species outside the NFN clade are 
included as outgroup at the top. Absence and presence of entire or fragmented copies of 21 
symbiosis genes are indicated by white, black and grey boxes, respectively. Stars indicate 
independent losses of NIN. The independent loss or fragmentation of NIN correlates with the 
absence of nodules after the emergence of the NFN clade. RPG is lost or fragmented in even 
more non-nodulating species than NIN, but also in the nodulating species Arachis ipaensis 
and Mimosa pudica. Asterisk: Sequenced for this study. Cucurb. Cucurbitales. INF: genes 
required for infection. NOD: genes involved in nodule organogenesis and regulation.  
CSG: genes required for both NFN symbiosis and arbuscular mycorrhiza symbiosis. 
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