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(Dep. Ing. Eléctrica y Computadoras - ICIC

Universidad Nacional del Sur, CONICET

Bah́ıa Blanca, Buenos Aires, Argentina

jorozco@uns.edu.ar)

Abstract: In this paper we present meta-heuristics to solve the energy aware reward
based scheduling of real-time tasks with mandatory and optional parts in homogeneous
multi-core processors. The problem is NP-Hard. An objective function to maximize the
performance of the system considering the execution of optional parts, the benefits of
slowing down the processor and a penalty for changing the operation power-mode is
introduced together with a set of constraints that guarantee the real-time performance
of the system. The meta-heuristics are the bio-inspired methods Particle Swarm Op-
timization and Genetic Algorithm. Experiments are made to evaluate the proposed
algorithms using a set of synthetic systems of tasks. As these have been used pre-
viously with an Integer Lineal Programming approach, the results are compared and
show that the solutions obtained with bio-inspired methods are within the Pareto fron-
tier and obtained in less time. Finally, precedence related tasks systems are analyzed
and the meta-heuristics proposed are extended to solve also this kind of systems. The
evaluation is made by solving a traditional example of the real-time precedence related
tasks systems on multiprocessors. The solutions obtained through the methods pro-
posed in this paper are good and show that the methods are competitive. In all cases,
the solutions are similar to the ones provided by other methods but obtained in less
time and with fewer iterations.
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1 Introduction

Real-time tasks are those that have to be executed correctly before a certain

deadline [Stankovic 1988]. Several scheduling policies and optimal algorithms

have been proposed for mono-processor systems [Liu and Layland 1973]. How-

ever, the actual trend in microprocessors architecture implements homogeneous

multicore processors with independent cache memories and a common main

memory. For this, real-time tasks scheduling is still an open issue. Some specific

architectures propose heterogeneous multicore processors in which certain tasks

are performed by a dedicated core, for example a digital signal processor (DSP)

unit. In these cases, the scheduling can revert to a single core processor as the

task execution in such unit is mandatory [Zhang et al. 2014].

There are three main approaches for scheduling real-time tasks in multicore

systems. In the first one, called partitioned multiprocessor real-time scheduling,

tasks are statically allocated to a particular core. No migrations are allowed

between cores and each one should have a particular scheduler. In the second

one, called global multiprocessor real-time scheduling, a single scheduler selects

the higher priority task to run on any available core. Tasks may be preempted

at any point and continue their execution on a different core. In this case, a

full migration policy is adopted. Between both approaches, a restricted migra-

tion one is proposed in which tasks may execute different instances on different

cores. However, once an instance has begun its execution in a core it finishes its

execution in it. A new instance may execute in the same core or in a different

one [Fisher 2007].

“Anytime algorithms” also known as imprecise computation, are those that

improve the quality of the result when they execute for longer periods of time. It

is the case of finding the roots of a function, image and speech processing in mul-

timedia applications and navigation support among others [Aydin et al. 2001,

Mo L. et al. 2018]. These algorithms have the particularity that after some iter-

ations, a quality threshold is achieved that may be enough for the computation

purpose; this is the mandatory part of the job. After achieving this threshold,

the algorithm may optionally continue its execution improving the quality of

the result. In [Liu et al. 1991], the authors introduced the mandatory/optional

task model scheduling. The mandatory part guarantees the minimum quality

in the result and should be completed before the deadline while the optional

part improves the quality of the solution. Each optional part has associated

a reward that is used by the scheduler to select the best one each time. In

[Aydin et al. 2001] it is proved that under certain reward functions this is a NP-

hard problem and they proposed an optimization mechanism to compute the

best schedule.

Most processors can control the energy consumption by setting the voltage

and frequency of operation (power-mode). If the scheduler is capable of modify-
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ing these parameters to reduce the power demand dynamically, it is said to be

an energy-aware scheduler [Santos et al. 2012]. The power demand is the sum of

the dynamic and static powers. The first one is proportional to the square of the

frequency f , the capacitance C and the source voltage V while the second one is

proportional to the amount of transistors in the processor [Pouwelse et al. 2001]:

P = Pd + Ps = Cf2V + Ps. (1)

When a processor reduces its power-mode, the energy consumption is reduced

quadratically while the time necessary to execute the tasks is enlarged linearly.

This imposes a trade-off that should be considered if real-time requirements are

to be satisfied. In this paper we propose two methods to answer the following:

How much improvement in the reward of a task is possible while satisfying all

deadline restrictions with the minimum energy consumption? Some solutions

have been provided for mono-processors systems [Santos et al. 2004] but, for

multicore ones is still an open issue.

In a previous paper, [Mendez-Diaz et al. 2017] the authors proposed an Inte-

ger Linear Programming (ILP) optimal solution or exact solution for this prob-

lem. Based on the model they presented there, here we propose two methods

based on bio-inspired meta-heuristics: genetic algorithms (GA) and particles

swarm optimization (PSO) for solving the energy-aware mandatory/optional

real-time multicore scheduling problem. We present a Pareto front analysis to

evaluate the distance of the solution to a global optimum. The solution maxi-

mizes the reward of the system while keeping the energy consumption as low as

possible. As far as we know, there is no previous work on mandatory/optional

energy-aware scheduling analysis for homogeneous multicore real-time systems

with these meta-heuristics. The experimental evaluation shows that the solutions

obtained are within the Pareto Frontier and are found in a short time with just

a few iterations.

2 Previous work

“Anytime algorithms” have been used for many years for different kind of it-

erative applications like the computation of polynomial roots, multimedia pro-

cessing and autonomous robotic navigation among others [Shih and Liu 1995].

In [Chung et al. 1990] the authors proposed the scheduling of mandatory parts

following traditional priority disciplines. Optional parts are scheduled in the

background. There is no computation of slack time. In [Aydin et al. 2001] it is

shown that the best results are obtained when the slack time is used to schedule

the optional parts that provide more reward at that moment. As the authors use

integer lineal programming techniques, the reward functions are restricted to be
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continuously differentiable. Although they proposed an extension for multipro-

cessor systems, they do not indicate the scheduling policy and the way tasks

execute in the processors.

In [Santos et al. 2004, Santos et al. 2005] the use of slack time is proposed to

provide a reward-based dynamic scheduler and a fault-tolerant energy-aware one

respectively. Both approaches compute the possibility of advancing idle slots to

execute optional parts or enlarged execution time by reducing the frequency of

operation or repeating a task.

The extensive work presented in [Wanli and Chakraborty 2016] summarize

different “approaches in automotive control systems that take implementation

resources into consideration”, showing that optimal resources management is a

subject of interest in engineering areas. In [Santos et al. 2008], with a different

approach, the authors analyze priority inversions and blocking in real-time tasks

with precedence constraints.

In [Cheng and Wu 2018] authors show the case of implementing real time al-

gorithm for distributed systems applied to the case of large and high-performance

computing systems.

In [Likhachev et al 2008] and [Feller and Ebenbauer 2017], new techniques or

methods improvements are presented with anytime algorithm approaches where

it is taken into consideration time restrictions, and efficient use of time as in the

case of real-time systems. In [Greco et al, 2011] authors address the case of im-

plementing anytime control algorithms for linear systems in embedded platforms

with real-time constraints. The authors formulated an ILP model to determine

the rules for a stochastic scheduling approach.

In [Aydin et al. 2004] the authors introduce a static off-line method to com-

pute the optimum frequency to execute each task assuming for each one the

worst case execution time. It is proved that the problem of finding an opti-

mal schedule with energy restrictions is equivalent to solving the scheduling of

mandatory/optional tasks with concave reward functions.

In [Hong and Leung 1988], [Dertouzos and Mok 1989] and [Fisher 2007], it

is proved that there is no optimal on-line scheduling discipline for multiproces-

sors. In [Baruah and Carpenter 2003], a feasibility analysis for multiprocessors

systems is presented for the case of homogeneous processors with sporadic tasks

and it is proved to be NP-hard.

In [Zhang et al. 2014] an heuristic algorithm based on the particle swarm is

proposed for the scheduling of real-time tasks in heterogeneous multiprocessors

systems considering energy constraints. The authors do not consider a manda-

tory/optional reward model for the tasks. In [Kumar and Palani 2012] the au-

thors proposed a genetic algorithm for scheduling tasks in multiprocessors sys-

tems with dynamic voltage scaling. The algorithm however does not contemplate

real-time restrictions.
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In [Mendez-Diaz et al. 2017] the authors introduced an ILP model for finding

the exact solution to the problem here proposed. They also proposed in the paper

several simple heuristics to cut down the time required to reach an optimal

solution. A similar case is addressed in [Mo L. et al. 2018], where the authors

use a MILP model and decompose the problem into two smaller sub-problems

with fewer variables and constraints: an ILP-based Master Problem (MP) for

task-to-processor allocation and frequency-to-task assignment decisions, and an

LP-based Slave Problem (SP) for task scheduling and task adjustment decisions.

In [Micheletto et al. 2015] we presented a short version of the present paper that

did not include the Pareto frontier analysis, nor the experimental evaluation and

implementation details.

3 System model

In this section we introduce the system model. Time is discretized in slots and

it is noted with natural numbers, h = 1, 2, . . .. All the events in the system are

assumed to happen at the beginning of a slot. The length of the slot is a design

issue and depends on different aspects [Mendez-Diaz et al. 2017].

At first we consider a set of independent, periodic and preemptable tasks

defined as τ = 1, 2, . . . , N . In section 10 we consider the case in which the tasks

are not independent. Each task is described by a tuple (m, o, P,D, r) where

m is the worst case execution time of the mandatory part, o is the maximum

desirable execution time for the optional part, P is the period of the task, which

is assumed equal to the relative deadline P = D. The execution of the optional

part produces a reward that is represented by r = f(o). This reward is computed

for each slot and has no restrictions on the class of function.

The least common multiple (lcm) of the periods defines a time window,

named hyperperiod and notated H, in which the system repeats itself. For this

reason it is enough to provide a schedule for the first H = lcm{P1, P2, . . . , PN}.

Each task, τ , is a stream of jobs or instances. In the hyperperiod, each task has

H/Pτ instances or jobs.

A restricted-migration schedule is assumed. In the hyperperiod H there are
∑N
τ H/Pτ jobs enumerated in ρτ = {1, 2, . . . , H/Pτ} to be scheduled. A job ρτ

becomes active at hρτ = (ρ − 1)Pτ and finishes its execution at φρτ . At this

point, it is useful to introduce for every ρτ , the set of instants at which they are

active, Hρτ = {h : aρτ ≤ h ≤ aρτ +Dτ − 1}. A feasible system is one in which

∀ρτ , φρτ < hρτ +Dτ .

The tasks run on a set ofM homogeneous cores, π = {1, 2, . . . ,M}. Each one

may work at different power-modes noted, f = {1, 2, . . . , E}, where E indicates

the number of voltage/frequency pairs. Lower power-modes provide a benefit

as the system saves energy increasing battery life. Reducing the power-mode
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increases the execution time of the tasks, so mf
τ and ofτ indicate the worst case

execution time of mandatory and optional parts for task τ at a particular power-

mode f .

The objective is to find an optimal schedule for maximizing the reward from

the execution of optional parts with as little power demand as possible while

satisfying all mandatory deadlines in a multi-core processor with restricted mi-

gration. The allocation is made at job level. In other words, a job that starts its

execution on a certain core finishes its execution on the same core, whether it

runs mandatory, optional, or mandatory and optional parts. It is also assumed

that a power-mode is selected on a per job basis. Under this assumption, for ex-

ample, a task may run its first job in core π1 at power-mode f2 and the second

job in core π2 at power-mode f1 and in each case the amount of optional work

may be different.

The problem stated in this way is NP-hard in the strong sense. This can be

shown as it is the combination of two problems already proved to be NP-Hard.

One is the restricted migration scheduling of jobs in multiprocessors as proved in

[Burns 1991, Fisher 2007]. The other is the optimization of mandatory/optional

reward-based scheduling [Aydin et al. 2001, Santos et al. 1997] with arbitrary

reward functions.

4 Formulation

In this section we formalize the restricted-migration multiprocessor real-time

scheduling optimization problem. The objective is to find a schedule that for

each slot in h = 1, 2, . . . , H, allocates a job ρτ of task τ , at a certain processor π

with power-mode f in such a way that all mandatory parts finish their execution

before their deadlines while maximizes the reward from optional parts with the

minimum power-mode [Mendez-Diaz et al. 2017].

To do this, the following binary variables are defined. First, related to manda-

tory jobs, variable yρfτπ takes value 1 iff job ρ of τ runs in π at power-mode f and

variable xfhτπ = 1 iff at slot h, π runs any job of τ at power-mode f . Secondly,

related to processors, variable gfhπ takes value 1 iff at slot h, π runs at power-

mode f and variable zhπ = 1 iff at slot h, π changes power-mode. Finally, for

optional jobs, variable uρfτd takes value 1 iff job ρ runs d optional slots of a task

τ at power-mode f . The execution of d optional slots at power-mode f produces

a reward rfτd for d ∈ {0, 1, . . . , ofτ }. When the processor executes at reduced

power-modes it has also a reward that represents the low energy consumption;

this reward is modeled by cf . Even if reducing the power-mode has benefits, it is

not good to keep changing it often as this increase the load of the processor. For

this reason, a cost k is added to avoid successive power-mode changes. Based on

the previous definition the objective function of the problem may be written as:
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maxα

H/Pτ
∑

ρτ=1

E
∑

f=1

ofτ
∑

d=1

rfτdu
ρf
τd + β





E
∑

f=1

cf

H
∑

h=1

M
∑

π=1

gfhπ − k
M
∑

π=1

H
∑

h=1

zhπ



 (2)

There are two terms in the objective function (2). The first one represents the

reward obtained from the execution of optional parts. The second one represents

the saving produced by reducing the power-mode considering the cost associated

to the change. The schedule may have the maximum reward from the execution

of optional parts but at the cost of a high power demand. On the other side, the

processor may execute at the lowest possible power-mode reducing the energy

consumption to the minimum but with no reward for the execution of optional

parts. This is clearly a trade-off problem so two tuning parameters, α and β, are

used as knobs to bias the solution either to the maximization of the reward or

the minimization of energy consumption. For example, battery powered systems

may privilege the low power-mode operation over the execution of optional parts.

Suppose an embedded system that works on solar panels during daylight and

batteries during dark hours. Two schedules can be computed for each type of

power-source. In the first case the execution of optional parts for a better quality

of application is preferred while in the second case the schedule optimizes the

energy consumption.

The objective function is subject to the following constraints.

M∑

π

E∑

f

y
vf
τπ = 1 ∀ρτ (3)

∑

h∈Hρτ

x
fh
τπ ≤ (mf

τ + o
f
τ )y

ρf
τπ ∀ρτ ; ∀π; ∀f (4)

M∑

π

∑

h∈Hρτ

x
fh
τπ ≥ m

f
τ

M∑

π

y
ρf
τπ ∀ρτ ; ∀f (5)

N∑

τ

E∑

f

x
fh
τπ ≤ 1 ∀π;h = 1, ..., H (6)

ofτ∑

d=0

u
ρf
τd =

M∑

π

y
ρf
τπ ∀ρτ ; ∀f (7)

E∑

f

∑

h∈Hρτ

x
fh
τπ −

E∑

f

m
f
τ

∑

π∈Π

y
ρf
τπ =

E∑

f

ofτ∑

d=1

du
ρf
τd ∀ρτ (8)

E∑

f

g
fh
π = 1 ∀π; ∀h = 1, 2, . . . , H (9)

g
fh
π ≥

N∑

τ

x
fh
τπ ∀π; ∀f ;h = 1, 2, . . . , H (10)
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g
fh
π ≥ g

fh−1
π −

E∑

f ′

N∑

τ

x
f ′h
τπ ∀π ∈ Π; ∀f ;h = 1, 2, . . . , H (11)

Ez
h
π ≥

E∑

f

fg
fh
π −

E∑

f

fg
fh+1
π ∀π;h = 1, 2, . . . , H − 1 (12)

Ez
h
π ≥

E∑

f

fg
fh+1
π −

E∑

f

fg
fh
π ∀π;h = 1, 2, . . . , H − 1 (13)

The set of constraints define the way in which jobs are allocated to the

processors and the power-mode selection. For this, constraint (3) guarantees

that each job is executed in just one processor at a unique power-mode while (4)

guarantees that no more than mf
τ + ofτ slots of a task τ are executed at power-

mode f and constraint (5) guarantees the execution of at least mf
τ slots for each

job of each task. Constraint (6) imposes the restriction of only one task for each

slot in each processor. Similar to the mandatory parts, constraint (7) guarantees

that for d ∈ {0, 1, . . . , ofτ } exactly one of the variables udfτρ takes value 1 when job

ρτ executes at power-mode f and takes value 0 when job ρτ executes at some

other power-mode. Constraint (8) makes one the variable uρfτd for d equal to the

amount of optional slots that were executed for job ρτ . If one job is executing

in processor π in slot h at power-mode f then constraints (9) and (10) impose

a value of 1 to gfhπ and constraint (11) forces an empty slot to keep the same

power-mode of the last busy one because power-mode changes have a cost. When

there is a power-mode change in slot h in processor π, constraints (12) and (13)

impose a value of 1 on variable zhπ .

In the case the processor has one or more dedicated cores (for example a

floating point unit), tasks that should execute in these particular cores should

have a high penalty associated for not doing so. This can be implemented with

an additional restriction.

In this paper, we introduce two bio-inspired heuristics to find a solution to

the scheduling problem described. The ILP model and its solutions are used as

reference to compare the results obtained with the metaheuristics.

We define the optimization variable as a pair of matrices X and Y of M

rows and H columns each, which represents the schedule to be evaluated. The

element X(π, h) denotes the task running on the processor π at time h and the

element Y (π, h) indicates the operating power-mode of the processor π at slot

h.

4.1 Scheduling algorithm

In the model defined above, the optimization variable generates a high dimen-

sional search space, which increases the number of possible solutions and reduces

the chances of finding the global optimum. To simplify the problem it is proposed
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to transform or encode the solution arrays so that the optimization method works

in a transformed space smaller than the original one. With this encoding, a large

number of solutions that do not meet the conditions of feasibility are discarded.

In this way, the optimization methods work on a reduced search space, which

increases the efficiency of the algorithms.

In order to discard unfeasible solutions we start by defining an intermediate

optimization variable composed by matrices V and W , where element V (τ, ρτ )

denote the core to which the job ρ of task τ , that is, ρτ is assigned and the

element W (τ, ρτ ) idicates the power-mode at which job ρτ is executed. Because

the number of jobs may be different for each task, each row of matrices V and

W may have different number of elements.

The scheduling algorithm generates the X and Y matrices from V and W

matrices. Although different jobs assignment strategies can be used in this

situation, a simple mechanism based on Rate Monotonic Scheduling (RMS)

[Liu and Layland 1973] adapted for the multi-core case is presented. In this

scheduling algorithm, lower period tasks have higher priority. Pseudo-code in

Algorithm 1 shows the scheduling procedure. The inputs of this algorithm are

the problem description and matrices V and W and produces the matrices X

and Y as outputs. First all mandatory parts are allocated and the optional parts

are scheduled on available slots.

Algorithm 1 Scheduling algorithm pseudocode.

1: for all τ do ⊲ For each tasks

2: for all ρτ do ⊲ For each job

3: h← ρτ · Pτ . ⊲ Slot number

4: f ←W (τ, ρτ ). ⊲ Power-mode

5: π ← V (τ, ρτ ). ⊲ Core number

6: for all mf
τ do ⊲ Slots to allocate

7: if isFree(X(π, h)) then ⊲ If slot h is not allocated

8: X(π, h)← τ . ⊲ Allocate τ

9: else ⊲ If slot h of π was allocated before

10: h := h+ 1. ⊲ Next h

11: if h == (ρτ + 1) · Pτ then ⊲ If it is the last slot

12: return −∞. ⊲ Deadline missed

13: end if

14: end if

15: end for

16: end for

17: end for
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After mandatory parts are allocated, optional parts must be assigned to

the remaining free slots where higher reward tasks are given chosen first. The

allocation procedure is the same, except no deadline is considered.

Once matrix X is obtained with algorithm 1, power-mode allocation matrix

Y , can be calculated element by element where Y (π, h) = V (τ, ρτ ). Because we

know τ = X(π, h) and ρτ =
⌊

h
Pτ

⌋

, hence

Y (π, h) = V

(

X(π, h),

⌊

h

PX(π,h)

⌋)

(14)

5 Random Search Algorithm

The Random Search method (RS) is a crude optimization technique in that,

at each iteration it is generated and evaluated a random solution and the best

solution found is constantly being updated as best candidates appear.

5.1 Random search applied to the scheduling problem

To apply the method of Random Search to the actual problem, the array of

elements composing the intermediate optimization variable are assigned by de-

terminations of two random variables, one for the allocation to cores and the

other for power-modes, as shown in Equations 15.

V (τ, ρτ ) = Ψ and W (τ, ρτ ) = Φ. (15)

If Ψ has an uniform distribution, then an equally assignment of jobs to the

cores is achieved, but if Φ has an uniform distribution, high and low power-

modes are equiprobably, thus in some cases the utilization factor may be greater

than the number of cores and feasible solutions will never be found. To avoid

this, a tuning parameter that increases the probability of jobs being allocated

with higher power-modes is used. This parameter is adaptive to allow lower

power-modes when the proportion of feasible solutions increases. Qr is the pa-

rameter representing the probability that a job has a power-mode different from

the nominal and 1 − Qr is the probability of executing the job with maximum

power-mode. Thus, the allocation of power-modes has the probability distribu-

tion shown in equations 16 and 17.

P (Φ = fi) =
Qr
E
, (with i=1,2,...,E-1) (16)

P (Φ = fE) = 1−Qr +
Qr
E

= 1−
Qr · (E − 1)

E
. (17)

399Micheletto M., Santos R., Orozco J.: Scheduling Mandatory-optimal ...



Whether Qr is small, the generated solution is allocated with higher power-

mode and therefore with less utilization factor. If during the main iterative

process of this method it is computed a high proportion of feasible solutions, then

the Qr parameter is increased to achieve lower power consumption solutions.

This way, a better exploring of the search space is achieved.

6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization method. The

method consists of a set of particles called swarm, and each particle represents

different positions within the search space, and also has velocity so positions can

be updated following simple rules. It is not required the objective function to be

continuous nor differentiable, which makes this method an appropriated option

to solve the problem presented here.

The variant used algorithm follows the next equations,

−→vt = ω−−→vt−1 + φgrg (
−→g −−−→xt−1) , (18)

−→xt =
−−→xt−1 +

−→vt . (19)

where xt and vt are the position and velocity of a particle respectively and should

not be confused with X and V which are the optimization variables. ω and φg
are tuning parameters which controls the swarm behaviour, rg is a uniformly

distributed random number between 0 and 1 and −→g is the best position found

by the swarm. This is the called PSO-VG approach as it only considers velocity

and attraction to the swarm’s best known position [Pedersen 2010].

The procedure is detailed in Algorithm 2. The algorithm is composed of two

parts, the initialization of the swarm and the iterative procedure. The swarm

initialization requires an initial population of feasible solutions. Once the par-

ticles have defined positions, the algorithm iterates through equations 18 and

19.

6.1 PSO applied to the scheduling problem

Each particle has an associated position which represent a solution in the search

space. The dimensions of the position vector of particles are the same as the W

arrays containing the allocation of jobs to cores and operation power-modes. The

PSO initial population must consist of feasible solutions only, to make it possible

to compare solutions through their quality values. To achieve this, random solu-

tions are generated for the initial population of the swarm using a random search

method. This operation represents an important part of the method’s runtime

and is generally greater if the utilization factor of the problem is high, because
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it is hard to find a feasible schedule. The initialization process of this method

uses an adaptive Qr parameter that works the same way as described in Section

5.1. Starting from a high value for Qr the initializer tries to generate feasible

solutions, and if a certain number of failed attempts occur, then Qr is decreased.

Each time a feasible solution is found, it is assigned to a particle’s position and

the next particle follows until all particles from the swarm population have an

assigned position. Velocities are initialized as null vectors.

Once the swarm population has been generated, the algorithm begins the iter-

ations following Equations 18 and 19 until the termination criterion is reached.

Because the optimization variable defined in Section 4, has two independent

components V and W , the equations of this technique can be decoupled. The

Equations 20 to 23 show the element by element assignment for the task τ and

job ρτ which is simply notated as ρ,

v1,τ,ρ = ωcv1,τ,ρ + φcrg
(

V (τ, ρ)− V opt(τ, ρ)
)

, (20)

v2,τ,ρ = ωfv2,τ,ρ + φfrg
(

W (τ, ρ)−W opt(τ, ρ)
)

, (21)

V (τ, ρ) = V (τ, ρ) + v1,τ,ρ, (22)

W (τ, ρ) =W (τ, ρ) + v2,τ,ρ. (23)

The swarm moves in an integer search space thus, each component of the

velocity array of particles is rounded to the nearest integer and values of V and

W are clamped so they do not exceed the search space limits. Generally the

swarm mathematical dispersion is calculated as an indicator of the convergence

of the method, but due to the size of the particles array and the number of

dimensions of the search space, the computation cost increases considerably.

6.2 Parameter selection

To achieve a fast initialization of this method, the Qr probability parameter

value is selected to be Qr = 0.1 and decreasing its value 0.01 every 1000 failed

attempts of generating a feasible solution. If no particle has been initialized and

Qr parameter reaches the value Qr = 0, the entire swarm is initialized with

solutions of maximum power-mode only. However, lower power consumption

solutions can be found because random components of velocity vectors allow

particles to explore the search space.

Empirical tests show that high ω values enhance the swarm exploratory ca-

pability but reduce the swarm convergence and precision of results. On the other

hand, low φg values increase the self-sufficiency of particles and make the algo-

rithm behave in a similar way as random search method. Selecting ω = 0.5

and φg = 1.5 are good tuning parameters in most cases as it is shown in

[Shi and Eberhart 1998].
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Algorithm 2 PSO Method.

1: q ← −∞ ⊲ Global optima of the swarm.

2: for all i-th particle do ⊲ For each particle

3: W1,τ,ρ ∼ U(0,M) ⊲ Generate an initial random position

4: if U(0, 1) < Qr then ⊲ With probability Qr, do:

5: W2,τ,ρ ∼ U(0, F ) ⊲ Assign random operation power-mode

6: else

7: W2,τ,ρ = 0 ⊲ Assign maximum operation power-mode with

probability 1−Qr
8: end if

9: if Fobj(xi) > −∞ then ⊲ If the actual particle is feasible

10: xi ←W ⊲ Add particle to initial population

11: if Fobj(xi) > g then ⊲ If the actual particle’s quality is greater than

the optimum

12: g ← xi ⊲ Remember best position of the swarm

13: q ← Fobj(xi) ⊲ Remember the optimum value of the swarm

14: end if

15: end if

16: end for

17: while Termination criterion is not verified do

18: for i-th particle do

19: rg ∼ U(0, 1) ⊲ Random number between 0 and 1

20: vi,τ,ρ,1 ← ωcvi,τ,ρ,1 + φcrg(gi,τ,ρ,1 − xi,τ,ρ,1) ⊲ Update velocity

21: vi,τ,ρ,2 ← ωfvi,τ,ρ,2 + φfrg(gi,τ,ρ,2 − xi,τ,ρ,2) ⊲ Update velocity

22: xi ← xi + vi ⊲ Update position of particles

23: if Fobj(xi) > fg then ⊲ Update optima

24: g ← xi
25: q ← Fobj(xi)

26: end if

27: end for

28: end while

The objective function defined in Equation 2 in Section 4 is an integer func-

tion, so high exploratory swarm and integer tuning parameters are needed. In

Table 1 selected values are shown.

7 Genetic Algorithm

A genetic algorithm (GA) performs numerical optimization mechanism imitat-

ing the process of natural selection of species. It consists of a population of so

called chromosomes, and each chromosome contains a set of genes that encode
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initialization used to generate the initial population of this method, which is

shown in Algorithm 3, is the same as the one used in PSO (see Section 6.1).

The first step in the iteration process, shown in Algorithm 4, consists of

sorting the chromosomes from highest to lowest quality. Then, the offspring

number of each chromosome, is determined evaluating Equation 24,

osgi = ||
qi
q̄i
|| (24)

Where qi = Fobj(xi) is the quality of the i-th chromosome and q̄i is the

mathematical mean between the quality of all chromosomes. The number of the

offspring population is equal to half of the initial population of individuals, and

before the crossover, the worst half of the initial population is replaced by the half

containing the calculated offspring. To perform crossover, the list of individuals

is randomly sorted and parents are selected in consecutive pairs. The offspring

is obtained by swapping genes from the parents. Genes of the core allocation

array are selected with probability Qcocore and the probability of swapping

genes of the power-mode allocation array is Qcofreq. Qcocore and Qcofreq are

tuning parameters. The procedure is detailed in Algorithm 5. Mutation, shown

in Algorithm 6, is accomplished by choosing random components from the gene

vector with probability Qmcore if the vector corresponds to the core allocation

array or Qmfreq if the mutation is applied to a power-mode allocation vector.

Qmcore andQmfreq are also tuning parameters. The list of parents and offspring

chromosomes is evaluated again by the objective function and sorted by quality

and the process repeats until the termination criterion is reached, as shown in

Algorithm 7.

7.2 Parameter selection

Crossover and mutation events take place in randomly selected genes where the

probability of these occurrences are determined by the corresponding param-

eters listed in Table 1. Crossover probability values Qco have the same effect

than value 1 − Qco, so this parameter needs not to be greater than 0.5. As the

combination between two core selection vectors has a greater quality change in

the offspring than the obtained by the combination of two power-mode vectors,

Qcocore must be smaller than Qcofreq. On the other hand, high mutation prob-

ability overshadows the crossover effects which is the most important feature of

the method, so the mutation probabilities must be selected as small as possible.

8 Pareto efficiency

A simplified approach to the problem is to consider the main variables that

characterize the solutions: the processor’s energy saving and the allocation of
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Algorithm 3 GA Method: Initialization.

1: procedure Initialization

2: for i← 1..Ncr do ⊲ For each chromosome

3: V (τ, ρ) ∼ U(0,M) ⊲ Assign initial random genes

4: if U(0, 1) < Qr then ⊲ With probability Qr, do:

5: W (τ, ρ) ∼ U(0, F ) ⊲ Random operation power-mode

6: else

7: W (τ, ρ) = 0 ⊲ Assign maximum operation power-mode with

probability 1−Qr
8: end if

9: if Fobj(xi) > −∞ then ⊲ If the actual chromosome is feasible,

10: xi ← (V,W ) ⊲ Add chromosome to initial population

11: end if

12: end for

13: end procedure

Algorithm 4 GA Method: Selection.

14: procedure Selection

15: for i← 1..Ncr do

16: qi ← Fobj(xi) ⊲ Determine each chromosome’s quality

17: end for

18: Sort(xi,fii,i← 1..Ncr) ⊲ Sort chromosomes by quality

19: for i← 1..Ncr

2 do ⊲ Determine the offspring of the half best

chromosomes

20: q̄i ←
∑Ncr

2
−1

i=0
qi

Ncr
2

21: osgi ← ||
qii
q̄i
||

22: end for ⊲ Double the list of chromosomes according to each

chromosome offspring number

23: c← 0, idx← 0

24: for i← Ncr

2 ..Ncr do

25: if osgidx > c then

26: xi ← xidx
27: c← c+ 1

28: else

29: c← 0

30: idx← idx+ 1

31: end if

32: end for

33: Blend(xi,i←
Ncr

2 ..Ncr) ⊲ Blend the list of chromosome randomly

34: end procedure
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Algorithm 5 GA Method: Crossover.

35: procedure Crossover

36: for i← Ncr

2 : 2 : Ncr do ⊲ Swap genes of chromosomes according to

crossover probability

37: for τ ← 0..N do

38: if U(0, 1) < Qcocore then

39: Swap(xi,τ,1,xi+1,τ,1)

40: end if

41: if U(0, 1) < Qcofreq then

42: Swap(xi,τ,2,xi+1,τ,2)

43: end if

44: end for

45: end for

46: end procedure

Algorithm 6 GA Method: Mutation.

47: procedure Mutation

48: for i← Ncr

2 ..Ncr do

49: for j ← 0..N do

50: for k ← 0 : HPj
do ⊲ Make random changes with probability

Qmcore and Qmfreq

51: if U(0, 1) < Qmcore then

52: xi,j,k,1 ∼ U(0,M)

53: end if

54: if U(0, 1) < Qmfreq then

55: xi,j,k,2 ∼ U(0, F )

56: end if

57: end for

58: end for

59: end for

60: end procedure

Algorithm 7 GA Method: Optimization loop.

61: Initialization()

62: while Termination criterion is not verified do

63: Selection()

64: Crossover()

65: Mutation()

66: end while
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PSO GA

Population 30 Population 30

Φgcore 2 Qcocore 0.2

Φgfrec 2 Qcofreq 0.4

ωcore 2 Qmcore 0.02

ωfrec 2 Qmfreq 0.1

Table 1: Optimization parameters.

optional slots. Energy saving can be calculated as the difference between the

nominal operating power-mode and the average operating one of all cores during

the hyperperiod, that is

Ē = 1− F̄ = 1−

H
∑

h=1

fh. (25)

where fh is the operation power-mode relative to the cores nominal one during

the time slot h.

On the other hand, assuming that the allocation of optional slots is performed

by an algorithm that maximizes the payoff by taking full advantage of the avail-

able slots, the second variable can be characterized as the optional utilization

factor of the solution, that is

UFo =

N
∑

τ=1

oτ
Pτ
. (26)

Where oτ is the optional parts of task τ at nominal power-mode. For conve-

nience, instead of the optional utilization factor UFo, we use the total utilization

factor UF , that is, the sum of the mandatory and optional utilization factors.

The nominal power-mode utilization factor indicates the number of mandatory

and optional parts executed for all the tasks of the system. The number of slots

assigned in this solution depends on the operating power-mode of the processor

cores.

To maximize the quality of a solution the number of free slots has to be min-

imum either because there are many optional parts being executed or the opera-

tion power-mode has been reduced for a reduced energy consumption. Therefore,

the utilization factor of the solution must be as greater as possible. Thus there is

a trade-off relationship between these two variables that characterize the solution

and if the system schedule does not contain free slots, then

UF

M
= F̄ = 1− Ē. (27)
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proposed heuristic and that of the ILP method, in the same way the required

time is the relation between the time used by the heuristic and the used by the

ILP solver. The last row in the table presents mean values when considering all

the evaluated instances for the different kind of problems. From results listed

in Table 2, we conclude that the best solutions, in terms of distance to Pareto

frontier and Quality, are obtained with the Genetic Algorithms (GA) heuristic.

In second place comes PSO method and last, RS method, which in general gives

better quality values, although distances to the Pareto frontier are greater than

the ILP solutions. On the other hand, execution time (ET) of different algorithms

exhibit inverse results, that is, RS is in first place, with almost 40% of the ILP

execution time and in last place, GA with 72.68% of the total execution time of

the ILP solver.

RS PSO GA

Q ET DP Q ET DP Q ET DP

First set 87.96 7.3 77.74 94.54 8.97 36.51 104.29 18.26 30.82

Second set 90.22 76.7 139.79 90.78 106.91 91.83 100.11 135.51 35.92

Third set 84.45 10.63 287.78 87.53 12.23 143.95 102.11 16.62 40.82

Mean 88.82 39.81 121.25 92.38 54.74 90.76 102.20 72.68 35.85

Table 2: Comparative results. Q=Quality, ET=Execution time, DP = Distance

to Pareto frontier

10 Precedence constraints

The precedence relationship between tasks is usually expressed by a directed

acyclic graph or tree, where the nodes represent tasks and the edges, the order

in which the tasks should run. The set of all tasks contained in a connected

subgraph constitute a process and these tasks have all the same period.

A task must initiate its execution only when all their predecessors have com-

pleted their assigned slots including mandatory and optional parts. Optional

parts of a predecessor task cannot be allocated after the corresponding slots of

the successor task, and because the execution of optional parts of a predecessor

may prevent or postpone the execution of the mandatory part of the successor,

the system may result unfeasible. To avoid this, the amount of optional slots

to be executed should be determined beforehand. This is achieved by adding a

third variable to the set of intermediate optimization variables, V and W , that

indicates the maximum number of optional parts that each task will run on

each instance, and is called Z. The scheduling algorithm assigns the slots to be

occupied by the successor task once all optional parts of the previous job have
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been completed. Then the optimization algorithm must determine the optimal

number of optional parts to be executed by every task avoiding the unfeasibility

condition.

Algorithm 8 Precedence constrained tasks scheduling.

1: for all ψ do ⊲ Process number

2: for all ρ of ψ do ⊲ Instance number of ψ

3: for all τ of ψ do ⊲ Task number of ψ

4: getPriority(τ ,ρ)

5: firstSlotτ ← ρ · Pψ
6: end for

7: sortByPriority(τ)

8: for all τ of ψ do

9: h←firstSlotτ ⊲ Slot number

10: π ← V (τ, ρ) ⊲ Core number

11: f ←W (τ, ρ) ⊲ Power-mode number

12: o← Z(τ, ρ) ⊲ Optional parts

13: for all mf
τ + ofτ do

14: while X(π, h) taken do

15: h← h+ 1 ⊲ Proceed with next slot

16: if k == (ρ+ 1) · Pψ then ⊲ End of period

17: return −∞ ⊲ Does not meet deadline

18: end if

19: end while

20: X(π, h)← τ ⊲ Asign τ

21: end for

22: for all t son of τ do ⊲ For each son of τ

23: if firstSlott < h+1 then

24: firstSlott ← h+ 1

25: if h+1 == (ρ+ 1) · Pψ then

26: return −∞ ⊲ No time for run t

27: end if

28: end if

29: end for

30: end for

31: end for

32: end for

In the case that two or more tasks have the same immediate predecessor

within a process tree, it is necessary to determine the order in which they are
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solution will be the one closest to this limit in terms of power consumption. In

the solution found, the average operation frequency is 67.314%, 11% more than

the minimum value. The more iterations are performed, the better the solution

found will be, so the execution time or the maximum number of iterations must

be determined according to a cost-benefit relation between the computational

cost and the quality of the solution.

11 Conclusion

In this paper we used two different bio-inspired meta-heuristics to compute of-

fline schedules for reward based mandatory/optional tasks with energy consid-

erations for homogeneous multi-core systems. The problem is NP-hard as it has

been proved in previous work. The algorithms introduced were evaluated using

different problems from the real-time systems bibliography. The extensive sim-

ulations show that the solutions found are equivalent to those obtained with

ILP procedures but demanding considerably less execution time. Besides, the

Pareto Frontier analysis shows how the search can be guided towards the mini-

mization of energy demand or the maximization of the reward using the tuning

parameters. In any case, the solutions found are close to the frontier. Besides

these contributions, an extension to deal with precedence related tasks was also

considered. The proposed algorithms can solve several real scheduling problems

that arise for embedded systems based on multicore architectures.
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