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It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-
states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contribu-
tions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections
of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized
orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3,
SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density
functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the
specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling
constants depend on the number of (pseudo)states included in the summation and whether the
summation can be truncated in a systematic way at a smaller number of states and extrapolated
to the total number of (pseudo)states for the given one-electron basis set. We find that this is
possible and that for some of the couplings it is sufficient to include only about 30% of the excited
(pseudo)states. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937572]

I. INTRODUCTION

In recent years, there has been an increasing interest in
the analysis of the parameters of a NMR spectrum, the indirect
nuclear spin-spin coupling constant (SSCC) J and the nuclear
magnetic shielding constant σ, in terms of localized molecular
orbitals (LMOs).1 Several methods have been developed for
this, which can essentially be grouped into three different
approaches. In the probably oldest approach the Hessian or
principal propagator of an approximate response function is
diagonalized leading to an approximation to the standard
Raleigh-Schrödinger perturbation theory sum-over-states
(SOS) expression for response properties.2 Transforming
the eigenvectors to localized orbitals allows expressing
the response properties as summation over contributions
from two pairs of localized occupied and two pairs of
localized unoccupied orbitals. This approach, often called
Contributions from Localized Orbitals within the Polarization
Propagator Approach and Inner Projections of the Polarization
Propagator (IPPP-CLOPPA), had originally been used in
connection with semi empirical methods3–6 but has later on
been extended to the level of ab initio coupled perturbed
Hartree-Fock theory,7–11 also called random phase approx-
imation (RPA), and Kohn-Sham density functional theory
(DFT) linear response functions.12–14 Equivalent DFT-SOS
expressions for magnetic linear response properties in terms
of transition densities had previously been presented by
Autschbach et al.15 In the second approach the first-

a)mnzarycz@gmail.com
b)patricio@unne.edu.ar
c)sauer@kiku.dk; https://sites.google.com/site/spasauer.

order perturbed orbitals of coupled perturbed DFT or the
solution vectors of approximate linear response functions are
transformed to localized orbitals leading to an analysis in
terms of only one occupied and one virtual orbital. This
approach was frequently employed, e.g., by Contreras and
co-workers,16–20 in combination with the natural bond orbitals
of Weinberg.21–26 Recently such an approach has also been
devised for response functions at the level of the second
order polarization propagator approximation (SOPPA)27–29

and for relativistic DFT calculations at the level of the
zeroth-order regular approximation (ZORA).30 The third
class of approaches proposed by Cremer and co-workers31–37

essentially obtains the contribution of a given orbital indirectly
by removing the contribution of this orbital in the coupled
perturbed DFT calculations.

Compared to the latter two approaches the SOS or
CLOPPA approach offers the advantage that the coupling
constants can be analyzed in terms of a simultaneous
interaction of both nuclei with the orbitals leading to coupling
pathways and that one can understand the couplings also in
terms of contributions from different excited states. However,
this is also an apparent disadvantage of this approach. The
inclusion of all excited states in the SOS expression, as
done in the previous studies on smaller systems,12–14 becomes
prohibitive for larger molecules, while in a previous study
of SSCCs at the coupled perturbed Hartree-Fock and SOPPA
level38 the truncation of the number of excited states in the SOS
expression lead to erratic results. However, the one-electron
basis sets employed in this study were much smaller than
modern specialized core-property basis sets. Furthermore,
for other response properties such as the optical rotatory
dispersion39–43 or the hyperpolarizability44 it was observed,

0021-9606/2015/143(24)/244107/12/$30.00 143, 244107-1 © 2015 AIP Publishing LLC
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that the necessary number of excited states for convergence is
large but smaller than the total number.

In the present study we discuss therefore based on the
couplings in the nine small molecules, CH4, NH3, H2O, SiH4,
PH3, H2S, C2H2, C2H4, and C2H6, whether the number of
states necessary in the SOS expression of IPPP-CLOPPA
could anyway be truncated also for coupling constants.
Furthermore we investigate whether it is possible to find
a functional form, which allows extrapolation to the full
value of the coupling constants based on the results for a
smaller number of excited states. However one should note
that the purpose of such a truncated SOS approach is by no
means to replace the more efficient linear response approach
for the calculation of total coupling constants, but simply
to reduce the computational cost in the localized orbital
analysis of coupling constants via the IPPP-CLOPPA method
in order to make IPPP-CLOPPA studies feasible for larger
molecules.

II. METHOD OF CALCULATION

The theory of indirect nuclear spin–spin coupling
constants, J,45 and different computational methods for
calculating them has been described extensively in the
literature.1,2,46–50 One should mention, though, that there
are four contributions to the SSCC: the Fermi contact (FC)
and the spin-dipolar (SD), which come from the interaction
of the nuclear magnetic moments with the spin of the
electrons, as well as the diamagnetic spin orbital (DSO)
and the paramagnetic spin orbital (PSO), which are due to
the interaction of the nuclear spins with the orbital angular
momentum of the electrons.

At the coupled perturbed DFT (or coupled perturbed
Hartree-Fock) level the isotropic indirect nuclear spin-spin
coupling constant between two nuclei K and L can thus be
expressed as51

J (K L) = 1
3
γKγL

h


α=x, y,z

�


ÔFC

Kα + ÔSD
Kα; ÔFC

Lα + ÔSD
Lα

��
ω=0

+




ÔPSO
Kα ; ÔPSO

Lα

��
ω=0 + ⟨Ψ0| ÔDSO

KL,αα |Ψ0⟩	 , (1)

where the perturbating operators are given as

ÔFC
Kα =

(
µ0gee~

3me

) Ne
i

ŝiαδ (riK) , (2)

ÔSD
Kα =

(
µ0gee~
8πme

) Ne
i

3
(
ˆ⃗si · ˆ⃗r iK

)
r̂iK,α − r̂2

iK ŝiα

r̂5
iK

, (3)

ÔPSO
Kα =

(
µ0e~
4πme

) Ne
i

l̂iα
(
R⃗K

)
r̂3
iK

, (4)

and

ÔDSO
KL,αα =

(
µ0

4π

)2
(

e2~2

me

) Ne
i

ˆ⃗r iL · ˆ⃗r iK − r̂iL,αr̂iK,α

r̂3
iLr̂3

iK

. (5)

The linear response function




ÔA; ÔB
��

ω=0 of two operators

ÔA =
Ne
i

ôA(i) and ÔB =
Ne
i

ôB(i) at the DFT or Hartree-Fock

level has the form




ÔA; ÔB
��

ω=0

= −(T̃(ÔA) −T̃∗(ÔA))*
,

A B
B A

+
-

−1

*
,

T∗(ÔB)
−T(ÔB)

+
-
, (6)

where the elements of a property gradient column vector
T(ÔA) evaluate to

Tai(ÔA) = 

ϕi

�
ôA

�
ϕa

�
(7)

in terms of occupied and virtual spatial orbitals ϕi(1) and
ϕa(1), respectively.

Diagonalising the molecular Hessian matrix,
(A B

B A

)
,

which is equivalent to solving the RPA or time-dependent
DFT (TD-DFT) eigenvalue problem,52

*
,

A B
B A

+
-
*
,

X Y
Y X

+
-
= *
,

1 0
0 −1

+
-
*
,

X Y
Y X

+
-
*
,

ω 0
0 −ω

+
-
, (8)

the response function can also be written as




ÔA; ÔB

��
ω=0 = −

(
T̃(ÔA) −T̃∗(ÔA)) *

,

X Y
Y X

+
-

× *
,

ω 0
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+
-

−1

*
,

X̃ Ỹ
−Ỹ −X̃

+
-
*
,

T∗(ÔB)
−T(ÔB)

+
-
, (9)

where ω is a diagonal matrix, whose diagonal elements,
∆E0→ n, are the RPA or TD-DFT approximations to the
electronic excitation energies of the system, and where the
nth column of the matrix

(X
Y

)
is the corresponding eigen-

vector.
The coupling constant can then alternatively also be

calculated as the following summation over all eigenvalues of
the molecular Hessian, i.e.,

J (K L) = 2
3
γKγL

h


α=x, y,z



−


n

T̃(ÔFC
Kα + ÔSD

Kα) (Xn − Yn) �X̃n − Ỹn�T(ÔFC
Lα + ÔSD

Lα)
∆E0→ n

+

n
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+

occ
i
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���ô
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��� φi



. (10)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  181.15.198.131 On: Wed, 10

Feb 2016 15:46:56



244107-3 Zarycz, Provasi, and Sauer J. Chem. Phys. 143, 244107 (2015)

The three response function contributions to the coupling
constants can therefore be written as summation over these
eigenvalues, i.e.,

JFC/SD/PSO (K L) =

n

JFC/SD/PSO
n (K L) . (11)

The lowest eigenvalues of the RPA or TD-DFT molecular
Hessian are approximations to the bound excited states of the
molecules, while all other eigenvalues correspond to pseudo
states with energies above the ionization potential of the
molecule. Although these pseudo states do not correspond
to physical states of the molecule, they can be employed as
a discretized representation of the continuum as frequently

employed in the calculation of mean excitation energies and
stopping powers.53–58

The original basis for the RPA or TD-DFT molecular
Hessian matrix is the set of single excitations with respect
to the Hartree-Fock or Kohn-Sham ground state Slater
determinant |Ψ0⟩ and the corresponding de-excitations. The
three response function contributions to the coupling constants
can thus be split even further into contributions from 2 pairs
of occupied and virtual orbitals ai and bj according to

JFC/SD/PSO (K L) =


ai≥b j
JFC/SD/PSO
ai,b j

(K L) , (12)

which for ai , bj becomes

JFC/SD/PSO
ai,b j

(K L) = ∓2
3
γKγL

h


α=x, y,z





n

T̃ai(ÔFC/SD/PSO
Kα ) �Xn

ai ∓ Yn
ai

� (
X̃n

b j ∓ Ỹn
b j

)
Tb j(ÔFC/SD/PSO

Lα )
∆E0→ n

+

n

T̃b j(ÔFC/SD/PSO
Kα ) (Xn

b j ∓ Yn
b j

) �
X̃n

ai ∓ Ỹn
ai

�
Tai(ÔFC/SD/PSO

Lα )
∆E0→ n



, (13)

and for ai = bj

JFC/SD/PSO
ai,ai (K L) = ∓2

3
γKγL

h


α=x, y,z


n

T̃ai(ÔFC/SD/PSO
Kα ) �Xn

ai ∓ Yn
ai

� �
X̃n

ai ∓ Ỹn
ai

�
Tai(ÔFC/SD/PSO

Lα )
∆E0→ n

, (14)

where the upper signs apply to the FC and SD terms and
the lower to the PSO term. The occupied, i, j, and virtual,
a,b, orbitals can be the canonical orbitals normally obtained
in the solution of the Hartree-Fock or Kohn-Sham equations,
but have been in most applications some sort of localized
orbitals, obtained by separate unitary transformations among
the occupied and virtual orbitals. These can be carried out
before or after the solution of the RPA/TD-DFT eigenvalue
problem. The former requires, however, that the RPA/TD-
DFT formulas for non-diagonal Fock matrices have been
implemented. In the case of the latter, as implemented in
the DALTON program package,59–62 one carries out the
unitary transformations on the property gradient vectors, T,
and eigenvectors, Xn and Yn.

One should mention that Autschbach et al.15 had derived
alternative SOS-DFT expressions for real and imaginary
response properties, which involve summations over the
square root of the eigenvalues of −(A − B)−1/2 (A + B)
(A − B)−1/2 instead of over the eigenvalues of

(A B
B A

)
.

III. RESULTS AND DISCUSSION

The spin-spin coupling constants and their contributions
from individual excited (pseudo)states in this study were
calculated at the DFT level with the B3LYP exchange-
correlation functional and the core-property basis set aug-cc-
pVTZ-J.63–69 The calculations were carried with the Dalton

program package at the equilibrium geometries, which are
reported at the bottom of Table I. All couplings in this study
are dominated by the Fermi contact term, a situation for which
the aug-cc-pVTZ-J basis set has been shown to give results
close to the basis set limit. We have therefore refrained from
carrying out a basis set study in this work. We have chosen the
B3LYP functional for this study, as it is still one of the most
widely employed functionals also for the calculation of SSCCs
and gives in general acceptable results for molecules without
π-bonds or too many lone pairs,62,66,70–73 e.g., our previous
study of localized orbital contributions to the couplings in
CH4, NH3, and H2O.12–14 In future applications of the IPPP-
CLOPPA approach, however, it would be worthwhile to study
the dependence of the localized orbital contributions to SSCCs
on the choice of exchange-correlation functional.

All the SSCCs, which were obtained in this study
directly from Equation (1) or equivalently from Equation (10)
by summing over all excited (pseudo)states, are collected
in Table I and compared to selected theoretical values
from the literature and experimental values. However,
the comparison with the experimental values can only
be qualitative as neither our values nor the previous
theoretical values include vibrational/temperature88,89 or
solvent effects. For the theoretical values from the literature
we have only selected the most recent high-level wave
function calculations at the level of unrelaxed coupled
cluster singles and doubles response (CCSD) theory,90,91

of the second-order polarization propagator approximation
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TABLE I. Comparison of the spin-spin coupling constants in (Hz) calculated
in the present work at B3LYP/aug-cc-pVTZ-J level at equilibrium geome-
triesa with selected values from the literature.

Coupling Molecule Present work Other calculations Expt.

1J(X,H) CH4 133.61 123.8574,b 125.30 ± 0.0475

NH3 45.92 44.2676,b 43.81 ± 0.0277

H2O −76.81 −81.5678,b −80.62 ± 0.0679

SiH4 −209.85 −192.0680,b −201.3 ± 0.480

PH3 176.81 183.2966,b 188.781

H2S 27.24 31.0866,b

C2H2 276.27 254.9582,b 248.2482

C2H4 169.86 152.3383,c 156.3084

C2H6 131.34 116.1385,c 125.2184

2J(H,H) CH4 −13.59 −14.4574,b −12.80 ± 0.1375

NH3 −10.58 −11.2776,b −9.61 ± 0.0377

H2O −7.98 −8.5878,b −7.30 ± 0.0379

SiH4 3.72 2.5980,b 2.61 ± 0.0880

PH3 −12.76
H2S −12.58 −15.4586,d

C2H4 4.07 1.0583,c 2.3984

C2H6 −13.66 −10.8685,c −13.1287

1J(C,C) C2H2 205.81 190.0082,b 166.0182

C2H4 73.21 68.7783,c 67.4684

C2H6 32.83 33.4285,c 34.5284

2J(C,H) C2H2 56.52 51.7382,b 49.7582

C2H4 −1.44 −2.4283,c −2.4084

C2H6 −3.54 −4.4585,c −4.6684

3J(H,H) C2H2 11.21 11.3182,b 9.5482

Trans C2H4 20.47 17.4683,c 19.0284

Cis C2H4 13.07 11.3783,c 11.6684

Average C2H6 8.68 7.2585,c 8.084

aGeometry: RCH= 1.0858 Å for CH4; RNH= 1.0124 Å, ∠HNH= 106.67◦ for NH3;
ROH= 0.9584 Å, ∠HOH= 104.44◦ for H2O; RSiH= 1.4684 Å for SiH4; RPH
= 1.4124 Å, ∠HPH= 93.63◦ for PH3; RSH= 1.3359 Å, ∠HSH= 92.30◦ for H2S; RCH
= 1.0625 Å, RCC= 1.2024 Å for C2H2; RCH= 1.0870 Å, RCC= 1.3384 Å, ∠HCH
= 117.37◦, ∠HCC= 121.32◦ for C2H4 and RCH= 1.0910 Å, RCC= 1.5360 Å, ∠HCH
= 108.00◦, ∠HCC= 110.91◦, ∠HCCH= 60.00◦ for C2H6.
bSOPPA(CCSD).
cCCSD.
dMCSCF.

with coupled cluster singles and doubles amplitudes—
SOPPA(CCSD)92 and of multiconfigurational self-consistent
field (MCSCF) response theory.61 The comparison with these
reference values is reasonably good and reflects the usual
performance of DFT with the B3LYP exchange-correlation
functional and proper core-property basis sets tuned for
the calculation of SSCCs.62,66,70–73 We conclude therefore,
that the DFT/B3LYP/aug-cc-pVTZ-J model is sufficient for
answering the question, whether the number of excitations
can be truncated in sum-over-states expressions (10) or (13)
and (14) for the SSCCs.

For the exemplary analysis of the one-bond couplings
in terms of localized molecular orbitals we have localized
the B3LYP Kohn-Sham orbitals using the Foster-Boys
procedure93 as in our previous studies.12–14,29 Again in future
applications of the IPPP-CLOPPA approach it will be useful
to test the dependence of the localized orbital contributions
on the localization scheme.

In the following we will discuss separately the one-
bond 1J(XH) coupling constants and the geminal 2J(HH)

couplings for all 9 molecules and then collectively all the other
couplings.

A. One-bond couplings 1J(XH) with X = C, N, O,
Si, P, and S

The one-bond couplings, 1J(XH) with X = C, N, O, Si, P,
and S in CH4, NH3, H2O, SiH4, PH3, H2S, C2H2, C2H4, and
C2H6 as a function of the number of excited (pseudo)states
n included in the summation in Equation (10), are shown in
Figure 1, plotted as dots. We have chosen to plot them as
function of the number of (pseudo)states and not as that of
the excitation energies themselves for the reason that the total
number of excited (pseudo)states, nmax, can be determined
beforehand for a given molecule and basis set contrary to the
values of the excitation energies. It is simply the product of the
number of occupied molecular orbitals times the number of
virtual molecular orbitals. Using point group symmetry in the
calculations would reduce this, but the current implementation
of the IPPP-CLOPPA method in DALTON does not permit
the use of point group symmetry. The value in the limit of all
(pseudo)states or equivalently the value obtained directly from
the response function, Equation (1), is shown as a horizontal
line.

Comparing the curves of the different compounds in
Figure 1, we observe that there is a fundamental difference
between the results of the hydrocarbons and silane on one side
and ammonia, water, phosphine and hydrogensulfide on the
other. In the latter molecules, which all have lone-pairs at the
central atom, the results of the partial summations in Equation
(10) change sign after very roughly 10%–15% of the excited
(pseudo)states have been included. This leads to the question,
whether the contributions to the coupling constants from the
lone-pair orbitals play a special role in these molecules, which
an analysis in terms of localized molecular orbitals could
answer.

The form of the curves in Figure 1 suggests fitting them
to an analytical function. The election of the particular form
of the function is of course somewhat arbitrary and we have
tried several. Here we report and discuss the results obtained
with the function,

1J(X H) = A + B tanh(C n), (15)

where A, B, and C are the fitting parameters and n
is the independent variable, i.e., the number of excited
(pseudo)states included in Equation (10). The values of the
fitting parameters are given in Table II and the resulting
functions are shown as solid curves in Figure 1. The agreement
is satisfying as the errors are in the same order of magnitude
as the differences between the B3LYP results and the results
of the more accurate calculations shown in Table I.

The important question is that, whether one could
obtain an acceptable approximation to this function and the
parameters A, B, and C by fitting to only a subset of the data
in Figure 1, i.e., the results of partial summations including
a significantly smaller number of excited (pseudo)states
n than the total number for the given basis set and
molecule. Assuming that the same holds for the contributions
to the couplings from localized molecular orbitals, one
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FIG. 1. The one-bond couplings, 1J(XH) in (Hz), in CH4, NH3, H2O, SiH4, PH3, H2S, C2H2, C2H4, and C2H6 as a function of the number of excited
(pseudo)states, n, included in the summation in Equation (10). The partial summation has been carried out in steps of 5 eigenvalues. The solid lines are
the results of fitting to Equation (15) and the horizontal line indicates the value obtained by summing over all states or equivalently obtained from Equation (1).

could imagine an iterative procedure for obtaining these
contributions, where in each step one

(1) extends the set of calculated excited (pseudo)states by ∆n
states

(2) obtains new approximate values of the parameters A, B,
and C by fitting to the current set of data

(3) extrapolates to the total number of excited states nmax
(4) checks, whether the difference between the total coupling

constant obtained from this partial summation, Equation
(10), and directly from the response function, Equation
(6), is below the desired threshold.

TABLE II. Parameters in the fit of the one-bond coupling constants 1J(XH)
with X=C, N, O, Si, P, and S in CH4, NH3, H2O, SiH4, PH3, H2S, C2H2,
C2H4, and C2H6 to the analytical function 1J (XH )= A+B tanh(C n). In the
last column the relative error ∆1J (XH ) of the extrapolated value is given.

Compound A B C ∆1J (XH ) (%)

CH4 −12.3876 149.8729 0.0070 2.9
NH3 −18.4227 66.5234 0.0087 4.7
H2O 69.0636 −153.5295 0.0103 −9.9
SiH4 2.6530 −212.5401 0.0094 <0.01
PH3 −157.2586 344.2211 0.0085 5.7
H2S −58.1416 86.6058 0.0106 4.5
C2H2 −48.6091 327.9585 0.0072 1.1
C2H4 −19.8508 199.2563 0.0038 5.6
C2H6 −5.4648 142.7367 0.0025 4.5

Hopefully, one could then stop the iterations after
calculating a significantly smaller number of excited
(pseudo)states than the total number and thus treat much
larger molecules with the IPPP-CLOPPA approach.

Strictly the values of the parameters A, B, and C vary with
the number of data points considered during the curve fitting.
However, this change becomes small, when the number of
data points considered goes beyond a certain threshold, which
is characteristic of each compound and coupling constant.
This is reasonably true for the parameter C as can be seen
from Tables S1-S9 in the supplementary material.94 In order
to get an idea of what such a threshold would be, we set the
maximum relative error of the coupling constants to be, e.g.,
10%, i.e.,

0.1 =
∆J
J
=

J − Japprox

J

=
A + B tanh(C nmax) − A + B tanh(C nthresh)

A + B tanh(C nmax) , (16)

where nmax is the total number of excited states for the given
molecule. The threshold nthresh then becomes

nthresh =
1
C

tanh−1

−0.1

A
B
+ 0.9 · tanh (C nmax)


. (17)

Using now the converged values of the parameters A, B, and
C, we can see that for all the cases studied here it holds
that

�
A
B

�
< 1, which is furthermore multiplied by 0.1 and is

therefore neglected. Moreover tanh (C nmax) ∼ 1.0 for all the
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molecules studied here, as can easily be seen by multiplying
the values of C in Table II with nmax in Table III. Equation
(17) thus gives nthresh ≈ 1.47

C
. To be on the safe side, we choose

a value twice as large, so that our first guess for the minimum
number of excitations is nthresh ≈ 3

c
. Table III shows the values

of nmax, and nthresh ≈ 3
C

, their ratio and the relative error of
the value of 1J(XH), which is predicted with the approximate
fit function, i.e., with Equation (15) using the parameters A,
B, and C obtained by fitting to only nthresh excited states. The
results in Table III show, that this approach is already partly
successful. For the second row hydrides nthresh corresponds to
∼70% of the excited states and about half of it for that of the
third row hydrides. However, not in all cases are we below the
desired 10% error, which reflects the approximations made
in the derivation of nthresh, but we are close to it with the
exception of H2O and H2S.

A more accurate way to determine the necessary
minimum number of excited states is the procedure outlined
above. In Tables S1-S9 of the supplementary material94 we
have collected the values of the parameters A, B, and C, the
corresponding extrapolated values of J and their relative errors
obtained by fitting to the coupling constants calculated from
10%, 20%, 25%, 30%, . . . , 100% of the excited (pseudo)states.
In the last two columns of Table III we give the approximate
minimum number of excited (pseudo)states n<10%, which give
an error of J less than 10%, and the corresponding percentage
of the total number of states nmax. In order to determine the
exact minimum number of excited (pseudo)states, one would
have to extend the set of states in our procedure by one state

TABLE III. One-bond coupling constants 1J(XH): the total number of ex-
cited states (nmax), the required minimum number of excited states (nthresh
≈ 3

C ), the ratio of both in percentage, the relative error in the coupling con-
stants obtained from fitting to nthresh≈ 3

C excited states and the approximate
minimum number of excited states n<10%, which would give an error below
10%.

Compound nmax nthresh≈ 3
C

ntresh
nmax

(%) ∆1J (XH) (%) n<10%
n<10%
nmax

(%)

CH4 605 429 71 9.6 182 30
NH3 505 344 68 13.4 151 30
H2O 405 290 72 18.2 122 30
SiH4 1251 318 25 9.0 250 20
PH3 1070 353 33 15.5 535 50
H2S 891 284 32 25.7 490 55
C2H2 875 417 47 8.6 219 25
C2H4 1327 797 61 13.6 394 30
C2H6 1827 1224 67 11.2 548 30

at a time, which would be unnecessarily time consuming.
This procedure turned out to be very successful. By including
only 30% or less excited (pseudo)states in Equation (10),
we could determine an approximate fitting function, which
extrapolate to the full number of states and gave an estimate
of the coupling constant with an error of less than 10%. The
only exceptions are PH3 and H2S, where 50% or 55% were
necessary. Interestingly, for methane, ethane, ammonia, and
water there seems to be an island of fitting functions with the
desired 10% accuracy between 30% and 35% of the excited

FIG. 2. Fitted localized occupied orbital contributions to the one-bond couplings, 1J(XH) in (Hz), in CH4, NH3, H2O, SiH4, PH3, H2S, C2H2, C2H4, and C2H6
as a function of the number of excited (pseudo)states n in Equation (15).
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states, while the agreement deteriorates again for more excited
states until one has included about 70%–80% of the states.

1. Contributions from localized molecular orbitals
to the one-bond couplings 1J(XH)

In Sec. III A, we have discussed the dependence
of the total isotropic one-bond coupling constants on the
number of excited (pseudo)states. In this section we want to
illustrate the usefulness of the sum-over-states calculations
by discussing the contributions from individual localized
occupied orbitals to the one-bond couplings. For this purpose
we sum 1JFC

ai,b j
(X H) in Equation (12) over all virtual orbitals

a and b. We limit, however, our analysis to the Fermi
contact term, as it completely dominates the one-bond 1J(XH)
couplings in the studied nine molecules similar to many other
molecules.62–68,70–74,76,78,80,82–85,95

In Figure 2 the fitted functions 1J(X H) = A + B tanh(C n)
are plotted for the contributions from localized molecular
orbitals to the Fermi contact term of the one-bond coupling
constants, 1J(XH). The value of the total coupling constants
are again indicated as horizontal lines. The original calculated
values were omitted in order not to clutter the figures. In all
cases we can confirm from previous findings12–14,31 that the
contribution from the binding σ-orbital between the coupled
atoms X and H is the dominant contribution to the Fermi
contact term. Furthermore, it is responsible for the shape
of the Fermi contact curve and thus total SSCC curve, i.e.,
their dependence on the number of excited (pseudo)states

TABLE IV. Binding σ-orbital contributions to the Fermi contact term of
the one-bond coupling constants 1J(XH): fitting parameters in the analytical
function A+B tanh(C n) obtained by fitting to the results for up to n<10%
excited (pseudo)states and relative error in the bindingσ-orbital contributions
to the Fermi contact term by extrapolating to the total number of states nmax.

Compound n<10% A B C ∆ 1J (XH ) (%)

CH4 180 −3.2070 753.8653 0.0010 8.0
NH3 150 −15.0836 4220.6361 0.0001 3.2
H2O 120 64.9958 −3578.6342 0.0003 11.8
SiH4 250 −1.9603 −283.1433 0.0063 10.9
PH3 535 −161.7761 459.1080 0.0083 10.7
H2S 490 −62.0855 113.1739 0.0104 10.2
C2H2 220 −32.9470 370.3392 0.0054 4.9
C2H4 395 −10.4841 254.9658 0.0024 1.5
C2H6 550 −2.8609 454.1559 0.0006 3.1

included in the summation. The remaining other-bond and/or
lone-pair contributions have the opposed sign than the σ-bond
contribution and their curves have the opposite curvature—the
value and curvature of the lone-pair contributions being larger.

Analyzing coupling constants in this way, i.e., in the
IPPP-CLOPPA approach, in terms of contributions from
localized orbitals requires also calculation of all excited states
like for the total coupling constants. For larger molecules it is
therefore again essential to be able to reduce the required num-
ber of excited states via the procedure outlined in Sec. III A.
In Table IV we have thus shown how large an error one
makes on transferring approximately the number of states,

FIG. 3. The two-bond couplings, 2J(HH) in (Hz), in CH4, NH3, H2O, SiH4, PH3, H2S, C2H4, and C2H6 as a function of the number of excited (pseudo)states, n,
included in the summation in Equation (10). The partial summation has been carried out in steps of 5 eigenvalues.
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FIG. 4. The one-bond couplings, 1J(CC) in (Hz), in C2H2, C2H4, and C2H6 as a function of the number of excited (pseudo)states, n, included in the summation
in Equation (10). The partial summation has been carried out in steps of 5 eigenvalues.

n<10%, used for determining the fitting function from the
total coupling constants in Table III to the binding σ-orbital
contributions to the Fermi contact term. The error in this
contribution is still around 10% and in half of the cases
even better, which shows that this is a promising approach
for obtaining at least qualitatively correct results for the
localized orbital contributions without having to calculate all
eigenvalues of the TD-DFT eigenvalue problem.

B. Geminal 2J(H,H) couplings

The dependence of the geminal H-H couplings on the
number of excited (pseudo)states n included in the summation
in Equation (10) is shown in Figure 3. The dots are again
the results of the partial summations and the horizontal lines
represent the values in the limit of all states or equivalently
the coupling constants calculated directly from Equation (1).

The curves of the geminal couplings differ significantly
from the corresponding curves of the one-bond couplings.
After a rather erratic behavior for summations over the first
one third of the excited (pseudo)states the curves become
more or less straight lines. This holds in particular for
the third row hydrides, ammonia and water and less for
the hydrocarbons—ethene showing the largest variations. In
addition, there are some spikes in the curves, i.e., sudden
large changes in the values, even for much larger numbers of
excited (pseudo)states. Taking NH3 as an example, we have
analyzed some of the large changes of the geminal coupling
constants and find that these occurred in connection with triply
degenerate excited states, where a very large contribution from
one of the three components is almost canceled again by the
two other components. The appearance of these spikes is
then a consequence of having a fixed step length, which

then sometimes includes only parts of a degenerate set of
states.

The initial erratic behavior and the spikes are somewhat
similar to the behavior Oddershede and co-workers had
observed for the one-bond couplings in HD, HF, CO, and
CH+.38 However, one has to keep in mind, that the number of
excited (pseudo)state was an order of magnitude smaller than
in the present work due to significantly smaller one-electron
basis sets in the previous study.

The special form of the curves, first somewhat chaotic and
then essential flat, makes it unnecessary to fit and extrapolate
them. One only has to add excited (pseudo)states to the
summation until the result is sufficiently close the value
obtained from Equation (1), which happens already after ∼1/3
of the states with the exception of ethene.

C. The remaining couplings:
1J(CC), 2J(CH), and 3J(HH)

Finally we analyze the dependence of the remaining
intramolecular J-couplings, 1J(CC), 2J(CH), and 3J(HH), on
the number of excited (pseudo)states, n, included in the partial
summations for the three hydrocarbons ethane, ethene and
ethyne. The results of the partial summations are collected
in Figures 4-6 represented as dots. The straight horizontal
lines represent again the values in the limit of all states
or equivalently the coupling constants calculated directly
from Equation (1). Results from only three molecules are
of course not representative of these types of couplings
in general, but can at least give a first indication of their
behavior.

The first observation for the one-bond couplings 1J(CC)
in Figure 4 is that even after more than 2/3 of the excited

FIG. 5. The two-bond couplings, 2J(CH) in (Hz), in C2H2, C2H4, and C2H6 as a function of the number of excited (pseudo)states, n, included in the summation
in Equation (10). The partial summation has been carried out in steps of 5 eigenvalues.
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FIG. 6. The three-bond couplings, 3J(HH) in (Hz), in C2H2, C2H4, and C2H6 as a function of the number of excited (pseudo)states included in the summation
in Equation (10). The partial summation has been carried out in steps of 5 eigenvalues.

(pseudo)states are included in the partial summation, there
appear again large changes in the values of the coupling
constants. This is similar to the geminal couplings in Figure 3,
but the changes are larger and somewhat more frequent.
For ethane this does not prevent one from obtaining values
close to the final value already after 30% of the states are
included, while for ethene and ethyne more than 75% are
necessary. Ethyne shows in general the largest fluctuations
and requires the largest number of excited (pseudo)states to be
included.

The geminal carbon-hydrogen couplings 2J(CH) in
Figure 5 show another dependence again. While ethyne and
ethene exhibit an oscillatory behavior similar to the optical
rotation in norbornenone,42 the curve for ethane settles down
to a more or less straight line already after ∼50% of the states
have been included. For ethyne one obtains temporary values
close to the converged values for around 50% being included,
while it requires ∼85% for ethene to converge.

Finally, the vicinal 3J(HH) couplings, Figure 6, in the
three hydrocarbons exhibit a behavior similar to the geminal
2J(HH) couplings in Figure 2. For smaller number excited
(pseudo)states included in the summations the results are
rather erratic, but when ∼50% of the states are included for

ethyne and ethene (40% for ethane) the partial summations
yield for the first time results, which differ by 10% or less
from the final value. From there on the curves are more or less
flat lines, however, with several spikes or oscillations.

IV. CONCLUSIONS

We have calculated the NMR indirect nuclear spin-spin
coupling constants of nine small molecules at the coupled
perturbed DFT level both directly from the linear response
function and by explicit summation over all the electronically
excited (pseudo)states obtained from the corresponding TD-
DFT eigenvalue problem. The B3LYP exchange-correlation
functional and the aug-cc-pVTZ-J core-property basis set were
employed in the calculations.

We have analyzed in detail the dependence of all the
different SSCCs in these molecules on the number of
(pseudo)states included in the sum-over-states expression.
We find that it is in general possible to obtain with the
sum-over-states approach values for the coupling constants,
which are sufficiently close to the results of corresponding
linear response calculations, although only a reduced number
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of excited (pseudo)states are included in the summation.
This implies that the IPPP-CLOPPA approach for analyzing
coupling constants in terms of localized molecular orbitals can
be applied to significantly larger molecules than previously.

However, a truncated sum-over-states approach is not
useful as a method for predicting coupling constants, as the
value of the coupling constant can still oscillate until the last
few excited (pseudo)states are included in the summation. On
the other hand, in combination with the calculation of the total
coupling constant directly from the linear response function,
the summation can be truncated and an IPPP-CLOPPA
analysis performed, when the linear response function result
is obtained.

In more detail, we find that the different types of
coupling constants, one-bond, geminal, vicinal, etc., exhibit
quite different behavior. While the one-bond X–H coupling
constants as a function of the number of (pseudo)states in
the summation follow roughly a monotonically increasing or
decreasing function, the geminal and vicinal H–H couplings
become after an initial erratic behavior flat lines with different
amounts of spikes or intermediate oscillations.

In the case of the X–H one-bond couplings we could
obtain approximate SSCCs, which differ by less than 10%
from the linear response function result, by fitting the results
from summations including up to ∼30% of the states (50% or
55% for PH3 and H2S) to a 1J(XH) = A + B tanh(C n) function
and extrapolating to the total number of (pseudo)states. For
the geminal and vicinal coupling constants, one only has
to add (pseudo)states to the summation until the value
is sufficiently close to the linear response function result.
The same procedure, i.e., minimum number of necessary
(pseudo)states, can then be applied in the IPPP-CLOPPA
calculation of contributions from localized orbitals.

With this study we have shown, that the truncation of
the sum-over-states expression is possible. In future studies
on larger molecules one should investigate whether the
percentage of states necessary for the IPPP-CLOPPA analysis
varies with the size of the molecule, and how much the
results depend on the choice of localization scheme and
exchange-correlation functional.
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