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Large nuisance blooms of Didymosphenia geminata have become increasingly widespread in
Patagonia. Although the first published account for South America was in 1964, reports of large
growths in Chile and Argentina commenced around 2010. Since then, these blooms have been
observed all along the Andes region to the south of parallel 42�S. General surveys are needed to
help provide an explanation. Possibilities include one or more new genetic variants or responses
of local populations to global environmental changes. Electron microscopy of material from the
Argentinean Patagonia revealed marked differences between regions, though it is unclear how
much local factors and/or variations in life cycle contribute. Thus, we are approaching the
problem from a molecular perspective, which we hope will help to overcome this limitation. Initial
studies showed that D. geminata seems to be highly recalcitrant to DNA extraction, thus hindering
the survey of molecular markers. We have now developed an improved DNA extraction technique
for Didymosphenia mats, which markedly outperforms other techniques. However, endpoint
polymerase chain reaction analyses suggest the persistence of polymerase chain reaction
inhibitors in the samples, highlighting the need of further improvements for quantitative studies.
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Introduction

Didymosphenia geminata (Lyngbye) Schmidt is
an epilithic and epiphytic diatom in the
Cymbellales (Bacillariophyta) that has shown
great increases in many countries in recent years
(Blanco and Ector, 2009; Whitton et al., 2009).
This diatom is characterized by its ability to
develop massive colonies that can cover large
stretches of river bed and submerged vegetation
and sometimes the marginal zones of lakes, thus
jeopardizing the natural communities at those
environments (James and Chipps, 2016; Segura,
2011; Whitton et al., 2009). Although they pose
no threat to human health, D. geminata blooms
can harm recreational and industrial activities,
pose problems for water management and have a
negative impact on the invaded ecosystems
(Watson et al., 2015).

Different explanations for the mass growths
have been proposed and the evidence up to early
2015 was reviewed by Watson et al. (2015), which
provides a source for recent literature. Based on
their study of an upland stream draining peaty
moorland in England, Ellwood and Whitton
(2007) concluded that the ability to make effective
use of the relatively high concentrations of organic
phosphate which occurred in spring was important
for the diatom. Colonies showed very high phos-
phomonoesterase and phosphodiesterase activity
and staining indicated that the upper part of the
stalks was the main site for the phosphomonoester-
ase activity. This was studied further by Aboal
et al. (2012). Where measurements have been
made in other studies of phosphate in the water of
rivers with D. geminata, the predominant form of
phosphate has usually been organic. This and a
range of different types of information about phos-
phate release from peat led Ellwood and Whitton
(2007) to suggest that the widespread increases in
D. geminata may be associated with climatic
change leading to increased phosphate release in
spring. A link between D. geminata blooms and
climatic warming has been also highlighted by
Taylor and Bothwell (2014). Several studies have
indicated the importance of the dense mass of long
stalks for retaining as well as accumulating
nutrients, especially phosphate, within the colo-
nies. In addition, Kilroy and Bothwell (2011)
observed a relationship between nutrients avail-
ability and D. geminata division rates, and two

recent papers have revealed a significant, negative
relationship between P availability and D. gemi-
nata thriving (Montecino et al., 2016; Jackson
et al., 2016). Together, these results suggest the
hypothesis that D. geminata makes very effective
use of relatively high concentrations of organic
P in late winter and spring. Subsequently it is then
well adapted to maintain high populations for
some months when P concentrations are much
lower.

The intense interest in D. geminata which
occurred as a result of its discovery in New
Zealand in 2004 and the suggestion that it was
invasive there (Biggs et al., 2006) has subse-
quently led to the assumption that it is an invader
elsewhere. Currently this is far from being
resolved unambiguously, but what is clear is that
several rivers have been studied sufficiently care-
fully to be certain that there have been major
increases. The following provides a brief account
of the situation for Argentina and Chile.

Reports in Chile and Argentina
become frequent in about 2010

The first historical report of D. geminata in
South America is that of Asprey et al. (1964). It
was included among the “very rare species,”
having been observed at only two out of eight
sites surveyed, Sarmiento Lake and Los Cisnes
River. Samples were, however, only taken from
the plankton caught with a very coarse net,
which did not survey the typical environment of
D. geminata. Material was subsequently shown
to one of the present authors (BAW) and posi-
tively identified. Apart from a single report for
the Mejillones River in Chile (Rivera and Geba-
uer, 1989), no further mention of its occurrence
appeared until massive blooms were reported to
occur during 2010 in the rivers Futaleuf�u and
Espol�on and the Cea Creek in Chile (Segura,
2011). Subsequently, its presence has been
reported for the Chilean rivers of Risopatr�on,
Figueroa, Pico, eNirehuao, Emperador Guillermo,
Simpson, Ays�en, D. Lago Monreal, Cochrane,
Baker, Yelcho, Espol�on, Bellavista, Noroeste,
Llanquihue and B�ıo B�ıo (Khan-Bureau et al.,
2016; Rivera et al., 2013).

In Argentina, the alga was first recorded in 2010
in the Futaleuf�u River, five months after its
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discovery in Chile downstream in the same river
basin. It was sparse from late August – early
September (austral winter), but developed massive
blooms covering up to 30% of the river bed from
about December to April (austral spring and sum-
mer) (Sastre et al., 2013). Since then, the alga
appears to have undergone a very rapid expansion
north to Neuqu�en and R�ıo Negro Provinces (Abelli
Bonardi et al., 2012; Beamud et al., 2013) and
south to the southern end of the continent, the R�ıo
Grande in Tierra del Fuego by 2013. D. geminata
also formed mass growths on the shore of Lake
Nahuel Huapi in 2013 (Beamud et al., 2013). By
2015 nuisance blooms were recorded in five Argen-
tinean provinces, including Neuqu�en, Chubut,
Tierra del Fuego, R�ıo Negro and Santa Cruz.
Unfortunately, historical data on benthos are almost
absent for these provinces of Argentina, making it
difficult to assess whether the species was already
part of the native populations and has developed
the invasive behavior only in recent times, or if its
current presence responds to a recent introduction.
Native or exotic invader, one of the main questions
is to establish whether blooms are due to the overall

dispersion of a new genetic variant/s or to the
increase of local populations.

Frustules from the Argentinean Chubut Prov-
ince blooms were analyzed morphologically and
compared with published data from Chile and
other countries (Rivera et al., 2013; Uyua et al.,
2016). Morphological differences were found
between locations. Further genetic studies are
needed to assist understanding of morphological
differences and hence also the alga’s ecology.
This in turn will aid in dealing with economic and
ecological risks associated with the alga. Improved
molecular detection methods should enhance the
early detection of the diatom for better monitoring
and management.

Current status of genetic studies
in Argentina

Genetic studies of populations of Didymosphe-
nia are still in a developing phase, with very few
worldwide and a limited number of sequences in
public databases (Cary et al., 2014; Jaramillo

Table 1. Sampling locations and gene markers analyzed in Didymosphenia geminata samples from Argentina. Please see also

Figure 1.

River Lat, Long MPI1 S-18S2 U-18S3 rbcl4 COX5

Azul Pasarela ¡42.03708, ¡71.60347 Yes C C C ¡
Azul Pasarela ¡42.03708, ¡71.60347 No ¡ ¡ N/A ¡
Rivadavia ¡42.67785, ¡71.70151 Yes C C C ¡
Quemquemtreu ¡40.22314, ¡70.73296 No ¡ ¡ N/A ¡
Quilaquina ¡40.32000, ¡71.37077 No ¡ ¡ N/A ¡
Grande ¡53.82377, ¡67.75871 Yes C C C ¡
Futaleuf�u (A) ¡43.13694, ¡71.60442 No C C N/A ¡
Futaleuf�u (B) ¡43.13694, ¡71.60442 Yes C C C ¡
Futaleuf�u (C) ¡43.16710, ¡71.58847 Yes C C C ¡
Futaleuf�u (D) ¡43.17303, ¡71.59444 Yes C C C ¡
Futaleuf�u (E) ¡43.17208, ¡71.65081 Yes C C C ¡
Futaleuf�u (F) ¡43.17767, ¡71.63106 Yes C C C ¡
Chubut ¡42.33946, ¡70.86890 Yes C C C ¡
De las Vueltas (A) ¡49.26792, ¡72.87361 Yes ¡ ¡ ¡ ¡
De las Vueltas (B) ¡49.31466, ¡72.89750 Yes N/A N/A ¡ ¡
Toro ¡49.13204, ¡72.94325 No ¡ ¡ ¡ ¡
1MPI: Mouth pipeting isolation.
218S rDNA gene, amplified by D. geminata specific primers (Cary et al., 2006, 2007).
318S rDNA gene, amplified by universal primers (Moon-van der Staay et al., 2001).
4Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene (Jones et al., 2005).
5Cytochrome c-oxidase subunit 1 (Evans et al., 2007).
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et al., 2015; Kermarrec et al., 2011; Khan-Bureau
et al., 2016). A key requirement of any molecular
study is the availability, or correct design, of a
suitable method to obtain genetic material in ade-
quate amounts and of high purity. D. geminata
mats pose a challenge due to the low cellular con-
tent relative to extracellular matrix, and its chemi-
cal complexity, which results in low nucleic acids
yields and high levels of enzymatic inhibition
(Jones et al., 2015). We have compared five DNA
extraction protocols in terms of yield and purity of
the DNA extracts, along with the efficacy and effi-
ciency of the DNA suspensions in Polymerase
Chain Reaction (PCR) amplifications. Low and
highly variable DNA yields were observed, similar
to those for other recalcitrant materials like mum-
mified plant tissues, leaves with high contents of

secondary metabolites and different types of
microbial mat (Aljanabi and Martinez, 1997, Bey
et al., 2010; Cota Sanchez et al., 2006; Jackson
et al., 1990; Porebski et al., 1997; Rogers and
Bendich, 1985). As for the enzymatic assays, PCR
amplification of the 18S rDNA gene revealed that
inhibition was frequent for the majority of the
studied protocols. Moreover, even for DNA prepa-
rations for which PCR was not completely inhib-
ited, the amplification product yields did not
correlate with the corresponding template
amounts, indicating the persistence of PCR inhibi-
tors (Jones et al., 2015). Our results suggest that
DNA extraction protocols that incorporate: lysis
buffers containing anionic surfactants, such as
cetyltrimethyl ammonium bromide (CTAB), along
with high salt concentrations to facilitate the
removal of polysaccharides; washing steps after
DNA precipitation; and the incorporation of che-
lating agents, may overcome or ameliorate the
problems sufficiently for downstream molecular
applications (Jones et al., 2015; Uyua et al., 2014).

Inter-sample variability and the performance of
the available PCR primers can also hinder D. gem-
inata molecular studies. We collected benthic
samples between April 2012 (austral autumn) and
November 2015 (austral spring) from different
sites in Chubut, Neuqu�en, Santa Cruz and Tierra
del Fuego Provinces (Table 1, Figure 1 MAP).
These samples were processed by our optimized
DNA extraction method (Uyua et al., 2014), and
the DNA suspensions obtained were used to
amplify sequences of the 18S, rbcl and COX
genes. Although several genes could be amplified
in many samples; it was impossible to amplify
some in some samples (Table 1), in some cases
even when DNA extracts were obtained from cells
isolated by mouth pipeting (Table 1). This sug-
gests the presence of inhibitors in or attached to D.
geminata cells and/or a suboptimal primer behav-
ior, possibly due to sequence variability. The need
for improved PCR primers was also reflected by
gradient PCR assays, in which we observed a
range of problems such as primer dimer formation,
non-specific bands and the need for too low an
annealing temperature to generate adequate
amounts of DNA (Figure 2). Figure 2 includes a
gradient PCR analysis of primers F27 and R1492
directed against the 16S rRNA gene (Weinbauer
et al., 2002), which shows that a temperature of
53.9�C resulted in very few primer dimers, large
amounts of amplified DNA and no non-specific

Figure 1. Origins of the South American samples studied here.

AZ Azul River, RI Rivadavia River, QM Quemquemtreu River,

QQ Quilaquina River, GD Grande River, FT Futaleuf�u River, CH

Chubut River, DV De las Vueltas River, TR Toro River, DCA

Caracoles River, DRA Rahue River, DLO Lollen River, DTU

Tucapel River, DFU Fuy River, DCU Curri~ne, DCO Pollux. The

Chilean samples’ (triangles) sequences were kindly provided by

Dr. Leyla Cardenas. Please see also Table 1.
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PCR bands. Conversely, amplifications of the D.
geminata 18S gene sequences presented substan-
tial amounts of primer dimers and either too many
non-specific bands or very little specific DNA.
Both the COX and rbcl primers required very low
annealing temperatures to produce acceptable
amounts of amplification product (COX) or to
diminish the production of non-specific bands.
Moreover, the COX PCR produced very little
DNA, which can resulted in a negative impact
when used to amplify the gene from the natural
samples (Table 1).

Regarding genetic variability, we have sequenced
about 950 bp of the 18S rDNA gene of some of our
samples, and preliminary analyses of these sequences
suggest that there is a considerable variation among
the D. geminata populations studied. We combined
our sequences with sequences for several

Didymosphenia and other Cymbellales sequences
available in public databases. Phylogenetic analysis
strongly supported the monophyly ofDidymosphenia
(Figure 3a), but also revealed intra-specific variation
that was in many cases correlated with geographic
origin (Figure 3b). A group of sequences from
Argentina were very close to the Chilean strains
described previously (Jaramillo et al., 2015; Nakov
et al., 2014). Likewise, sequences from Italy and
some from the USA clustered according to their cor-
responding geographic origin. A statistical parsimony
analysis of these sequences revealed similar patterns,
with the South American strains grouped in three
closely related clusters and the European strains in
four close clusters, but separated from the American
or New Zealand sequences (Figure 3c). Thus, our
preliminary analyses support the concept that geo-
graphically close strains seem to be phylogenetically

Figure 2. Performance of different PCR assays, as revealed by gradient PCR. Each panel has the name of the gene amplified (16S,

18S, COX, rbcl). 16S analyses were performed using metagenomic DNA as template and primers F27 and R1492 as described else-

where (Manrique et al., 2012). Cycling conditions for the rest of genes were: a 20 denaturation at 95�C; 35 cycles of 95�C 1500, gra-
dient of 50 to70�C for 1500, 72�c for 5000; and a final extension step at 72�C during 50. All reactions were performed in a BioRad My

Cycler thermal cycler (Bio-Rad Laboratory, Inc.). Amplification primers were D602F – D1670R for the 18S gene (Cary et al.,

2014, 2006), GAZF2-GAZR2 for COX (Evans et al., 2007) and DPrbcL1 – DPrbcL7 for rbcl (Jones et al., 2005). Twenty percent

of the PCR reactions were run in 2% agarose gels, revealed with GelRed Nucleic Acid Gel Stain (Biotum) and observed in a UV

transilluminator. M: 1Kb Plus DNA ladder (Invitrogen). Open arrows indicate the position of non-specific bands. Closed gray

arrows display the location of primer dimers. Triangles above the gels indicate the direction of the gradient from higher (left) to

lower (right) temperature. The temperatures that worked best are indicated on the corresponding gel lanes.

Manrique et al. /Aquatic Ecosystem Health and Management 20 (2017) 361–368 365



closer than remote ones. These observations must be
corroborated by data from other genes and extended
phylogeographic analyses.

Conclusions and remarks

D. geminata has expanded its range in an
alarming and very rapid way since its first report
in 2010. The molecular and phylogeographic
studies that are underway should help clarify the
relationship of the nuisance blooms with the
global evolutionary history of the alga. Prelimi-
nary data presented here indicate that the nui-
sance blooms are probably not due to the
expansion of a single genetic variant, but to the
sum of local responses to factors, possibly
including global change. There is an urgent need
of complementary information, encompassing
deeper phylogeographic studies and detailed
ecological surveys including the interaction of
the alga with other macro- and microorganisms.
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