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Sequences Detection of an Unbalanced Sinusoidal
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Reduced-Order Observer
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Abstract—This paper presents a globally convergent nonlinear
observer capable of recovering the positive and negative sequences
of an unbalanced grid voltage. The proposed algorithm has fre-
quency adaptation, and is therefore, in steady state, immune to
grid frequency variations. Another feature is that since it is a re-
duced-order observer, only three states are needed to implement it.
The validity of the proposed scheme is verified through mathemat-
ical analysis, simulation, and experimental results.

Index Terms—Adaptive observer, frequency estimation, re-
duced-order observer, sequences detection.

I. INTRODUCTION

HE development of power-electronics technologies al-

lows to create distributed-generation systems for powers
increasingly higher. This is also creating a trend toward the use
of flexible alternating current transmission systems (FACTS)
in power systems. Many control strategies have been proposed
for these systems, and a problem that arises recurrently is the
poor performance under grid voltage unbalanced conditions
[1]-[4]. Due to different fault conditions, these unbalances are
relatively frequent in distribution networks [5]. This results in
most control schemes requiring a fast and precise sequences
detection method in order to achieve high-quality energy gen-
eration [6]-[8]. Sequence detection can be thought as a subset
of the synchronization problem, which is closely related to the
estimation of the fundamental frequency. This problem has
been extensively studied, and there are numerous topologies
to solve it based on phase-locked loop (PLL) [9]-[11] and
frequency-locked loop (FLL) [12]-[14]. Sequence detection
schemes based on the moving average filters (MAFs) have been
proposed in [15] and [16]. These are capable of positive-se-
quence detection and have frequency adaptation. However,
because they are based on MAFs, they require several states
to log the sampled data, increasing the memory requirements
of their implementation. There are other methods that take
advantage of the system’s symmetry to reduce the number of

Manuscript received June 08, 2012; revised November 13, 2012; accepted
March 15, 2013. Paper no. TPWRD-00586-2012.

The authors are with the Instituto de Investigaciones en Ingenieria Eléctrica
(IIIE) “Alfredo Desages” (UNS-CONICET), Departamento de Ingenieria Eléc-
trica y de Computadoras, Universidad Nacional del Sur (UNS), 8000 Bahia
Blanca, Argentina (e-mail: sebastian.gomezjorge@uns.edu.ar; cbusada@uns.
edu.ar; jsolsona@uns.edu.ar).

This work was supported by Universidad Nacional del Sur, CONICET and
ANPCyT, Argentina.

Digital Object Identifier 10.1109/TPWRD.2013.2253498

states [17], [18], which allows estimating the positive- and
negative-sequence components independently, without the
need to estimate both. Aiming only for sequences detection, in
[19] is a fixed-reference-frame phase-locked loop (FRF-PLL).
It is capable of detecting the positive- and negative-sequence
components of an unbalanced grid voltage as well as its
frequency. Also, a sequence detection scheme based on the
extended Kalman filter (EKF) has been presented in [20].
Although this scheme is capable of recovering the positive and
negative sequences as well as the frequency of the grid voltage,
it requires the online computation of several trigonometric
functions, which increase the memory requirements, and it is
not supported by any experimental data.

For commercial applications, where cost reduction is impor-
tant, it is desirable to obtain reduced computational cost algo-
rithms, an objective pursued by many researchers. Therefore, in
this paper, a low computational cost algorithm will be proposed.
This algorithm is based on a reduced-order observer, and allows
to obtain the positive- and negative-sequence components of the
grid voltage as well as its frequency. This is achieved using only
three states. It will also be shown that for unbalanced grid volt-
ages, the proposed observer is globally convergent.

This paper is organized as follows. In Section II, a description
of the system under study is given. In Section III, the proposed
observer is presented, analyzed, and a method for tuning its pa-
rameters is given. Section V shows simulation and experimental
results that validate the proposal. For the sake completeness,
Section VI shows a performance comparison of the proposed
observer and the FRF-PLL, both for unbalanced and harmonic
contaminated voltages. Finally, in Section VII, conclusions are
drawn.

II. SYSTEM DESCRIPTION

Consider that the grid voltage is composed of a sinusoidal
signal of positive sequence and one of negative sequence. Also,
these signals have the same angular frequency w, which we
will assume slow varying, and are both of constant magnitude.
Under these conditions, the grid voltage can be described in an
a3 stationary reference frame as

Y, =Vr+V, 6
Vo=V +V, )
VE = At cos(wit + ¢T) 3)
Vi =Atsin(wt +¢7) 4)
V., =A sin(wt+¢) %)
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Vi =A cos(wt+¢ ) 6)

where Y,, and Y are the o and /3 components of the measured
grid voltage, V. and V;L are the «/3 components of the positive-
sequence voltage, V,, and V) are the o components of the
negative-sequence voltage, AT and A~ are the positive- and
negative-sequence amplitudes, and, finally, ¢+ and ¢~ are their
phases, respectively.

Equation (3)—(6) can be described by the following set of dif-
ferential equations:

Vb= —wvy (7)
Vi =wvf ®)
Vo =wVy ©)
V, = —wV, . (10

Then, defining the new set of states

p =Y, =V +V, (11)
2= —w(V§ -Vy) (12)
=Yy =V, +V, (13)
zy =w(VE V) (14)

where z; and z3 are equivalent to (1) and (2), respectively, and
z and z4 are their derivatives, the system can be described by
the following set of differential equations:

31 =29 (15)
Z9 = — 0z (16)
35 =124 (17)
Za = — Oz (18)

where § = w?. It is easy to see from (11)—(14) that the sequence
components can be recovered from the following set of alge-
braic equations:

Vi = %(zl +2 (19)
V=g 0)
Vi =5z~ 2) @)
Vi =gt ) (2)

With these preliminary definitions, we will now proceed to
develop our proposal.

III. PROPOSED OBSERVER

The objective of the proposed observer will be to recover es-
timates of (19)—(22) from the measured signals (1)—(2) using a
minimum number of states.

To begin the development of the observer, lets assume that the
signals z9 and z4 are available measured signals. This assump-
tion will be dropped later. Then, a typical Luenberger observer
to estimate these signals is

(23)
24

by = — bz + g(za — Z2)

Za=— 0z + g(za — 24)
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§ = AL (25)
where g € R, g > 0 is a design constant, 4 , 22, and Z4 are the
estimated signals and AL is an adaptation law to be determined.
This adaptation law is chosen through the Lyapunov method
such as the convergence to zero of the estimation error is guaran-
teed. The details of this development are shown in Appendix A,
where it is shown that an adaptation law that fulfills these re-
quirements is

é = —v [Z] (22 — 2?2) + 23(24 - 24)] (26)

with v € R, v > 0 is a design constant. Now, dropping the as-
sumption that 25 and z4 were measured, it is possible to replace
them from (15) and (17) to obtain

Z9 = — éZl +g(zl - 22) (27)
24 = — éZd + g(zd - 24) (28)
é = —7 [21(21 — 22) + Z3(23 — ,”24)] . (29)

In order to avoid performing the derivatives of the measured
signals, the following auxiliary signals are defined:

Bo =2 — gi1 = —0z1 — g (30)
by =54 — giy = —b23 — g (31)
'[)9 = é + ’y(zlél + Zg,Zg,) —= ’)/(2’122 + 2324) (32)

which are obtained by subtracting the newly replaced deriva-
tive terms on both sides of (27)—(29). Now, integrating and re-
arranging these equations results

2y =v2 + g2 (33)
Z4 =va + g23, (34)
§ =uvy — %(z% + 23). (35)

Replacing these equations in (30)—(32), then replacing the
resulting estimated signals in (19)—(22), and recalling (11) and
(13), the complete estimation algorithm results

b= = o= JOZHYD+ 5 Ya—gna GO)
b= [ — 224D+ Vamgu (37)
Bp = [Yave + Yauu + g(V.2 +Y])] (38)
o= flon - 2z +7p) (9)
. 1 ) Y-
V= L(y, + 19 (40)
2 w
. 1 Y.
Vo= (v, - BT (41)
2 w
N 1 v2 + gYy
Vi = (Vs — - 42
A 1 v + gYa
Ve =5 o) (43)

Note that this reduced-order observer requires the use of only
three states and a few algebraic operations to be implemented.
Note also that the transformations performed to (23), (24), and
(26) do not modify the convergence of the proposal, since they
do not add additional dynamics.
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IV. CRITERION FOR TUNING THE OBSERVER GAINS

In Appendix A it is shown that the estimated variables con-
verge to the actual ones asymptotically. The actual convergence
speed of these variables depends on the parameters g and . In
this section a criterion for choosing them in order to achieve
a desired dynamic response is given. To this end, we will ana-
lyze the dynamic behavior of the proposed algorithm under the
assumption of small signal. This analysis will show the relation-
ship between g, v and the convergence speed of the observer.
Since the system is highly nonlinear, as a rough approximation,
we will find separate expressions for the convergence time of
the estimated sequence components (40)—(43) and the conver-
gence time of the estimated frequency (39).

A. Estimated Sequence Components Convergence Time

Let us assume that the estimated frequency is fixed at the
grid’s nominal frequency w,. This is equivalent to say that the
dynamics of states w2, v4, and vg are decoupled. This assump-
tion does not always hold, but it gives a good starting point for
choosing parameter ¢ and then fine tuning it through iteration.

Subtracting (23) and (24) from (16) and (18), respectively,
and writing the results in a state variable form, results in

S | —g 0 |-
[ 0]

where & = [(22 — £2) (24 — 24)]”, and we have assumed § = 6.
Since the convergence time of € is determined by the eigen-
values of matrix A, it is easy to see that the setting time of these
error states to 2% of their final value is given by

(44)

tsot ~ — (45)
and since the estimated sequence components are a linear com-
bination (assumingf = constant) of the input signal and the
estimated states, their convergence time is also determined by
(45).

B. Estimated Frequency Convergence Time

Assuming that the frequency of the input signal is initially
fixed at its nominal value w,, and at some arbitrary time instant
is allowed a small step variation Aw, a linear model that de-
scribes the dynamic behavior of the frequency estimator (39) is
developed in Appendix B. As described there, the transfer func-
tion that relates a grid frequency variation Aw with an estimated
frequency variation Aw is given by

vK (s 4 29)Aw

2 5% +2g52 + (9* + wi +7K)s + 9K

where K = (A%)2? + (A)? Fig. 1 shows the root locus of (46)
for AT =311V, A~ = 31V, different values of g and different
values of . The root locus for g = 100 is shown with dots,
for ¢ = 200 with circles and for ¢ = 300 with triangles. In the
figure, there are also arrows indicating the direction in which the
poles move as -y increases. The locus is shown for0.1 < v < 1.
According to (45), choosing g = 300 the estimated sequence
components can achieve a setting time of 13 ms. For this value
of g and v = 0.8 the poles of the transfer function are at p; =

Aw =

(46)
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Fig. 1. Root locus of (46) for AT =311V, A~ =31V, w, = 2750 rad/s,
g = 100 (dot), g = 200 (circle), g = 300 (triangle), and 0.1 < 5 < 1.

—110 and po3 — 245 £+ 5391, as shown in Fig. 1. Taking the
real pole as the dominant one, the setting time of the estimated
frequency to 2% of its final value can be approximated as

4
toser ™ — =~ 36.36 ms.
y4l

(47)

Fig. 2 shows the response of the linearized frequency es-
timator (46) (dashed line) to an input signal frequency step
change (dash/dot line) along with the response of the actual fre-
quency estimator (39) (solid line), all normalized with respect
to w, = 2730 rad/s. The parameters for this simulation where
At =311V, A~ =31V, g =300and vy = 0.8. As the figure
shows, (46) gives a good approximation of the actual frequency
estimator response to an input frequency step change, and
converges to 2% of its final value within approximately 35 ms,
as was predicted by (47).

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we will show simulation and experimental
results to validate the proposal. For the simulation and exper-
imental results, the grid voltage is initially composed of a pure
sinusoidal signal of magnitude At = 311 V and frequency
w, = 27H0. At time ¢ = 40 ms, the grid voltage has a —10%
magnitude variation. Then, at ¢ = 80ms, this magnitude is
reestablished to AT = 311 V. At that same time instant, the
grid is unbalanced with a negative-sequence voltage of magni-
tude A~ = 31 V. Finally, at time ¢ = 140 ms, the grid voltage
has a frequency step variation of —2%w, . The observer param-
eters for the simulation and experimental results where g = 300
and vy = 0.8.

A. Simulations

Fig. 3 shows the simulation results. Fig. 3(a) and (b) shows
the estimated positive-sequence « and /3 components of the grid
voltage, respectively, with solid line. Also, in those figures, the
error between the actual and estimated voltages is shown with
dashed line, scaled by a factor of 10 in order to be visible. As
these figures show, the magnitude variations at # = 40 ms and
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Fig. 2. Linearized frequency estimator simulation normalized with respect to
w, = 2750 rad/s. Actual input frequency (dash/dot line), linearized frequency
estimator (46) (dashed line), and actual frequency estimator (39) (solid line).

t = 80 ms are tracked within less than 20 ms, as expected.
It can also be seen that the voltage tracking error during the
frequency transient produced at ¢ = 140 s relatively small,
and its convergence time depends mainly on the convergence
of the estimated frequency.

Fig. 3(c) and (d) shows the estimated negative-sequence «
and § components of the grid voltage, respectively, with a solid
line. Here, the error between the actual and estimated voltages
is also shown with a dashed line. The transient response shown
in these figures is very similar that shown in the previous two.
It can be seen that the observer is clearly able to detect the neg-
ative-sequence component introduced at £ = 80 1ms.

Finally, Fig. 3(e) shows the grid frequency (solid line) along
with the estimated frequency (dashed line), both normalized
with respect to the nominal grid frequency w,. As expected, the
grid voltage magnitude variations produce transients on the es-
timated frequency. This is due to the chosen modeling of the
system, which assumes voltages of constant magnitude. Never-
theless, it can be seen that the estimated frequency converges to
the actual frequency after the transients. Also, the figure shows
that the estimated frequency is able to track the grid frequency
variation produced at ¢ = 140 ms within 35 ms, as expected.

As these figures show, the observer is able to track both the
positive and negative-sequence components of the grid voltage,
as well as its frequency.

B. Experimental

Fig. 4 shows the experimental results. These were obtained
using a fixed point DSP TMS320F2812 working at a clock fre-
quency of 150 MHz. The discretization of the observer was per-
formed replacing the continuous integrators by discrete trape-
zoidal integrators, with a sample frequency to f; = 10 kHz.
All of the signals shown in the figure were captured through
the PWM outputs of the DSP after being filtered with an RC
low-pass filter with a cutoff frequency of 2.34 kHz.

Fig. 4(a) and (b) shows the estimated positive-sequence «
and (3 components of the grid voltage, respectively, along with
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Fig. 3. Simulation results. (a) Estimated positive-sequence < component and
estimation error. (b) Estimated positive-sequence 3 component and estimation
error. (c) Estimated negative-sequence «r component and estimation error. (d)
Estimated negative-sequence 3 component and estimation error. (¢) Actual and
estimated frequencies.

the error between the actual and estimated voltages, scaled by
a factor of 10 in order to be visible. Fig. 4(c) and (d) shows the
estimated negative-sequence « and 3 components of the grid
voltage, respectively, along with the error between the actual
and estimated voltages. Finally, Fig. 4(d) shows both the ac-
tual and the estimated grid voltage frequencies. As can be seen,
the experimental results match the simulation results almost ex-
actly, which proves the validity of the proposed approach.

Regarding the computational burden, the calculation of both
sequences and the frequency takes 3.95 us , that is, 3.9% of the
available computation time for the chosen sampling time, which
is clearly a very low burden. As a comparison, it can be men-
tioned that the MCCF [17] requires 7.6 ps and the MSOGI-FLL
[14] requires 6.74 us to estimate the same signals.

VI. PERFORMANCE AND STRUCTURE COMPARISON

In this section the performance of the proposed observer will
be compared to the performance of the FRF-PLL proposed in
[19]. To do so, both estimators are simulated when in presence
of grid voltage variations and their dynamic responses are com-
pared. First for a grid with unbalance, and later for a grid with
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Fig. 4. Experimental results (horizontal scale: 20 ms/div). (a) ‘A”'j scale: 160
V/div, error scale: 160 V/div. (b) 1;’ scale: 160 V/div, error scale: 160 V/div.
(c) Yﬂ"’(j scale: 20 V/div, error scale: 20 V/div. (d) \j’:{ scale: 20 V/div, error
scale: 20 V/div. (e) w, & scale: 2%w,, /div.

unbalance and a fifth harmonic. This also allows to evaluate the
performance of the proposal when in presence of non modeled
harmonics.

For the first simulation the grid voltage is composed of a pos-
itive-sequence signal of magnitude AT = 311 V and negative-

100 120 140 160 180 200
Time (ms)

O]
Fig. 5. Performance comparison for the unbalanced grid. (a) FRF-PLL
and proposed observer positive-sequence a component tracking error. (b)
FRF-PLL and proposed observer positive-sequence /3 component tracking
error. (¢) FRF-PLL and proposed observer negative-sequence o component
tracking error. (d) FRF-PLL and proposed observer negative-sequence 3 com-

ponent tracking error. (¢) Actual, FRF-PLL estimated and proposed observer
estimated frequencies.

sequence signal of magnitude A~ = 0.3AT. For the second
one, the grid voltage also has a negative-sequence fifth harmonic
signal of magnitude A=> = 0.05AF. Attime ¢ = 40 ms the grid
voltage has a —10% magnitude variation. Then, at ¢ = 80 ms
this magnitude is reestablished to AT = 311 V. Finally, at time
t = 140 ms, the grid voltage has a frequency step variation
of —2%w,. The observer parameters of the proposed observer
where ¢ = 300 and v = 0.8, whereas the parameters of the
FRF-PLL where A = 300 and v = 0.86. These values where
chosen to obtain the same dynamic response as shown in [19],
where + had to be modified to take into account the difference in
the grid voltage magnitude (100 V versus 311 V) and the Park
transform constant (2/3vs\/2/3).

Fig. 5 shows the simulated comparison results for an unbal-
anced grid voltage. Fig. 5(a) and (b) shows the « and 3 posi-
tive-sequence components tracking error of both estimators. As
these figures show, the magnitude variations at £ = 40 ms and
t = 80 ms are tracked by the FRF-PLL with a slightly under-
damped response. The same happens for the frequency transient
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Fig. 6. Performance comparison for unbalanced and Sth harmonic contami-
nated grid. (a) FRF-PLL and proposed observer positive-sequence & component
tracking error. (b) FRF-PLL and proposed observer positive-sequence ;3 com-
ponent tracking error. (¢) FRF-PLL and proposed observer negative-sequence
o component tracking error. (d) FRF-PLL and proposed observer negative-se-
quence / component tracking error. (e) Actual, FRF-PLL estimated and pro-
posed observer estimated frequencies.

produced at £ = 140 ms. Fig. 5(c) and (d) shows the « and /3
negative-sequence components tracking error of both estima-
tors. The transient response shown in these figures is very sim-
ilar that shown in the previous two. Finally, Fig. 5(e) shows the
grid frequency (dashed line) along with the FRF-PLL estimated
frequency (thick line) and the proposed observer estimated fre-
quency (thin line), all normalized with respect to the nominal
grid frequency w,. As can be seen, the FRF-PLL frequency es-
timator has a slightly underdamped response. As these figures
show, the dynamic responses of both estimators are similar.
Fig. 6 shows the same results as the previous figure, but in
this case the grid voltage is contaminated with a fifth harmonic.
As can be seen, the dynamic responses of both estimators
behave similarly to the previous case. However, the proposed
observer is unable to fully reject the harmonic contamination.
In this case, the total harmonic distortions (THDs) of the
FRF-PLL positive-sequence « and 3 components are 0.15%
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and 0.16%, respectively, whereas for the proposed observer,
these are 0.66% and 0.71%. For the negative-sequence com-
ponents, the FRF-PLL THDs are 0.44% and 0.48% for the
a and 3 components, whereas for the proposed observer,
these are 2.43% and 2.45%, respectively. The lower harmonic
rejection capability of the proposed observer is to be expected,
since one characteristic of the reduced-order observers is that
the measured signal is not estimated, and used straight out
to obtain the estimated outputs. However, in systems where
the distortion is small, such as high-voltage systems, where
the main component that arises during a fault scenario is the
negative-sequence fundamental component, the performance
of both estimators is similar.

Regarding the structure comparison, the proposed scheme re-
quires computing three differential equations and five algebraic
equations, whereas the implementation of the FRF-PLL requires
computing five differential equations and three algebraic equa-
tions. In both algorithms, a square root must be computed in
order to obtain the estimated angular frequency.

VII. CONCLUSIONS

This paper presents a nonlinear reduced-order observer that
allows to estimate the positive and negative sequences of an un-
balanced sinusoidal grid voltage. Furthermore, the proposed ob-
server is frequency adaptive, and its implementation allows ob-
taining a very low computational burden algorithm. Moreover,
the global convergence of the observer is proven and a linear ap-
proximation of the frequency estimator dynamics, which can be
used to tune its parameters, is given. A performance and struc-
ture comparison with the FRF-PLL is performed. For signals
with low harmonic distortion, the results obtained in this paper
show that the performance of both algorithms is similar. How-
ever, the proposed method does not offer very good response
when the input signal is contaminated with harmonics.

APPENDIX A

To find the adaptation law, Lyapunov stability theory will be
used. Defining the error signals es = zo — 22, €4 = 24 — 24,
their derivatives can be found by subtracting (23) from (16) and
(24) from (18), which result

(48)
(49)

€a = — eg21 — gea

€4 = — ega3 — gey

where eg = 6 — 6. Defining the positive definite candidate Lya-
punov function

1
V= 5(eg +e2+~71ed) (50)
its derivative results
V = €26 + €464 + ’y—legég (51)

where v € R, v > 0 is a design constant. Replacing (48) and
(49) in this equation and operating, we obtain

V= —g(e3 +e2) — eg(zrea + 2304 — v 1ép). (52)
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Forcing the second term of this last equation equal to zero and
noting that since 8 is constant, § = 0 so ¢g = —9, we have

() zZ169 + zZ3€4 + ¥ 19

b= —ylo1(z — 22) + 23(20 — 2)] (53)

which is the adaptation law AL defined in (26). Consequently,
the error dynamics is described by

€y = —egz) — geo (54)
4 = —eg23 — geyq (55)
ég =7 (z10 + 23€4) . (56)

The system (54)—(56) can be written in the following form:

=AZ+ T (2 ep,t)eq (57)
= AL(&, e9, 1) P& (58)
where
F=les es] sz2=epl=[-2z —23];
A:[_()g _Og};/\sz:[(l) ﬂ

For this system, the origin (€, e¢) = 0 is a globally uniformly
asymptotically stable equilibrium point according to the the-
orem given in [21], [p - 361] since A is Hurwitz; T'(€, ¢g, t)
is a matrix of smooth functions uniformly bounded for every
(€, ep) bounded; P is the symmetric positive definite solution
of the Lyapunov equation ATP + PA = —Q, with Q any
symmetric positive definite matrix; A is a positive definite ma-
trix; 0" /0t is uniformly bounded for every (&, ey) bounded,
since 27 and z3 are sums of sinusoidal signals; and the func-
tion o« = pej with p < min(z} + 23) is a class K function
satisfying e (0, eq, )17 (0, e9, t)ep > a.

APPENDIX B

In order to find the linearized model, we will split the pro-
posed observer into two fictitious observers: one for the pos-
itive sequence and one for the negative sequence of the input
signal. These observers estimate phasors, hence, they can be
transformed, using a proper Park transform, to a rotating frame
in which their variables become constants in steady state. Under
these assumptions, we can apply Taylor linearization around the
steady-state point to obtain a linear model of the observer.

Defining

=Vr+v, (59)
@z—d@—%d (60)
23 =V§+Vy, 61)
2 =w(VI -V)) (62)

and then, replacing these equations and (7)—(10) in (23) and
(24), the resulting equations can be separated into two ob-
servers, one for the positive and one for the negative sequences

2+ é N J o~
o= — VgV —VH -2V (63)
[#9) w

i . U o~
Vi = VgV - V) - Z;—JVJ (64)
- 6 . Do
w . w
~ _ _ A W A _
Ve =— Vo +9(Vy V) -~V (66)

which represent the positive- and a negative-sequence estimates
of the input signal. These equations can be written in a compact
form using complex notation as

s+

g . D
Va';’i :]_‘/(:T} + g(vtjb - V(jré) - gVaJ% (67)
' %) A’ ! w
P h_ -~ n W o~
VOAQ = - ];Vu,ﬁ + g(vuzﬁ - ‘/aﬂ) ;V (68)

where V5, = Vi + iV and V,; = V" + jVj . Using these
definitions and the fact that 9 = 200, (53) can be rewritten as
W, -
R (Vhevh+Vv,,
F2V oV + VLoV +VEeV, ) (69)

® V.,

=

where ® stands for cross product. Note that the last three terms
in this equation represent the cross product of signals of dif-
ferent sequence, hence, they do not change the mean value of
w and, therefore, will be neglected. To find a linearization of
(67)~(69) we will transform them to a rotating frame in which
their variables become constants in steady state. For the posi-
tive-sequence estimate, that means applying a Park transforma-
tion rotating with frequency w, and for the negative sequence
one rotating with frequency —w. These transforms are

Pt = iwttdT (70)

(71

— pdwtteT

p-

Transforming (67) using PT, (68) using P~
both, we obtain

and (69) using

‘7; =g+ j%Q)VJQ -9+ g + jw)Vih (72)
Vi=lo=ioWe =+ =gV, )

b= L@V + Y, © V) (74)

where VJ(; P+V V7 = P7V_j,, and the last three terms

of (69) have been neglected Lets now assume that steady state
has been reached, and that at time ¢ = %, the input voltage has
a frequency step Aw. Then, using Taylor’s approximation, (74)
linearization is given by

. dw - dw -
AL:J = AV; + ~ AV;"
dv; dvyt
t, to
di . -
+ —| AV, - AV, (75)
avy ' g |,
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where rl(f}/df/j = /2V} e (lé;/df/*‘ = _'y/QVng’
to
d(:)/df/d7’ = 7’\//2 qo> dLU/dV - ’}//ZVd;, with
to
quo =V +jVhandV,, =V, + ]VZIO, which are the pos-

itive- and negative-sequence input steady-state value. From the
definitions given in (3)— (6) and the Park transforms (70)—(71),

the initial conditions are quo = jAT and qun = A~ . Then
N Y ~ A
Aw = §(A+AVd+ + ATAV,). (76)

We will now linearize (72) and (73). Since the input fre-
quency is forced a step variation, then w = Awé(t —t,), where
8(t) is the Dirac delta. To avoid differentiating this when per-
formmg the linearization, define the followmg auxiliary signals

= Vd + w/wV and &~ = qu + w/deq. Then, it is
easy to see that

> Vd+o

= Vd‘g + L Aw (77)
w,
~ Vi

v =V, + Aw (78)

W

where w,, is the input frequency value at time ¢ = #,,. Equation
(72)—(73) can be rewritten in terms of (77) and (78) as

= (oI~ o+ gl (79)
~ R
= (0= JWay — (9= )V, (80)

Their small-signal variations can be found, using Taylor’s ap-
proximation, as

dit| o, dit di
pit = EL A B B
dy ; d dw |, dw
dq |, o to
(81)
di~ o di di
PR N R s [N . LV
av,, . dw |, dw |,

(82)
where dit /dv,,; = —g — jw,, diT/dw|, = —j2V}
dit/dol, = quo, di~[dV, | = —g + jw.,
di~ fdwl, = j2Vy,,, i~ o], = —j2V,,,. Replacing (77)

in (81) and (78) in (82), and then applying the Laplace operator
s, we can obtain the d component of the linearized variation
of the positive-sequence signal and the ¢ component of the
negative-sequence one

AT[(s +29)Aw — 2(s + 9) A

AV = A e 83
d $2 4298+ g2 + w2 (83)
. AT[(s+29) 0w — 2(s + g) A

A - = Al +29) 8w = 2(s + 9) AG] (84)
! 57 +2gs + g% + w]

Finally, replacing these equations in (76) and operating, we
obtain the linearized model of the closed-loop frequency esti-
mator as a function of the input signal frequency variation

~K (s + 2¢)Aw

Aw = —
v 2 342952+ (g2 + w2 +~vK)s +ygK

(85)
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where K = (AT)%2+(A)2. As can be seen, this equation has a
dc gain of 1, and models the dynamic response of the frequency
estimator as the dynamic of a third-order linear system.
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