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Construcciones de puntos de Heegner

Dada una curva eliptica racional £ y un cuerpo cuadratico imaginario K que sa-
tisface la llamada hipdtesis de Heegner, podemos construir puntos definidos sobre
extensiones abelianas de K conocidos como puntos de Heegner. Estos puntos, que se
pueden calcular explicitamente, son cruciales para entender la aritmética de la curva
eliptica.

Cuando el signo de la ecuacién funcional de F/K es —1 se espera poder cons-
truir puntos, atin cuando la hipétesis de Heegner no se satisfaga, de acuerdo a una
conjetura propuesta por Darmon. El objetivo principal de la tesis es mostrar cémo
obtener estos puntos de forma tanto tedrica como computacional en todos los casos
en donde uno espera que exista una construccién en un algebra de cuaterniones no
ramificada.

Los casos estudiados en esta tesis, que yacen fuera de la teoria clasica, son cuando
la curva tiene primos no estables que son o bien inertes o ramificados en el cuerpo
K. En el primer caso, la clave consiste en reemplazar a las curvas modulares clasicas
por las llamadas Curvas de Cartan non-split. En el segundo caso, la técnica utilizada
consiste en asociar a la curva eliptica un objeto geométrico més complicado pero en
el cual la existencia de puntos de Heegner estda garantizada y luego recuperar los
puntos en la curva original.

Palabras claves: Teoria de niimeros, Curvas elipticas, puntos de Heegner, Con-
jetura BSD, Curvas de Cartan, Sistemas de Heegner, Variedades abelianas de tipo
GLs.






Heegner point constructions

Given a rational elliptic curve E and an imaginary quadratic field K that satisfies
the so called Heegner hypothesis, we can construct points on F defined over abelian
extensions of K called Heegner points. These points, that can be explicitly computed,
are crucial in order to understand the arithmetic of the elliptic curve.

Whenever the sign of the functional equation of E/K is —1 we expect to find
analogues of Heegner points, even if the Heegner hypothesis is not satisfied, according
to a conjecture of Darmon. The main goal of this thesis is to show how to obtain
these points in both a computational and theoretical way in all cases where we expect
a construction to take place in an unramified quaternion algebra.

The cases studied in this thesis, which are beyond the scope of the classical theory,
are when the curve has unstable primes that are either inert or ramified in the field
K. In the first case, the key consists in replacing the classical modular curve with the
so called Cartan non-split curves. In the second case, the main technique consists in
associating a more complicated geometric object to the elliptic curve, in which the
existence of Heegner points is guaranteed, and then recover the points in the original
curve.

Keywords: Number theory , Elliptic curves, Heegner points, BSD conjecture,
Cartan curves, Heegner systems, Abelian varieties of GLy-type.
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Introduccion

Uno de los problemas centrales de la teoria de niimeros consiste en entender el grupo
de puntos racionales de una curva eliptica £/Q. Este es un grupo abeliano finita-
mente generado, y por lo tanto tiene una parte de torsiéon y una parte libre. La
torsién es muy sencilla de calcular mientras que el rango de la parte libre es mucho
mas misterioso.

Podemos construir un objeto analitico -la funciéon L de E- que se obtiene de contar
la cantidad de puntos de la curva eliptica modulo p para cada primo y pegar esta
informacion en una suerte de funcién generatriz. Esta funcién analitica admite una
extensién a todo el plano complejo por el famoso teorema de Wiles | | v las ge-
neralizaciones de Wiles-Taylor | | v Breuil-Conrad-Diamond-Taylor | ],
que afirman que toda curva eliptica racional es modular, es decir, existe una forma
modular cuya funciéon L coincide con la de E.

La conjetura de Birch and Swinnerton-Dyer (BSD) dice que el orden de anulacién
de la L serie de F en s = 1 -el rango analitico- coincide con el rango de la curva
eliptica E. Ademas, da una receta precisa que relaciona el primer coeficiente no nulo
de la expansion de Taylor en s = 1 con ciertos objetos aritméticos relacionados a la
curva FE. La conjetura estd lejos de ser probada y una de las pocas instancias en
donde se sabe que vale es cuando el rango analitico de E' es menor o igual a 1. En
este caso, el concepto de los puntos de Heegner juega un rol fundamental.

Sea N el conductor de F, un ntimero que mide los lugares en donde la curva
tiene mala reduccion. Por el teorema de Wiles existe una funcion racional, llamada
la parametrizacion modular,

Dy X()(N> — F,

donde Xy(N) es el cociente del semiplano complejo superior por las unidades de un
orden de Eichler de nivel N. La curva modular Xy(/N) tiene una intepretaciéon de
moduli; sus puntos sobre un cuerpo F' estan parametrizados por pares que consisten
de una curva eliptica junto con un subgrupo ciclico de orden N, ambos definidos
sobre F'.
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Dado un cuerpo cuadratico imaginario K, decimos que (F, K) satisface la hipdte-
sis de Heegner si todo primo que divide a N se parte en K. Bajo tal hipotesis, la
curva Xo(N) tiene muchos puntos algebraicos que corresponden a curvas elipticas
con multiplicacién compleja por érdenes en K. Sus imédgenes bajo ®y son llamadas

puntos de Heegner | |, que son puntos en E definidos sobre extensiones abelianas
de K. Gross y Zagier | | probaron que la traza de estos puntos a K no son de
torsién precisamente cuando L'(E/K,1) # 0. Luego, Kolyvagin [ | prob6 que

cuando los puntos de Heegner no son de torsién entonces el rango de £/ K es precisa-
mente 1. Un aspecto clave en sus resultados es considerar puntos de Heegner para
diferentes 6rdenes (pero para el mismo cuerpo K) y probar que estos puntos satis-
facen ciertas compatibilidades con la norma. Esta coleccién de puntos de Heegner
en la curva eliptica F es lo que se conoce como un sistema de Heegner.

Combinando los resultados de Gross-Zagier y Kolyvagin (eligiendo un cuerpo K
adecuado) uno puede probar que el rango analitico de F/Q coincide con el rango de
E siempre que el rango analitico de E sea menor o igual a 1.

Un problema interesante, dada una curva eliptica £/Q y un cuerpo cuadratico
imaginario K, es entender los puntos de E definidos sobre K y también sobre sus
extensiones abelianas. En | | se prueba que se puede relajar la hipétesis de
Heegner y considerar puntos de Heegner cuando N es libre de cuadrados, todos los
primos que dividen a N son no ramificados en K, y el signo de la ecuacién funcional
de E/K es —1 (este signo es 1 si el orden de anulacién de L(E/K) en s = 1 es par y
—1 si es impar). Podemos factorizar N = NTN~ donde N7 es divisible precisamente
por los primos que se parten en K y N~ es divisible por los primos inertes. El hecho
de que sign(F, K) = —1 implica que la cantidad de primos que dividen a N~ es
par. En esta situacion podemos reemplazar a la curva modular clasica por una curva
de Shimura X(N*, N7), que es el cociente del semiplano superior complejo por las
unidades de un orden de Eichler de nivel N* en el dlgebra de cuaterniones sobre
Q de discriminante N~. Asi como X,(N), la curva de Shimura X (N, N7) tiene
una interpretacién de moduli y contiene muchos puntos especiales que corresponden
a variedades abelianas con multiplicacién compleja. El teorema de modularidad de
Wiles, combinado con resultados de Jacquet-Langlands | | nos proveen de una
parametrizacion modular racional

CI)N+’N— : X(N+,N_) — F.

Las imdgenes de los puntos especiales bajo ®y+ y- se denominan puntos de Heeg-
ner en F. La férmula de Gross-Zagier fue generalizada a este contexto por Zhang
[ ] v la teorfa de Kolyvagin funciona de manera completamente andloga. Una
observacion crucial es que a pesar de que podemos calcular explicitamente puntos
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de Heegner que provienen de Xy(V), esto se vuelve mas complicado para estas cur-
vas de Shimura. El mayor obstaculo es que la parametrizacién modular es dificil de
calcular debido a la ausencia de cispides (y por lo tanto la ausencia de expansiones
de Fourier). Cabe destacar que sin mucha dificultad se pueden considerar los casos
donde N es libre de cuadrados y no necesariamente coprimo con el discriminante de
K.

La siguiente conjetura, propuesta por Darmon, es la principal motivacién de esta
tesis.
[ , Conjetura 3.16]: Si sign(F,K) = —1, entonces existe un sistema de
Heegner no trivial asociado a (E, K).

Ya explicamos como hacer esto para el caso en que N es libre de cuadrados.
Cuando esto no sucede, la situaciéon es mas delicada y fue estudiada en toda ge-
neralidad por Yuan-Zhang-Zhang | |, donde en vez de trabajar con érdenes de
Eichler clasicos, trabajan con grupos aritméticos mas generales. El propdsito de esta
tesis es dar construcciones explicitas de puntos de Heegner para estos casos. Por
explicito nos referimos a que podamos calcular numéricamente los puntos teéricos en
las distintas extensiones abelianas de K; esto nos restringe a trabajar con algebras
de cuaterniones no ramificadas (ya que en los otros casos la parametrizacién modular
es dificil de calcular).

Sea x : K*\K; — C* un caracter de Hecke anticiclotémico de orden finito, y sea
n el cardcter que corresponde a la extensién cuadratica K/Q. Para poder construir
un punto de Heegner asociado a x en un &algebra de matrices, para cada nimero
primo p se debe satisfacer la siguiente condicion:

€(Tp, Xp) = Xp(—1)p(—1),
donde 7 es la representacion automorfa asociada a E, y €(m,, x,) es el root num-
ber local de L(s,m,x) (ver | , Section 1.3.2]). Si imponemos la condicién
mcd(cond(x), N cond(n)) = 1, en los primos que dividen al conductor de E/Q la
ecuacién queda

ep(E/K) = mp(=1),
donde ¢,(E/K) es el root number local en p del cambio de base de E a K (es igual

a £p(E)ep(E ®n)). Este root number se calcula en términos de la informacién local
de la curva eliptica E de la siguiente manera (] D).

e Si p es no ramificado en K, entonces 7,(—1) =1y

disc(K) ) op(N)
p Y

/1) = (
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donde v,(N) denota la valuacién de N en py < ) denota al simbolo de Legen-

p
dre.

e Sip > 3 es ramificado en K entonces 7,(—1) = <’71> y

ep(E)  sivy(N) =1,

B <—_1) eB) sinNg) =1,
1 si Fes S.P.,

(-1 si Ees S.C.,

donde E, denota al twist cuadratico de E por el caracter médulo p s,; E es
S.P. si la representacién automorfa de E en p es una serie principal y E es S.C.
si la la representacion automorfa es supercuspidal.

Esto se puede entender de manera mucho méas simple mediante el tipo de re-
duccion de la curva E/Q,. Cuando v,(NN) =1 el tipo de reduccién es multiplicativa
(i.e. la curva reducida tiene un nodo) mientras que en el resto de los casos la re-
duccién es aditiva (i.e. la curva reducida tiene una cispide). Si v,(Ng,) = 1 la curva
tiene reduccién potencialmente multiplicativa, mientras que los casos restantes tienen
reducciéon potencialmente buena. La diferencia entre la serie principal y el caso su-
percuspidal es que en el primer caso la curva adquiere reduccién buena sobre una
extension abeliana de Q,.

En la tabla Tabla 1 resumimos las ecuaciones de arriba para p > 3, donde el signo
corresponde al producto e,(E/K)n,(—1).

p es inerte | p se parte | p ramifica
Reduccion multiplicativa -1 1 ep(E)
Reduccién multiplicativa ®z, 1 1 ep(Ep)
Serie principal 1 1 1
Supercuspidal 1 1 -

Table 1: Signos

Nuestro objetivo es dar una construcciéon explicita en todos los casos en donde
los signos de la Tabla 1 son iguales a 1.

La principal contribucion de esta tesis son los casos en gris claro y gris oscuro.
Las celdas blancas corresponden a la construccién clasica de puntos de Heegner
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explicada previamente. El caso de la celda negra esta fuera del alcance de las técnicas
desarrolladas en este trabajo.

El primer capitulo de esta tesis trata sobre las celdas en gris claro y esta basado
en los resultados publicados en | |, de manera conjunta con mi director. La idea
principal es reemplazar las curvas modulares clasicas X(V) con las llamadas curvas
de Cartan non-split. Esto tiene dos ventajas: la primera es que podemos definir el
analogo de puntos de Heegner y la segunda es que los sistemas de autovalores de las
formas nuevas clasicas aparecen en la cohomologia de las curvas de Cartan non-split.

En las Secciones 1.1 y 1.2 definimos los subgrupos de Cartan non-split y las
curvas modulares subyacentes y estudiamos sus propiedades basicas. En la Seccion
1.3 damos una interpretacion de moduli para tales curvas, lo que nos permite entender
tanto los operadores de Hecke como los puntos de Heegner. También, estudiamos a
los operadores de Hecke como operadores de doble coclase en la Seccion 1.4.

El siguiente paso es probar que los sistemas de autovalores de curvas elipticas
aparecen como sistemas de autovalores para los grupos de Cartan non-split. Esto
serd explicado en la Seccion 1.5, mas precisamente en el Teorema 1.5.1. En esta
Seccién probamos el Teorema 1.5.3 que es uno de los teoremas cruciales del capitulo.
Este teorema nos permite escribir a la g-expansion de una autofuncién del grupo de
Cartan como una combinacion lineal de twists de formas nuevas clasicas, que pueden
ser explicitamente determinadas. La determinacién de las mismas estd hecha en la
Subseccion 1.6.1, donde ademas estudiamos las representaciones locales asociadas a
la curva E. En la Seccion 1.6 explicamos como calcular efectivamente la g-expansion
de las autofunciones para los grupos de Cartan. Luego, estudiamos las propiedades
tedricas que satisfacen estas g-expansiones en las Secciones 1.7 y 1.8. Més concre-
tamente, damos la definicién correcta de forma modular racional (Definicién 1.7.3).
Esta definicién requiere una normalizacién (distinta de la clasica “a; = 17) que se
obtiene usando el Teorema 90 de Hilbert (Teorema 1.8.7). Las formas racionales
tienen su g-expansion con coeficientes en una extensién ciclétomica, de acuerdo al
Teorema 1.8.6.

El siguiente paso, realizado en la Secciéon 1.9, es estudiar la parametrizacion
modular de la curva de Cartan non-split a la curva eliptica E usando la construccién
de Eichler-Shimura. La principal dificultad que encontramos es que las cuspides de la
curva estan definidas sobre una extensiéon ciclotémica y por ende la parametrizacion
modular que uno definiria naturalmente no esta definida sobre Q. Para solucionar
este problema hay que tomar un promedio sobre las distintas ctispides conjugadas.

En la Seccién 1.10 estudiamos los puntos de Heegner en las curvas de Cartan
non-split. Primero definimos la hipétesis de Cartan-Heegner que nos permite tratar
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con las celdas en gris claro de la Tabla 1. Definimos a los puntos de Heegner me-
diante la intepretacion de moduli y mostramos como obtenerlos de forma computa-
cional. Finalmente, estudiando la accién de los operadores de Hecke y Atkin-Lehner,
obtenemos la nocién de sistemas de Heegner, que son una familia de puntos en la
curva eliptica que satisfacen ciertas “compatibilidades de norma”. Usando la inter-
pretacion de moduli vemos que la situacion es muy similar al caso clasico, dando
lugar al andlogo obvio del teorema de Kolyvagin (Teorema 1.11.4). Por tltimo, invo-
camos a la generalizacién de la férmula de Gross-Zagier hecha por Zhang (Teorema
1.11.5) que prueba que la traza a K de los puntos de Heegner construidos no es de
torsion precisamente cuando L'(E/K, 1) # 0.

Concluimos el capitulo dando un ejemplo concreto de los puntos de Heegner
construidos utilizando estas ideas.

El segundo capitulo de la tesis se concentra en las celdas pintadas de gris oscuro
en la Tabla 1 (mds precisamente en el caso que estas celdas tienen signo igual a 1)
y estd basado en el articulo [[XP], que también es un trabajo en conjunto con mi
director.

Por razones técnicas asumamos en este caso que si 2 ramifica entonces a lo sumo
2! divide a N y si 3 ramifica en K entonces a lo sumo 3? divide a N. Ademaés,
necesitamos que E no posea multiplicacién compleja.

La idea principal de este capitulo es que en este contexto podemos encontrar un
tuist adecuado de la forma modular fgp asociada a E tal que el nivel de la forma
nueva correspondiente en los primos inestables de E' que ramifican en K sea a lo sumo
uno, situdndonos en un escenario donde podemos hacer una construccion de Heegner
clasica. El principal obstdculo en este plan es que al “twistear” por este caracter
cambia el objeto geométrico que estamos considerando y necesitamos trabajar con
una variedad abeliana A/Q del tipo GLy que tiene dimension d = 1,2 o 4 sobre Q.
Esta variedad abeliana resulta iségena a E? sobre una extensién abeliana controlada
M/Q. Luego, tenemos que entender cémo pasar de puntos en A a puntos en E que
satisfagan propiedades andlogas a las estudiadas anteriormente y mostrar que los
podemos calcular de manera concreta.

En la Seccién 2.1 analizamos la existencia de estos twists distinguidos en términos
del tipo local de la representacién automorfa asociada a E, como explicamos en la
Subseccion 1.6.1. “Twistear” por estos caracteres nos provee de una forma nueva g
(posiblemente con Nebentypus) de un nivel mas chico que tiene asociada una variedad
abeliana A,. En la Proposicién 2.1.1 probamos que existe una isogenia entre A, y
E? definida sobre M, y explicamos el comportamiento de una tal isogenia bajo la

accién del grupo de Galois Gal(M/Q).
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En la Seccion 2.2 estudiamos los puntos de Heegner que viven en curvas que
estan “entre” Xo(N) y X;(N) que parametrizan a la variedad abeliana A,. Los
puntos de Heegner son precisamente las preimédgenes de puntos de Heegner clasicos en
Xo(N). Luego, damos una interpretacién de moduli para estos puntos y estudiamos
su cuerpo de definicién en la Proposicion 2.2.1. Este cuerpo es la composicion del
correspondiente cuerpo de clases con la extension abeliana M/Q.

El siguiente ingrediente fundamental es la forma més general de la formula de
Zhang dada en la Seccién 2.3. Estudiando la relacién entre los puntos de Heegner
y la isogenfa entre A, y E? terminamos probando el Teorema 2.3.2, que nos dice
que la traza hasta K de los puntos de Heegner no es de torsion justamente cuando
la derivada de la L-serie no se anula en su centro de simetria, en perfecta armonia
con tanto el caso clasico de puntos de Heegner como con la situacion estudiada en el
Capitulo 1.

Para poder probar el analogo al teorema de Kolyvagin necesitamos ser un poco
mas cuidadosos; esto estd realizado en la Seccién 2.4. Las relaciones de compatibili-
dad se traducen textualmente a la variedad abeliana A, pero tenemos que tener en
cuenta que a pesar de que tenemos a un cuerpo de nimeros K, actuando en A, esto
no da una accion natural en £?. La solucién es restringir las compatibilidades a un
conjunto de primos como en la Proposicién 2.4.2, y con esta elecciéon chequear que
el teorema de Kolyvagin sigue valiendo (Teorema 2.4.3).

Mas adelante, en la Seccién 2.5 estudiamos el problema de calcular explicitamente
un factor 1-dimensional de A, que sea iségeno a E. Primero, estudiamos la teoria
de los “building blocks” de Ribet | | v las cuentas explicitas de Gonzalez-Lario
[ |. Luego realizamos la determinacién explicita de cierto splitting map que
trivializa un 2-cociclo dado por unas sumas de Jacobi. Este splitting map nos permite
obtener un factor 1-dimensional de A, y luego poder calcular un ismorfismo con £
definido sobre M. Terminamos el capitulo con una seccién de ejemplos, mostrando
los puntos de Heegner construidos con esta técnica.

La construccion de este capitulo es interesante por si misma, y puede ser usada
para moverse de una situacién delicada a una no tan mala (reduciendo el conductor
de la curva pero pagando el costo de introducir un cardcter en algunos casos). A
pesar de que nos concentramos en algebras de matrices, los métodos de este capitulo
pueden ser usados en una amplia variedad de contextos, por ejemplo en curvas de
Shimura més generales. En particular esta construccion también funciona cuando £,
tiene reduccién multiplicativa en el primo p y €,(E,) = —1. Ademads, cabe destacar
que esta construccién es fundamentalmente distinta al método estudiado en | -

En los articulos [ | v [[XP] primero estudiamos el problema un primo a la vez,
y después vimos como obtener el caso general a partir de eso. Sin embargo, en esta
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tesis los resultados estan enunciados y probados en su total generalidad, mejorando
considerablemente la exposicién, notaciéon y organizacién interna. A pesar de que
esto requiere una capa extra de abstraccion creemos que esta manera de presentar los
resultados es mas clara y conceptual y va a resultar mas fructifera para la referencia
en futuras aplicaciones.



Introduction

One of the main problems in number theory consists in understanding the group
of rational points of an elliptic curve F/Q. This is a finitely generated abelian
group, and therefore it has a torsion part and a free part. The torsion part is fully
understood and easy to compute, while the rank of the free part is very mysterious.

From the elliptic curve E one can construct an analytic object -the L-function
of E- obtained by counting the points of the elliptic curves modulo every prime and
gluing this information together into a generating function. Such analytic function
admits an analytic continuation to the whole complex plane due to the famous the-
orem of Wiles | ] and its subsequent generalizations by Wiles-Taylor | ]
and Breuil-Conrad-Diamond-Taylor | ], that assert that every rational ellip-
tic curve is modular, that is, there exists a modular form whose associated L-function
coincides with the L-function of E.

The conjecture of Birch and Swinnerton-Dyer (BSD) states that the order of
vanishing of the L-function at s = 1 -the analytic rank- coincides with the rank of
the elliptic curve E. Moreover, there is a precise recipe that relates the first non-zero
term of the Taylor expansion at s = 1 with certain arithmetic objects associated to
E. This conjecture is far from being proved, and one of the only instances where it
is known to hold is when the analytic rank of E is less or equal than one. In that
case, the concept of Heegner points plays a key role.

Let N be the conductor of E, a number that measures the places of bad reduction
of the elliptic curve. By Wiles’ theorem there is a rational map, called the modular
parametrization,

Oy Xo(N) = E,
where Xo(N) is a quotient of the upper-half plane by the units in an Eichler order of
level N. The modular curve Xy(/V) has a nice moduli interpretation, parametrizing
pairs consisting of an elliptic curve and a cyclic subgroup of order N.

Given an imaginary quadratic field K we say that (F, K) satisfies the Heegner
hypothesis it every prime dividing N splits in K. Under such hypothesis, the curve
Xo(N) contains many algebraic points corresponding to elliptic curves with complex

17
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multiplication by orders in K. Their images under ®5 are called Heegner points
[ |, which are points on E defined over abelian extensions of K. Gross and
Zagier | | proved that the traces to K of Heegner points are non-torsion precisely
when L'(E/K,1) # 0. Soon after, Kolyvagin | | proved that when the Heegner
points are non-torsion the rank of E/K is exactly 1. A key aspect of his results is
to consider different Heegner points for varying orders (but for a fixed field K) and
show that these points satisfy certain norm compatibility properties. This collection
of Heegner points on the elliptic curve E is known as a Heegner system.

Combining the results from Gross-Zagier and Kolyvagin (choosing an appropriate
field K) one proves that the analytic rank of E/Q is the same as the rank provided
that the analytic rank is less or equal than 1.

It is still an interesting problem, given F/Q an elliptic curve and K an imagi-
nary quadratic field, to understand the points of E defined over K and its abelian
extensions. In | ] it is shown that one can relax the Heegner hypothesis and still
construct Heegner points if N is squarefree, all primes dividing N are unramified in
K, and the sign of the functional equation of E/K is —1 (such sign is equal to 1 if
the the order of vanishing of L(E/K) at s = 1 is even and —1 if it is odd). We can
factorize N = NtN~ where N* is divisible precisely by the primes that are split
in K and N~ is divisible by the inert ones. The fact that sign(£, K) = —1 implies
that the number of primes dividing N~ is even. In this situation one can replace the
classical modular curve with a Shimura curve X (N*, N7), that is the quotient of the
upper half plane by the units of an Eichler order of level N in the quaternion algebra
over Q of discriminant N~. As X(NV), the Shimura curve X (N, N7) has a moduli
interpretation and contains many special algebraic points corresponding to abelian
varieties with complex multiplication. Wiles’ modularity theorem combined with
results from Jacquet-Langlands [ | provide a rational modular parametrization

Open-: X(NT N7) = E.

The image of the special points under ®y+ y- are called Heegner points on . The
Gross-Zagier theorem was generalized to this setting by Zhang | | and Koly-
vagin’s theory works in an analogous way. An important remark is that although
we can compute explicitly Heegner points coming from Xy(/N), many difficulties
arise while working with Shimura curves, the main obstacle being that the modular
parametrization is hard to compute because of the absence of cusps (and thus the
absence of Fourier expansions of modular forms). It is worth noting that we can
easily consider the cases where N is squarefree but /N is not necessarily relatively
prime to the discriminant of K.

The following conjecture, proposed by Darmon, is the main motivation for this
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thesis.
[ , Conjecture 3.16]: If sign(F, K) = —1, then there is a non-trivial Heegner
system attached to (E, K).

We have explained how to find a Heegner system when N is squarefree. If the
conductor is not squarefree, the situation is quite more delicate and it has been
studied in full generality by Yuan-Zhang-Zhang | |, where instead of working
with classical Eichler orders, they deal with more general arithmetic groups. The
purpose of this thesis is to give explicit constructions of Heegner points for pairs
(E, K) as above. By explicit we mean that we can compute numerically the theoret-
ical points in the corresponding abelian extension of K, which restricts us to working
only with unramified quaternion algebras (since the modular parametrization is hard
to compute for Shimura curves).

Let x : KX\K; — C* be a finite order anticyclotomic Hecke character, and
let  be the character corresponding to the quadratic extension K/Q. In order to
construct a Heegner point attached to x in a matrix algebra, for each prime number
p the following condition must hold:

€(7p, Xp) = Xp(—1)1p(—1),

where 7 is the automorphic representation attached to E, and e(m,, x,) is the local
root number of L(s, 7, x) (see [ , Section 1.3.2]). If we impose the extra condi-
tion ged(cond(x), N cond(n)) = 1, then at the primes dividing the conductor of £/Q
the equation becomes

ep(E/K) = ny(—1),

where €,(E/K) is the local root number at p of the base change of E to K (it is
equal to €,(E)e,(E ®n)). This root number is computed using the local information
of the elliptic curve E in the following way (| D).

e If p is unramified in K, then 7,(—1) = 1 and

disc(K) ) op(N)

2 (/1) = (2

where v,(N) denotes the valuation of N at p and <5> denotes the Legendre
symbol.



20 CONTENTS
o If p > 3 is ramified in K then n,(—1) = (%) and

e)(E)  if u,(N) =1,

%@WK*:<:S'<%@® if v(Ng,) = 1,
1 if Eis P.S.,

b
-1 if £ is S.C.,

where E, denotes the quadratic twist of £ by the character modulo p s; E is
P.S. if the attached automorphic representation is a ramified principal series
and F is S.C. if the attached automorphic representation is supercuspidal at p.

This can be better understood using the type of reduction of the elliptic curve
E/Q,. When v,(N) = 1 the reduction is multiplicative (i.e. the reduced curve has
a node) while in the rest of the cases the reduction is additive (i.e. the reduced
curve has a node). If v,(Ng,) = 1 the curve has potentially multiplicative reduction
while the remaining cases have potentially good reduction. The difference between
the principal series and the supercuspidal case is that in the first case the curve has
potentially good reduction over an abelian extension of Q,.

In Table 2 we summarize the above equations for p > 3, where the sign corre-
sponds to the product e,(E/K)n,(—1).

p is inert | p splits | p ramifies
Multiplicative reduction -1 1 ep(E)
Multiplicative reduction ®se, 1 1 ep(Ep)
Principal series 1 1 1
Supercuspidal 1 1 -

Table 2: Signs

Our goal is to give an explicit construction in all cases where the local sign of
Table 2 is equal to 1.

The main contribution of this thesis is to deal with the cases in light and dark grey.
The cells colored in white correspond to the classical Heegner point construction. We
do not say anything about the black cell; this lies outside the scope of the techniques
developed in this work.

The first chapter of this thesis deals with the light grey cells and is based on the
results published in | ], jointly with my advisor. The main idea is to replace the
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classical modular curves Xo(N) with the so-called Cartan non-split curves. This has
two main advantages: the first one is that we can find a right analogue of Heegner
points and the second one is that the systems of eigenvalues of classical newforms
appear in the cohomology of Cartan non-split curves.

In Sections 1.1 and 1.2 we define the Cartan non-split congruence subgroups and
the underlying modular curves and we study their basic properties. In Section 1.3 we
give a moduli interpretation for such curves, allowing us to give a clean understanding
of Hecke operators and Heegner points. We also study Hecke operators as double
coset operators in Section 1.4.

The next step is to show that the systems of eigenvalues of rational elliptic curves
appear as systems of eigenvalues for modular forms for Cartan non-split groups.
This is stated in Section 1.5, more precisely Theorem 1.5.1. In this section we prove
Theorem 1.5.3 which is one of the most crucial theorems in this chapter. This theorem
allows us to write the g-expansion of an eigenform for the Cartan non-split group as a
linear combination of twists of classical newforms that can be explicitly determined.
The determination of these forms is done in Subsection 1.6.1, where we also study
the local representations attached to the elliptic curve E. In Section 1.6 we explain
how to effectively compute the g-expansions of eigenforms for the Cartan non-split
group. We then proceed to study some theoretical properties of these g-expansions
in Sections 1.7 and 1.8. More precisely, we give the right definition of rational
modular form (Definition 1.7.3). This definition requires a choice of normalization
(different from the classic “a; = 1”) obtained using Hilbert 90 Theorem (Theorem
1.8.7). These rational modular forms have g-expansions belonging to a cyclotomic
field according to Theorem 1.8.6.

The next step, done in Section 1.9, is to study the modular parametrization
from the Cartan non-split curve to the elliptic curve F using the Eichler-Shimura
construction. The main issue we encounter is that the cusps of these curves are
defined over a cyclotomic extension, and thus the naive modular parametrization is
not defined over Q. In order to solve this issue we just need to take an average over
all conjugate cusps.

In Section 1.10 we study Heegner points on Cartan non-split curves. First we
define the Cartan-Heegner hypotheses that allows us to deal with the light grey cells
in Table 2. We define Heegner points by means of the moduli interpretation and
we show how to obtain them computationally. Finally, by studying the Hecke and
Atkin-Lehner actions on Heegner points we end up with the concept of Heegner
system, which is a family of points on the elliptic curve subject to certain “norm
compatibilities”. Using the moduli interpretation we realize that the situation is
very similar to the classical case, giving rise to the obvious analogue of Kolyvagin’s
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theorem (Theorem 1.11.4). Lastly, we invoke Zhang’s generalization of Gross-Zagier
formula (Theorem 1.11.5) which shows that the trace to K of the Heegner points
constructed is non torsion precisely when L'(E/K, 1) # 0.

We conclude this chapter by giving a concrete example of the Heegner points
obtained using these ideas.

The second chapter of this thesis focus on the dark gray cells of Table 2 (more
precisely, the scenario when these cells are equal to 1) and is based on the article
[IXP], which is also a joint work with my advisor.

For technical reasons we require in this case that if 2 ramifies then at most 2!
divides N, if 3 ramifies at most 32 divides N. Besides, we need that the elliptic curve
E does not have complex multiplication.

The main idea of this chapter is that in this setting we can find a suitable twist
of the modular form fg associated to F such that the level of the corresponding
newform at the unstable primes of £ ramifying in K is at most one, putting us in
a situation where a classical Heegner construction is available. The main obstacle is
that twisting by this character changes the geometric object we are considering and
we end up with an abelian variety A/Q of GLs type which has dimension d = 1,2 or
4 over Q. This abelian variety is isogenous to E¢ over some small controlled abelian
extension M/Q. Then we are left with the task of going back and obtain suitable
points on E, as well as showing how we can explicitly compute them.

In Section 2.1 we analyze the existence of these distinguished twists in terms of
the local type of representation, as explained in Subsection 1.6.1. Twisting by these
characters provides us with a newform ¢ (possibly with nebentypus) of a lower level
and with an associated abelian variety A,. In Proposition 2.1.1 we prove that there
is an isogeny between A, and E¢ defined over M, and we explain the behavior of
this isogeny under the action of the Galois group Gal(M/Q).

In Section 2.2 we study Heegner points in classical modular curves that are “be-
tween” Xo(N) and X; (V) which parametrize the abelian variety A,. Heegner points
are precisely preimages of classical Heegner points on Xy(N). We give a moduli
interpretation for them, and we study their field of definition in Proposition 2.2.1.
This field of definition is precisely the composition of the corresponding ring class
field with the abelian extension M/Q.

The next main ingredient is the more general form of Zhang’s formula, given in
Section 2.3. Studying the interplay of Heegner points and the isogeny between A,
and E? we end up proving Theorem 2.3.2, which tells us that the (traces to K of the)
Heegner points are non-torsion precisely when the derivative of the L-series at the
center of symmetry does not vanish, in perfect concordance with both the classical



CONTENTS 23

Heegner point scenario and the situation studied in Chapter 1.

In order to prove an analogue to the classical Kolyvagin’s theorem, we need to be
a little more careful, and this is carried out in Section 2.4. The compatibility relations
are translated verbatim to the abelian variety Ay, but we have to deal with the issue
that despite there is a number field K, acting on A, it does not act naturally on E?.
The solution is to restrict the set of primes included in the compatibility relations
as in Proposition 2.4.2, and with that choice of primes we check that Kolyvagin’s
theorem still holds (Theorem 2.4.3).

Next, in Section 2.5 we study the problem of explictly computing a 1-dimensional
factor of A, isogenous to E. First we study the theory of building blocks of Ribet
[ ] and the explicit computations of Gonzalez-Lario | ]. Then we perform
the explicit determination of certain “splitting map” that trivializes a 2-cocycle given
by Jacobi sums. This splitting map allows us to compute a 1-dimensional factor of
Ay and then find an isomorphism with the curve E defined over M. We end the
chapter with a section of examples, showing the Heegner points constructed using
this technique.

The construction of this chapter is interesting on its own, and can be used to
move from a delicate situation to a not so bad one (reducing the conductor of the
curve but paying the cost of adding a character in some cases). So, despite we focus
on classical modular curves, the methods of this chapter can be easily applied to a
wide variety of contexts, for example more general Shimura curves. In particular this
construction also works when £, has multiplicative reduction at p and ¢,(E,) = —1.
In addition, it is worth noting that this construction is fundamentally different from
the method studied in | -

In the articles | | and [IXP] we first dealt with the problem one prime at
a time and then we showed how to do the general case. However, in this thesis
the results are stated and proved in general, improving considerably the exposition,
notation and internal organization of the work. Although this requires an extra layer
of abstraction we believe that this manner of presenting the results is more clear and
conceptual and will be more useful for reference in future applications.
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Chapter 1

Heegner points on Cartan
non-split curves

1.1 Cartan non-split groups

Let p be a prime number and let € € Z/p"Z be a quadratic nonresidue (respectively
an odd number) if p is odd (respectively even). Given a natural number n we define
the Cartan non-split ring modulo p™ as the ring

Crs(P") = {( Z Z > € My(Z/p"Z) : a = d, c = be mod p"}

if p is odd and as

C

ce.(2) = {( “ Z ) € My(Z/2"Z) : b = a — d,c = be mod 2”}

if p=2.
We define the matrices C. € My(Z/p"Z) as

ooy s
(t6) ifp=2.
These matrices are annihilated by the polynomials P., defined as
X% —¢ if p> 2

X?2-X—¢ if p=2.

P. =

25
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Embedding Z/p"Z diagonally into My(Z/p"Z) we get

Crs(") = Z/p"Z + (Z/p"Z)C,
and the set of matrices in My(Z/p"Z) that commute with C. is precisely C% (p™).
Furthermore, the group of invertible elements (CZ,(p™))* is isomorphic to the cyclic
group F, x Z/p**~*Z and det : (C5,(p"))* — (Z/p"Z)* is surjective. We also define
the ring

My (p") = {A€My(Z) : Ae Cr (")},

where A denotes the reduction modulo p™. The Cartan non-split group of level p™,
denoted by I’z (p™), is the group of determinant 1 matrices in M2, (p™).

Lemma 1.1.1. Let M € GLy(Z/p"Z) be such that P.(M) = 0. Then, there exists
A € SLy(Z) such that AMA™! = C..

Proof. Clearly there exists B € GLy(Z/p"Z) such that B-'MB = C.. Since the
determinant in (C2,(p™))* is surjective we can change the matrix B by a matrix A’
of determinant 1 giving the same relation. The result follows from the fact that the
reduction map SLy(Z) — SLo(Z/p"Z) is surjective. O

1.2 Cartan non-split curves

Let N and m be relatively prime natural numbers. Suppose that the factorization
in primes of N is given by pi'...p.*. For each 1 < i < k let ¢; € Z/p;"Z be a
quadratic nonresidue if p; is odd and an odd number otherwise. Let € be the vector
(e1,...,ex). As usual, let My(m) be the ring of 2 x 2 integer matrices such that their
(2, 1)-entry is divisible by m.

Let M¢(N,m) be the ring My(m)N(NE_, M= (p*)) and let T°(N,m) be the group
consisting of determinant one matrices inside M¢(N,m). Let H be the Poincaré
upper half-plane, and consider the complex curve

Ye(N,m) :=TI*(N,m)\H,
whose compactification obtained by adding a finite number of cusps is
X¢(N,m) :=T(N,m)\H".

Let us denote Z := Hp Z,, and for every Z-module R we define the adelization

of R as R := R ®z Z. The complex points of X¢(N,m) can be identified with the
double coset
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GLI (Q)\H* x GLy(Z)/M*(N,m) .

Using that det : (C5,(p;"))* — (Z/p}"Z)* is surjective for every 1 < i < k we obtain
that o
det : Ms(N,m) — Z

is surjective. Thus, | , Proposition 6.27] tells us that X¢(N,m) is defined over
Q.

1.3 Moduli interpretation

We will give a moduli interpretation for the complex points of the Cartan non-split
curves X°(N,m). For other moduli interpretations see | , Appendix 5| and
[ |. Consider tuples (£, Qm, ¢1,- .., dr), where £/C is an elliptic curve, @, is
a cyclic subgroup of order m of £, and ¢; € End(E[p;]) is such that P.,(¢;) = 0.
We identify two such tuples (€, Qum, ¢1,---,d%), (E/,Q.,,d1',. .., &) if there exists
an isomorphism of elliptic curves ¥ : £ — £’ that respects the level m structure and
such that for every 1 < i < k the following diagram is commutative:

7

Elp '] ————=E&[p"]

&) &)

!
K3

Proposition 1.3.1. The moduli problem of tuples (€, Qum, ¢1, - - ., ¢x) is represented
by the curve Y¢(N,m). The point I'*(N,m)T corresponds to (&, <%> DLy ey Ok,
where €. = C/(1,1) and ¢;, is the endomorphism of E.[p;"| whose matrixz in the

basis B, = ﬁ, # is equal to the matriz C;,.
[ [

Proof. Let 7 and 7' be points on H corresponding to the tuples (&, Qp, @1, ..., ¢k)
and (€',Q" ,¢1',...,¢r') respectively. To prove that the correspondence is well de-
fined and injective it is enough to prove that two such pairs are isomorphic if and only
if 7 and 7’ are equivalent under I'*(INV,m). This is true because for every 1 <i < k,
the matrices that commute with C;, are precisely those of M (p;""). Hence, the
matrix of SLy(Z) that gives rise to an isomorphism between £ and & must belong
to I'(IN,m) as desired.

To prove surjectivity, consider any tuple (€, Qm, @1, ..., ¢x). Up to isomorphism
we can assume that & = C/(7,1), where 7 € H. For every 1 < i < k Let B =
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{#, ﬁ} be a basis of E[p]"]. By Lemma 1.1.1, there exists a matrix A € SLy(Z)

7

such that A[¢;]p A"t = C.,. In fact, by the Chinese Remainder Theorem we can take
a matrix that works for every i. Therefore, the tuple is represented by the point
Art. O

For any number field K, we say that the point (£, Q.n, ¢1, - . ., ¢x) is a K-rational

point of the curve X°(N,m) if £, Q,, and {¢;}, ., are all defined over K. Recall
that ¢; is defined over K if ¢ = ¢; for every o € Gal(K/K), i.e. ¢;(P%) = ¢:i(P)’
for every P € E[p}] and every o € Gal(K/K).

2

Definition 1.3.2. For every p; there is an involution wy! given by

W&, Qumy b1, -3 Py Ok) = (€, Qs @15, TT(C) — by oo, Dr).

These involutions are pairwise commutative, and commute with the classical Atkin-
Lehner involutions.
1.4 Modular forms and Hecke operators

Let I' C SLy(Z) be a congruence subgroup. Let f : H — C be a holomorphic
function. If (2%) € I' and k is an integer, we define the k-th slash operator

Flel(2)(z) = (e +d) ™" f (253:2) |

Let Mg (I') be the space of holomorphic functions which are invariant under the
previous action for all elements in I' and which are holomorphic at all the cusps, and
let Si(I") be the subspace of cusp forms, i.e. those forms in M (I") whose g-expansions
at all the cusps have vanishing constant coefficient. Consider

[(N,m) := D(N) N To(m),

where I'(N) is the principal congruence subgroup of level N. Since this group is a
subgroup of I'*(N, m) we get a reverse inclusion at the level of modular forms

Sk(I*(N,m)) C Sp(I'(N,m)).
If ay = (¥9)and f € Sp(T'(N,m)), f := fle[an] is a modular form with respect to

(N, m) := (an)'I(N,m)ay = To(N?m) N Ty(N).
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Thus, slashing by ay gives an isomorphism

Sk(D(N,m)) = Sp(T(N, m)).

We will specialize to the case k = 2 from now on.

We want to understand the theory of Hecke operators acting on Sy (I'*(N,m)).
There are two ways to define them: the geometric way is to define them as corre-
spondences on the modular curve and, via the moduli interpretation, translate this
action to an action on modular forms and the algebraic way is to define them in
terms of double coset operators. We will give both definitions and at the end of the
section we will prove that they agree.

1.4.1 Geometric definition

Let n be a positive integer prime to Nm and let (€, @, d1,...,¢x) be a tuple
corresponding to a point on the curve Y¢(N,m). Define the Hecke operator

TE Qs i) = Y (5',¢(Qm)...,%@/Jogbiog&,...),

P:E—=E!

where the sum is over degree n isogenies ¢ : £ — £’ of cyclic kernel, and lﬁ denotes
the dual isogeny.

1.4.2 Algebraic definition

Following Shimura | ] we define
Anm :={A € My(Z) : det(A) > 0 and ged(Nm,det(A)) =1},
and A°(N,m) := Ay, N ME(N,m). Moreover, consider
AN,m)={A€Ayy, : A= ({9 mod N ; A= (§:) modm}.

Let R(I"*(N,m), A°(N,m)) and R(I'(N,m), A(N, m)) be the Hecke rings as defined
in [ , p-H4].

Let n € Z be relatively prime to Nm and let B € A°(N,m) be any matrix
with determinant congruent to n modulo Nm. Let A% € SLy(Z) be such that
A =B ((1] 1%) mod Nm. Slashing by the matrix A defines an operator that we
denote by v;,.
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Lemma 1.4.1. The operator v;, defines an isomorphism
Sy(T5(N,m)) — So(I=" (N, m))

which depends only on the class of n modulo N (we are multiplying by n in each
coordinate of €). It is equal to the double coset operator T°(N, m)AST<"" (N, m).

Proof. For every 1 <i <k, B € C=(p}"), and

(§19,) 7 Caigpry (8.9, = i (o),

thus the first assertion follows. Let B and B’ be matrices in A°(N, m) of determinant
n and n' respectively with n = n’ mod N. Choose any two matrices A5 and AS,
corresponding to B and B’ respectively. Clearly AflAi,_l € I'*(N, m), therefore, this
matrix acts trivially. O]

Let h: R('(Nm), A(Nm)) — R(I"*(N,m), A°(N, m)) be the map given by
D(N, m)BT(N, m) = T=(N, 1) Ay 5y BT (N, m).
Proposition 1.4.2. The map h is an isomorphism of Hecke rings.
Proof. We have a map hy : R(I'*(N,m), A°(N,m)) — R(SLs(Z), Any,) given by
[*(N,m)al*(N,m) — SLy(Z)a SLy(Z),
and a map hy : R(I'(N,m), A(N,m)) = R(SLy(Z), Anm) given by
['(N,m)BIT (N, m) — SLy(Z)B SLa(Z).

Both maps are easily seen to be isomorphisms of Hecke rings by the same proof
used in | , Proposition 3.31]. Moreover, h is equal to hj'hy, hence it is an
isomorphism. O

We can consider the classical Hecke operators T,, acting on Se(I'(N,m)) for n
relatively prime to Nm. Slashing by oy we obtain the corresponding Hecke operator
T, acting on Sy(I'(N,m)). In view of the above proposition we define the Hecke
operator .7 € R(I"*(N,m), A°(N,m)) as h(T},).

Lemma 1.4.3. If § € A(N,m), (N, m)BL(N,m) restricted to Sy(I="" (N, m)) is
equal to T="* (N, m)BT=(N, m).

Proof. Mimics the proof of Lemma 1.4.1. O
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Proposition 1.4.4. As operators on So(I'*(N,m)), T, =T, o 5.
Proof. Using | , Proposition 3.7] we obtain

T°(N,m) A5 BT (N,m) = T°(N, m) AZT" (N, m)I="* (N, m) BT (N, m),
and the result follows from Lemma 1.4.1 and Lemma 1.4.3. [
Corollary 1.4.5. Ifn=1mod N, 7, =1T,.

Proof. Since the matrix A7 can be taken to be the identity, v;, is the identity map. [

Exactly in the same way as Proposition 1.4.4 we can prove the following propo-
sition which will be useful for future reference.

Proposition 1.4.6. For any n prime to Nm, the operators
T, : So(T°(N, m)) = So(T/™ (N, m))

and
V2 So(DF(N,m)) — Sy(I" (N, m))

are morphisms of Hecke modules.

Proposition 1.4.7. The geometric and algebraic definitions of Hecke operators co-
incide.

Proof. We can restrict to n prime and relatively prime to Nm. It is enough to see that
the set of representatives used in one definition can be taken as representatives for
the other one. Take representatives for I'*(N,m)AZ (§ 9) I'°(N, m) modulo I'*(N, m).
By | , Lemma 3.29 Part (5)] these are also representatives for

SLa(Z) 45 (19) SLo(Z) = SLa(Z) (4 9) SLa(2)

modulo SLy(Z). This set of representatives coincides with a set of representatives
of cyclic isogenies of degree n. Each element is given by a matrix A of determinant
n, and the dual isogeny is given by the matrix Adj(A). Both matrices belong to
Af(N,m), thus, they commute with the matrix C., modulo p;” and also A Adj(A) =
nld. Consequently, the two definitions coincide. O
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1.5 Relation with classical newforms

Suppose that we are given a rational elliptic curve E of conductor N?m without com-
plex multiplication. By Wiles” modularity theorem, this corresponds to a normalized
newform fp € Sa(To(N?*m)) with integer eigenvalues ), for the Hecke operators T,
such that A\, = p + 1 — #E(F,) for every prime number p not dividing Nm.

Theorem 1.5.1. There is a unique abelian subvariety of Jac(X¢(N,m)) isogenous
to E. This isogeny is compatible with the Hecke operators (prime to Nm) on each
side.

Proof. This is | , Theorem 1.2.2]. More precisely, one can easily check that our
choice of Cartan non-split structure is one of the type of groups considered there. The
proof relies in the local theory of newforms and test vectors. It is also worth noting
that a more geometric version of this theorem is given by Chen-de Smit-Edixhoven
([ , Theorem 1], | , Theorem 1.1] | , Theorem 2). O

Consequently, we can find g. € S2(I'*(/N,m)) such that
T ge = Ange for allnrelatively prime to Nm.

Theorem 1.5.1 plus “multiplicity one” for classical newforms in Sa(To(N?m)) (| :
Theorem 5.8.2]) tell us that g. is well defined up to multiplication by a non-zero
constant.

Our primary goal is to compute the Fourier expansion of g.. Recall that g.
belongs to Sy(I'(N,m)) and this space has a basis consisting of eigenforms for the
Hecke operators T, with n relatively prime to Nm. Since 75, =T, ifn =1 (mod N),

we can write g. as a linear combination of elements in the set

G :={f € S2(T'(N,m))eigenform : A\, = A\, (f) foralln =1 (mod N)}.

An obvious family of elements in &g is obtained by twisting the modular form
fr by characters y modulo N, since T,,(fg ®x) = A\ x(n)(fe®X), and thus the form
fr ® x has eigenvalue A\, for T, if n =1 (mod N). In fact, this is essentially how all
elements of &5 are obtained, as the following proposition shows.

Proposition 1.5.2. / , Corollary 1] Let f € S3(To(N?*m),v)) be an eigen-
form for the classical Hecke algebra, where 1 is a character modulo N. Let g €
Snew(To(N?m)) be an eigenform without complex multiplication, and suppose that
f and g have the same eigenvalues on the set of primes congruent to 1 modulo N.
Then, there exists a Dirichlet character x modulo N such that the eigenforms g ® x
and f have the same eigenvalues outside Nm.
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Applying this result to g = fr we obtain:

Theorem 1.5.3. The set &g is the set of eigenforms that agree with fr ® x outside
Nm for some character x modulo N and g. € So(I'*(N,m)) can be written as a
linear combination of the elements in Sp.

We will come back to the problem of determining the set &g explicitly in the
next section.

1.5.1 An elementary proof of Proposition 1.5.2

Let A(Nm) be the monoid of natural numbers relatively prime to Nm, and let
Unm = {p: A(Nm) — C: u(1) =1, u(ab) = p(a)u(d) if a, b are relatively prime} .

We say that a function u € Uy, satisfies the condition Q if for every a € A(Nm)
there are an infinite number of primes ¢ such that a = ¢ mod N and such that
() # 0. It is worth noting that this condition is satisfied whenever i is a system of
Hecke eigenvalues of a non-CM eigenform in Sy(Tg(N?m)) due to Serre’s open image
theorem | ].

Let A'(N,m) be the submonoid of A(Nm) consisting of elements congruent to 1
modulo N.

Proposition 1.5.4. Let p, A € Uy, be such that p is equal to A when restricted to
AY(N,m). If u satisfies Q, there exists a Dirichlet character x modulo N such that

p= XA

Proof. We will give a proof in several easy steps.

o u(a) =0 < Aa)=0:

If AM(a) = 0, since u satisfies O, we can choose b such that ged(a : b) = 1,
ab € AY(N,m), and pu(b) # 0. Using that u and X agree on A'(N,m) and p is
multiplicative, we get that p(a) = 0. For the reverse implication, suppose that
p(a) = 0, and choose b exactly as before. Then, A(a)A(b) = 0, but if A\(b) was
0 we would have that 1(b) = 0 by the above proof, contradicting the choice of
b.

For f € Uny, define Zy := {a € A(Nm) : f(a) # 0}. We have just seen that

p(a)
Aa)®

Z, = Zy. Consider x : Z,, — C* given by sending a to
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e Y only depends on the class of @ modulo N:

Given a,d’ € Z, = Z\ congruent modulo N, we can choose, as before, some
b € Z,, such that b is relatively prime to aa’ and ab,a’b € A'(N,m). Since

pla)p(b) = p(ab) = A(ab) = A(a)A(b),

and the same holds replacing a with a’ we obtain

o Ifa,d’ € Z,, then x(ad’) = x(a)x(d'):
Choose b’ relatively prime to a such that ¥ = o’ mod N and V' € Z,,. We have

proved that x(aa’) = x(ab’) and since both p and A are multiplicative this
expression is equal to y(a)x (V') = x(a)x(a’).

e Finally, we extend x to a character of A(Nm) by x(a) := x(a) for any o' € Z,,
equivalent to a modulo N. This Dirichlet character gives the desired relation.

]

Applying this proposition to the system of Hecke eigenvalues {)\,} we obtain
another proof of Proposition 1.5.2.

1.6 Computing eigenforms

In order to determine the elements in & it is enough to know, for every character
x modulo N, the unique newform attached to fg ® x. This question is purely local;
that is, in order to understand when fr ® y is new at a prime p dividing N, we only
need to study the p-th primary part of y. This is better understood using the ¢-adic
local representation attached to the elliptic curve E/Q,.

1.6.1 Local representations

If ¢ # p is a prime number we consider the (-adic Tate module T,(FE) := lim E[("]
which is a free Zs,-module of rank 2. We also define Vy(E) := T)(E) ®z, Qp. This
vector space comes equipped with an action of the Galois group Gal(@p/ Q,) and we
consider the contragradient of the natural action of Gal(Q,/Q,) on V;(E) given by
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: Gal(@,/Qy) = GLa(Vi(E)).

The theory, developed mainly by Grothendieck, Tate, Langlands and Deligne,
shows that the f-adic representations of Gal(Q,/Q,) are in correspondence with the
complex representations of the so called Weil-Deligne group of Q,. We will follow
the exposition given by Rohrlich in | ] as it is better suitable for applications
to elliptic curves.

The Weil group of F, is the subgroup W(F,/F,) of Gal(F,/F,) generated by the
Frobenius automorphism. The inertia subgroup of Gal(Q,/Q,) is I := Gal(Q,/Qx"),
where Q)" is the maximal unramified extension of Q.. The Weil group of Q, is the
subgroup W(Q,/Q,) of Gal(Q,/Q,) consisting of all elements that act on the residue
field of @p as a power of Frobenius. Let ¢ be the inverse of Frobenius and let & be
some lifting of ¢ to Gal(Q,/Q,). Then,

W(Q,/Q,) = oI

neL

We make W(Q,/Q,) into a topological group by requiring that I is open, that the
topology on [ is the one inherited as a subspace of Gal(Q,/Q,), and also that left
multiplication by ® is an homeomorphism.

A representation of W(Q,/Q,) is simply a continuous homomorphism

o : W(Q,/Q,) = GL(V),

where V' is a finite dimensional complex vector space. We say that ¢ is ramified or
unramified depending on whether p|; is non-trivial or trivial respectively. The one
dimensional representations are called characters, and we will identify them with
characters of Q,™ by using the Artin isomorphism (given by sending p to ®)

pr = Wab(@/QP>'

We can define the Weil-Deligne group as a certain semidirect product between
the Weil group and C but we will content ourselves with the definition of a what a
complex representation of the Weil-Deligne group ought to be. This consists on a pair
(0, N) where o is a representation of the Weil group acting on the finite dimensional
complex vector space V' and N is a nilpotent endomorphism of V' that satisfies

o(w)No(w)™" = w(w)N,

for every w € W(@p/ Qp), where w is the unramified character given by sending @
to p~t
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The main point of this construction, as we remarked earlier, is that there is a one
to one correspondence between isomorphism classes of representations of W(Q,/Q,)
and isomorphism classes of f-adic representations of Gal(Q,/Q,).

A representation (o, N) of the Weil-Deligne group is called admissible if o is
semisimple and its called indecomposable if there is no proper subspace invariant
under both W(Q,/Q,) and N.

All admissible representations of the Weil-Deligne group are of the form

P @sp(ny),
j=1

where 7; is irreducible and sp denotes the special representation. Up to reordering,
this decomposition is unique.

Now, coming back to f-adic representations, recall that we had defined a 2-
dimensional representation

pee: Gal(Q,/Q,) — GLy(Vi(E)Y),

whose determinant is equal to w™! (this is obtained by looking at the Weil-pairing).
Composing this representation with some embedding of Q, into C, we obtain a 2-
dimensional complex representation which corresponds to a 2-dimensional represen-
tation of the Weil-Deligne group, which turns out to to be admissible. Furthermore,
a key aspect of the theory, is that this complex representation does not depend on /¢
(as long as ¢ # p).

We will suppose from now on that p is odd. We have two very distinct possibilities
for the elliptic curve E/Q,. It has either potentially multiplicative reduction or
potentially good reduction.

o If £/Q, has potentially multiplicative reduction there exists a quadratic ex-
tension of Q, that defines a quadratic character s of Gal(Q,/Q,) such that
the twist E* of F by s¢ has split multiplicative reduction. Using the theory of
the Tate curve one can show that

pE =~ XYW ' ®sp(2).

Moreover, the character x is: trivial if £/Q, has split multiplicative reduc-
tion, unramified but non-trivial if it has non-split multiplicative reduction, and
ramified if it has additive reduction.

These representations are called special (as they involve sp(2)) and are the only
type in which the nilpotent endomorphism N is not trivial.
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o If £/Q, has potentially good reduction then we have that N = 0 so we just
have a representation of the Weil group. If the representation is irreducible we
say that is of supercuspidal type. On the other hand, if the representation is
reducible, it must decompose as the direct sum of two 1-dimensional represen-
tations (i.e. characters) y; @ xo. In addition, we must have x;x2 = w™!. These
representations are called principal series.

There is a more down-to-earth distinction between these two types of repre-
sentations, as long as p > 3. The principal series representations correspond to
elliptic curves that have potentially good reduction over an abelian extension of
Q, and the supercuspidal representations correspond to the opposite scenario
([ , Proposition 2]).

Suppose that p > 3. The above characterization allows us to find when fr ® x
is not new at p, and in those cases, determine the corresponding newform of lower
level. If the local representation is special, then one needs to compute the quadratic
twist s¢ and the corresponding elliptic curve. If the representation is supercuspidal,
as it is shown in | |, every twist will be new at p. Lastly, suppose that the repre-
sentation is a principal series corresponding to the two characters xi, x2. Therefore,
in order to twist and obtain a lower level newform the only possibilities are to choose
either x;' or x5 '. This characters, restricted to the inertia group, can be regarded
as Dirichlet characters modulo p. We can explicitly compute them and the corre-
sponding newform from the elliptic curve E using the results in | , Example 5]
as follows.

1. Compute v,, the valuation at p of the discriminant of E. The order of the
e 12

characters x1, x2 is e := FTICRNE

2. Let L := Q(z)/(z° — p). Then, E attains good reduction at the prime ideal
(z). Compute the characteristic polynomial y(t) = t* — a,t + p of Frobenius
at such prime ideal by counting the number of points over the finite field. The
two roots are the p-th coefficients we are looking for (since there are two forms,
conjugate to each other), but we need to match each root with its corresponding
character.

3. Let g be a generator of F)¢, and let L' := Q(z)/(z° — g-p). As before, compute
the characteristic polynomial y/(t) for the prime ideal (z) (the curve is again
unramified). Then the product of a root of xr(¢) multiplied by the correct
character (evaluated at ¢g) must be a root of xp/(%).
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For the primes p = 2,3 we can do a similar analysis or just use brute force in order
to look for the corresponding newforms.

Remark 1.6.1. The study of the f-adic and Weil-Deligne representations is the key
tool in order to define the L and e-factors, the conductor, and the root number of
an elliptic curve as shown in | ]-

1.6.2 Computing the Fourier expansion

In order to compute the Fourier expansion of G, we first compute all elements of &g
as we explained in the previous subsection. Then, we take a formal linear combination
of the forms in &g with variables z;. Theorem 1.5.3 guarantees the existence of a
linear combination of these forms giving rise to g.. Elements in &g are already
invariant under I'(N) N Ty(m). In order to obtain forms invariant under the whole
I'*(N, m) we take generators {a; }; of I'*(N,m)/(I'(N)NTy(m)) and we try to impose
invariance under the «;’s (evaluating at some points in ). This gives a system of
linear equations in the z;’s, whose solution set gives rise to a set S of modular forms
containing g.. This set S is generated by the eigenforms in Sy(I'*(N,m)) with the
same eigenvalues as fr for n = 1 (mod N). Since eigenforms in Sy(I'*(N,m)) are
in correspondence with newforms in Sy(Tg(N?m)), Proposition 1.5.2 says that S is
generated by {g ® »}  where s are quadratic characters modulo N such that g ® »
are again newforms of level N?m.

In order to pin down g., let p | N be an odd prime number such that fr ® s, is
new of level N?m, where 3, is the quadratic character modulo p. If ¢ is a non-square
modulo p, the operator 7 = T,v; acts as A, on the subspace spanned by g. and
as —\, on the subspace spanned by the eigenform corresponding to (fr ® s,). For
p = 2 a similar computation can be done. Each condition halves the dimension and
altogether they determine g. up to a constant.

Remark 1.6.2. If m, is supercuspidal it is easier to halve the dimension. If ¢, = 1
(resp. €, = —1) then the sum is supported at twists of fr with even p-part (resp. odd
p-part). The reason for this is that the sign of the classical Atkin Lehner involution
at p; is the same as the sign of the corresponding involution wy!, which can be realized
as a matrix A% with n = —1 mod p;" and n = 1 mod N/p;".

By | , Corollary 3.3], the local sign at p changes when twisting fg by s, like

P
fE ® 2, are disjoint.

— <_—1> = —,(—1). Therefore, the supports of the forms corresponding to fr and
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1.7 The field of modular functions

For a € Q? and z € H define

ey = BEEE D gla (1))

where p(—;wi,ws) is the classical Weierstrass function associated to the lattice L =
(wi,ws); g2(L) = 60G4(L), and g3(L) = 140G¢(L) correspond to the lattice functions
Gon(L) =3 per =5 ([ , Section 6.1]). These functions satisty f,(v(2)) = fay(2)
for every v € SLy(Z). For every n € N, let F,, be the field of modular functions of
level n rational over Q(,) (where &, is a primitive n-th root of unity), which by
[ , Proposition 6.1] is equal to

Fo=Q falae (n'2%)/2% a ¢ 77).
In addition, set F := U,F,.

Proposition 1.7.1 (] |, Proposition 6.21). For every u € GLy(Z) there exists
an element 7(u) € Gal(F/Fy) such that frw = £, for every non-zero a € Q?/7?,

T coincides with the Artin map given by class field theory on Q and k™) = ho~ for
all h € F and v € SLy(Z).

Consider the field

F(N,m) := {h €F "™ =h, Vue QXMWm)X}.

Since

— X
Q*I*(N,m) = (Q*M=(N,m) )N GL3 (Q),
Fe(N,m) is the field of rational modular functions for I'*(N, m) (| , Proposition
6.27]). We also define the field of rational modular functions for I'(N, m) as

F(N,m) := {h EF W =h, Vue @XMTM)X}.

Elements in F(N,m) have a g-expansion with respect to ¢ = e*N* with coefficients
belonging to Q(&y). Since F(N,m) C F(N,m), the rational modular functions for
['*(N,m) have the same property.
For every n relatively prime to N consider the automorphism o,, € Gal(Q({x)/Q)
given by
on(En) = En" g
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This Galois automorphism depends only on the class of n modulo N and its action
on f, is given by fa(l 0 ) ([ , Theorem 6.6]).
0nt

Recall that
A; =B(;,%) mod Nm,

0n!

where B € A°(N,m). Combining this with Proposition 1.7.1 we find that the ele-
ments h of F°(N,m) satisfy that

an(h) = h|[A7].

Conversely, elements of F(N,m) that satisfy this last relation belong to F¢(N,m),
since . o

Q*Me(N,m) = A(N,m)Q"M(N,m) .
Remark 1.7.2. This argument applies to weight 2 modular forms, dividing by the
(meromorphic) Eisenstein series Fy that has integer Fourier coefficients and trans-
forms nicely under the full modular group.

Definition 1.7.3 (Rational Modular Forms). A form f € Sy(I'*(NN,m)) is called
rational if its g-expansion at every cusp belongs to Q(¢x) and o,(f) = f|2[(A%)] for
every n relatively prime to Nm.

1.7.1 Cusps

An analogous computation to the characterization of rational modular forms shows
that the curve X¢(NN,m) has ¢(N) cusps over the oo cusp, all of them defined over

Q(€w) and conjugate by Gal(Q(€x)/Q). o, € Gal(Q(€x)/Q), then 0, (00) = A500.

1.7.2 Rational differential forms

Recall that if X is a curve defined over Q, a differential form defined over Q is a
differential form which is locally of the form fdg, where f and ¢ are meromorphic
functions defined over Q.

Proposition 1.7.4. If f € So(I'*(N,m)) is rational, it defines a rational meromor-
2miz

phic differential form f(q)% on X¢(N,m), where ¢ = e~ .

Proof. Note that
dq 2w

f(q) .
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-/

Since % is a rational meromorphic function with respect to SLy(Z) (of weight two),

i lies in F¢(N,m). Also j belongs to F¢(N,m) so f(q)% is rational. O

271

1.8 Normalization

Proposition 1.8.1. Let f € CF*(N,m). Let 0 € Gal(C/Q) satisfy o|gey) = On-
Then o(f) € CF* (N, m)

Proof. This follows from the fact that the groups I*(N,m) and I*"*(N,m) are con-
jugate by the matrix (é n91 )
[

Proposition 1.8.2. Let f € CF*(N,m) and let 0 € Gal(C/Q) satisfy o|gey) = On-
Then o(v;(f)) = v (a(f))-

Proof. Choose A7 in such a way that its (1, 2) entry is divisible by n. It is easy to see
that (3 9) As ((1) 1%), which belongs to SLy(Z) by our choice of A$, gives the same

action on f, as A§"2 (since both matrices are easily seen to be equivalent modulo
Nm). O

Corollary 1.8.3. We have that ﬁi”Q(a(f)) =o(T5(f)).

Proof. This follows from the previous proposition and the fact that ¢ commutes with
T, (this is easily obtained by looking at the action on g-expansions). O

As we remarked before, these arguments apply to weight 2 also.

Corollary 1.8.4. o(g.) € Sy(T*"*(N,m)) has the same eigenvalues as g, i.e.

T (0(g:)) = Mo(ge)-

Corollary 1.8.5. If t is relatively prime to Nm where tn = 1 mod N then there
exists ¢; € C such that Tyg. = c;0(ge).

Proof. By Proposition 1.4.6, T;(g.) is an eigenform in Sy (FE"Q(N, m)) with the same
eigenvalues as g.. By Corollary 1.8.3, o(g.) is an eigenform whose eigenvalues are

the same as those from g.. The result now follows from multiplicity one. ]

We normalize g. in such a way that its first Fourier coefficient is 1. In that case
we have the following theorem.
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Theorem 1.8.6. g. has a g-expansion belonging to Q(Ey).

Proof. Let £ = 1 mod N be such that A\, # 0, and let ¢ € Gal(C/Q(&y)) be arbitrary.
By Corollary 1.8.5, there exists ¢, € C such that

Tlgs = CZU(QE)'
We know that Tyg. = \vg. (by Corollary 1.4.5). Looking at the first Fourier coeffi-
cient, we get that ¢, = Ay and hence g. = o(g.). Since 0 € Gal(C/Q(&y)) is arbitrary
it follows that the g-expansion of g. lies in the desired extension. O

Theorem 1.8.7. There exists a non-zero constant d € Q(&y) such that dg. is ratio-
nal. Such constant is unique up to multiplication by a non-zero rational number.

Proof. By Serre’s open image theorem, every number n relatively prime to N is
equivalent modulo N to a n’ such that A\, # 0. Then for each n prime to Nm
there exists ¢, € Q(£y), which only depends on the class of n modulo N, such that
T1ge = AnCnon-1(ge). This defines

c: Gal(Q(&n)/Q) — (Q(En))™

by sending 0,1 to ¢,. This is a 1-cocycle in H'(Gal(Q(¢n)/Q), (Q(Ex))*), which is
trivial by Hilbert’s 90 theorem. Thus, ¢ is a 1-coboundary, that is, there exists some
d € (Q(&v))* such that ¢(o) = o(d)/d, and it is clear that d satisfies the required
conditions. The last statement is obvious. O]

Note that even for a rational modular form, it is not clear how to choose the
rational multiple of it which should correspond to “a; = 1”7 in the classical case. The
best one can do is to choose the coefficients to be algebraic integers and have no
common rational integer factor.

Definition 1.8.8. The proper normalization of g. is the unique (up to sign) normal-
ization G, of g. that satisfies:

e (3. is a rational newform.
e The Fourier expansion of G. has algebraic integer coefficients.

e lfneZandn>2, % does not have integral coefficients.

Remark 1.8.9. Once we know the g-expansion of g., using the explicit version of
Hilbert’s 90 Theorem we easily obtain a proper-normalization. If ged(n, N) = 1, the
n-th coefficient b,, of G, satisfies

bn = )\nO'n—l (bl)

Thus, we can obtain the ezact Fourier expansion once we have found b; € Q(¢y) and
the coefficients at the various p;’s.
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1.9 Eichler-Shimura

The Eichler-Shimura construction associates to G, the abelian variety
e, = Jac(X°(N,m))/(Ig. Jac(X*(N,m))),

where I, is the kernel of the morphism R(I"*(N, m), A°(N,m)) — Z which is given
by sending .77 to the eigenvalue A,. For every ¢ € Gal(Q((x)/Q) we have the
diagram

XE(N, m)—% Jac(X*(N, m))

N,m,o T
ﬂgs

where i, is the map sending P to (P) — (0(00)) and the vertical map is the classical
Abel-Jacobi map given by integrating the differential form GE(q)% against paths
induced by divisors. By Proposition 1.7.4 this differential is rational, thus the abelian
variety 7. is of dimension 1, and by Theorem 1.5.1 it is isogenous to E. This elliptic
curve is called the optimal quotient of Jac(X®(N,m)). The lattice A, formed by the
integrals of closed paths in X¢(N,m) of the form Ga% is called the lattice of periods
of G, and we have @7, = C/A..

Since the cusps of the Cartan curve are defined over Q({y) (and are Galois
conjugate over that field) the maps i, will not be defined over Q. Nevertheless, we

can consider the following diagram

XE(N, m)—* Jac(X¢(N, m))

N
.

where ¢ is the map sending P t0 > .oy o) () — (0(00)). Therefore, the dot
map (which we still call modular parametrization) is defined over Q.

If w. is a holomorphic differential on C/A. its pullback under @,  is a constant
multiple of Gs(q)% (by multiplicity one), where ¢ = e“N*. This constant ¢, will be
called the Manin constant, and it does not depend on the choice of ¢. Moreover,
since ;. and Gg(q)% are rational and ®%, = > % . is defined over Q, the
Manin constant must be a rational number.

Proposition 1.9.1. Let @, : C/A. — E be the Weierstrass uniformization. Then
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DY (T) = Pu(2;), where

i (A7)
ar=ce | Z / on(Ge)(2)dz

on€Gal(Q(én)/Q) *

Proof. This follows from | , Proposition 2.11] and the identity
T dg (A5) ' ., . dg (A5) 7' dg
[ @l cpmo- [ e
on(00) q 0o q 00 q

1.10 Heegner points

Let E/Q be an elliptic curve and let & = (1, w) be an order in an imaginary quadratic
field K. We say that the pair (E, 0) satisfies the Cartan-Heegner hypothesis if the
following holds:

e The conductor of E is N*m where gcd(N,m) = 1.
e The discriminant d of &' is prime to Nm.

e Every prime dividing m is split in 0.

e Every prime dividing N is inert in &.

Note that & satisfies the classical Heegner hypothesis at the primes dividing
m but not at the primes dividing NN, therefore, we will not be able to construct
Heegner points on Xo(N?m) if N > 1. Given a pair (E, 0) satisfying the Cartan-
Heegner hypothesis we will use the letters N and m to denote the factorization of
the conductor of E as in the definition and we also say that & satisfies the Cartan-
Heegner hypothesis with respect to (N, m).

Definition 1.10.1. A Heegner point on X¢(N,m) is a tuple [0, [a], m, ¢,] where
e O satisfies the Cartan-Heegner hypothesis with respect to (N, m),

e [a] is an element in Pic(&) (this defines an elliptic curve E, = C/a with complex
multiplication by &),
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e m is a cyclic ideal in &' of norm m,

e multiplication by o € &/N gives rise to ¢o € [,y End(Eu[p;"]) such that ¢,;
is a root of P;, for every 1 <i < k.

A Heegner point on F with endomorphism ring & is the image of a Heegner point
with endomorphism ring &' in X*(N,m) under the modular parametrization ®% .

Note that since every prime dividing m is split in &, there is a cyclic ideal of
norm m and since every prime divding N is inert we can find a with the desired
properties.

From the classical theory of complex multiplication it is clear that Heegner points
belong to X¢(N,m)(Hy) where H is the ring class field associated to &. Moreover,
we have the following proposition that describes the Galois and Atkin-Lehner actions
on them.

Proposition 1.10.2. Let [0, [a],m, ¢,] be a Heegner point.
1. If 7 denotes complex conjugation, then (O, [a],m, ¢po)” = (O, [a"'], M, da)

2. Let [b] be a fractional ideal, and let oy € Gal(Hy/K) be the Artin symbol
associated to [b]. Then

(0, [a],m, ¢o)" = (0, [ab™"],m, ¢,)
3. Consider wy = Hle wsi. Then,

WN(ﬁa [a],m, ¢a) - (ﬁ), [a],m, ¢o7)'

4. The classical Atkin-Lehner operator w,, acts as

wm(ﬁu [a],m, ¢a) = (ﬁv [amil]aﬁa ¢04)'

Proof. The first two items follow from | ] (since m and « are defined over K); the
third one follows from the definition of the wii and the last one is [ , Formula
5.9). O

Remark 1.10.3. Fixing a CM elliptic curve E, we have 2¥ choices for «, and also
we have different choices for m as in the classical case. These choices are permuted
simply transitively by the corresponding Atkin-Lehner involutions.
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We will give another description of Heegner points on X¢(N,m) that is more
suitable for our computations.

Recall that a matrix M € My(Z) with Tr(M) = Tr(w) and det(M) = Nm(w)
provides an embedding & < Ms(Z) given by sending w to M. Heegner points on
X¢(N,m) with endomorphism ring & are precisely the points 7 on the upper half
plane which are fixed by a matrix M € M¢(N,m) satisfying the above conditions.

More precisely, let {a;} be a set of representatives of the class group of & and let
w; € H be such that a; = (1,w;). Let M, be the set of matrices in My(Z) that fixes
w;, which is an order isomorphic to &¢. Then, M, contains a matrix N; satisfying
Tr(N;) = Tr(w) and det(V;) = Nm(w). We will show that there exists A; € SLy(Z)
such that A;N;A;~* € M?(N,m). In that case, the point 7; = Ajw; is a Heegner
point on X¢(N,m) with endomorphism ring & as wanted.

The matrices A; are computed in the following way:

e At a prime p dividing m, we chose A§” ) modulo p’»(™ of determinant one,
taking NV; to an upper triangular matrix. This can be done, since the roots
of the characteristic polynomial of N; are different and they both belong to
Z./p*™ (since every prime that divides m splits in ©).

e At an odd prime p; dividing N, since p; is inert in K, the characteristic poly-
nomial of N; is irreducible. If N; = (f: g), then we want the matrix A; to
satisfy

atd D
A58 = (g L) A ot 2,

where D is the discriminant of &. We just chose A; as a matrix in 4 indeter-
minates and search for a non-zero solution of the system (the determinant of
this system is zero, so there is always such a solution). If the determinant is
not 1, we just multiply the matrix via an appropriate matrix, as in the proof
of Lemma 1.1.1. If 2 divides N we can make an analogous computation.

Lastly, the Chinese Remainder Theorem gives a matrix in SLy(Z/N?*mZ) satisfying
our hypotheses, and we lift it to the matrix A; in SLy(Z).

It is worth noting that the above construction depends on the choice of a square
root of D/4e; modulo p}. In order to obtain a whole orbit under the action of
Gal(Hy/K) one has to be careful and choose the same square root for each repre-
sentative.
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1.11 Heegner systems

Using the geometric interpretation of Hecke operators as described in section 1.4.1 we
have the following formula for Hecke operators acting on Heegner points, analogous
to the one given in | , Section 6]:

Proposition 1.11.1. For ¢ relatively prime to Nm we have that

Ti(0,a,m,¢o] = Y [End(b),b,m- End(b) N End(b), ¢o).
a/b~7/¢

Fix an elliptic curve E as before, and let K be an imaginary quadratic field
with maximal order Ok such that the pair (F, Ok) satisfies the Cartan-Heegner
hypothesis. Let n be a positive integer relatively prime to Cond(F) - disc(K). Let
U, be the unique order in K of conductor n and let H, be the corresponding ring
class field. Then, (F, 0,,) satisfies the Cartan-Heegner hypothesis, so, it gives rise to
a set of Heegner points HP(n) C E(H,,).

Proposition 1.11.2. 1. Let n be an integer and let ¢ be a prime number, both
relatively prime to Cond(FE) - disc(K). Consider any P,y € HP(nl). Then, there
exist points P, € E(H,) and (when (| n) P,,, € HP(n/l) such that

o [fl{n isinert in K,
Try,, b, Pae = NPy,

o If{=A\{n issplit in K,

Tru,, i, Poe = (A¢ — Froby — Fmb;l)Pn.

o Ifl]|n,
Tra,, . Pre = MNPy — Py
2. There exists o € Gal(H,/K) such that
P,m = —sign(E,Q)P,° mod E(H,)ors,
where T denotes complex conjugation.

Proof. From Proposition 1.10.2, Proposition (1.11.1) and the discussion in between,
the result follows quite formally. See for example | , Propositions 3.7 and 5.3]
or | , Section 3.4] and | , Section II.1]. O
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Definition 1.11.3. A Heegner system attached to (F, K) is a collection of points
P, € E(H,,) (one for each positive integer n relatively prime to Cond(E) - disc(K))
which satisfies the conditions of the previous proposition.

If (E,Ok) satisfies the Cartan-Heegner hypothesis, we can obtain a Heegner
system by choosing the same m, o € Ok, and the trivial class in Hy, for every 0,
with n relatively prime to Cond(F) - disc(K). More precisely, consider

Ty =[O, [1],m N O, da],

and set P, 1= ® (v,) € E(H,), which satisfies the required conditions. Given a
Heegner system, we can apply Kolyvagin’s machinery to get the following result:

Theorem 1.11.4 (| ], Theorem 10.1). Let {P,} be the Heegner system attached
to (E, 0) as constructed above. Suppose that E does not have complex multiplication.
Define Pk = Try, kP € E(K). If Pk is non-torsion then:

o The Mordell-Weil group E(K) is of rank one.
e The Shafarevich-Tate group of E/K is finite.

Lastly, we have the following version of Gross-Zagier formula.

Theorem 1.11.5 (| ). The point P is non-torsion if and only if

L(E/K,1) 0.

Remark 1.11.6. Zhang’s formula provides a precise relation between L'(E/K, 1) and
the height of the Heegner point on the Jacobian of the Cartan non-split curve. In
order to obtain a relation between this and the height of the Heegner point on the
elliptic curve (and thus giving an explicit version of the BDS conjecture in this
context) we need to have a better understanding of the periods of newforms, the
Manin constant and the degree of the modular parametrization.

1.12 Examples
Consider the elliptic curve E = 75.c1 (in | | notation) given by the equation

v +y=2—2* -8 -7
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and let fgp be the corresponding newform of level 75. Fix ¢ = 2, which is a non-
square modulo 5. The local representation at the prime p = 5 is supercuspidal, so
when we are looking for the g-expansion of the modular form Gy € S5(I'%(5,3)) as
in Theorem 1.5.3 we only have to consider a linear combination of the four twists
of fg by characters of conductor 5, and in fact, we only need to consider the odd
characters since the local sign at 5 is equal to —1, as explained in Section 1.6. Solving
the system we find that the first Fourier coefficient (after applying the normalization
procedure) is equal to &5 + 2652 — 2653 — &1, The n-th Fourier coefficient is equal to
0 if n is divisible by 5 (since no oldforms appear in the supercuspidal case) and for
n relatively prime to 5 we use the formula b, = \,0,-1(b;). The elliptic curve E is
the optimal quotient in this case, and the Manin constant is equal to 1/5.

e The maximal order in the field K = Q(y/—2) satisfies the Cartan-Heegner
hypothesis, and it has class number 1. The point 7 = (5 + 1/—2)/9 is fixed by
the matrix (§ Z2) € I'*(5,3) and it has the same characteristic polynomial as
v/—2. Computing (I>§73(7') we obtain a numerical approximation of the point

311 =1 5-3823y/—2

288" 2 28.35 |7
which is a non-torsion point on E(K).

e The maximal order in the field K = Q(y/—23) satisfies the Cartan-Heegner
hypothesis, and it has class number 3. A set of representatives of an orbit of
Heegner points under the class group is given by 7 = (25 + /—23)/12, 15 =
(5 4+ +v—23)/12,73 = (=785 4+ v/—23)/162. The image under the modular
parametrization of each of these points lies in E(H ), where H is generated by
Q(v/—23) and a root of X — X — 1. The z-coordinates of these points are the
three roots of 263327.X3 + 1235357X2 + 2186718 X + 2200495. Furthermore,
adding these points together we find a non-torsion point on E(K)

—27687600319369 —1 n 5 - 25992536347803546497+/—23
23-26.36.372.7327 2 232.29.3%.373.733
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Chapter 2

The ramified case

2.1 Twisting by characters

Let £/Q be an elliptic curve of conductor N?m where gcd(N,m) = 1 and N is the
product of pairwise distinct odd primes py,...,pr. We will assume that £ does not
have complex multiplication.

If E has potentially multiplicative reduction at a prime p dividing N, then there
exists a newform g, € S5(Lo((N?/p)m)), such that fr = g, ® »,, where s, is the
unique quadratic character modulo p.

If E has potentially good reduction over an abelian extension at a prime dividing
N, as we explained in Subsection 1.6.1, we have that

peelr =Yy @Y,

Note that since the representation is independent of ¢, the trace lies in Q. There-
fore, 1, satisfies a quadratic relation, hence its image lies in a quadratic field con-
tained in a cyclotomic extension (because v, has finite order). This gives the follow-
ing possibilities for the order of inertia of ,: 1, 2, 3, 4 or 6.

e Clearly 1, cannot have order 1 (since otherwise the representation is unramified
at p).

e If ¢, has order 2, ¥, must be the (unique) quadratic character ramified at p.
In this case the quadratic twist E, of E' by 1, has good reduction.

e If 1, has order 3, 4 or 6, there exists a newform g, € Sy(T'o((N?/p)m), ¥, ?),
such that fr = g, ® 1.

51
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Doing this for every prime dividing N, we obtain a character ¢ := [[, 4, and a
newform g € So(To(N' - m),v~2) such that fr = g ® ¢, where N’ is the divisor of
N consisting precisely of the prime factors p of N such that E, does not have good
reduction at p. The field of coefficients K, of the newform g will be the same as the
field generated by the image of the character . Since the characters v, have order
2,3,4 or 6, K, can be equal to Q,Q(v/=3),Q(i) or Q(i,v/=3). Let d be the degree
of K, over Q and let g = ) a,,¢™ be the g-expansion of g at the infinity cusp.

There is an abelian variety A,/Q attached to ¢ via the Eichler-Shimura construc-
tion with an action of K, on it, i.e. there is an embedding 6 : K, — Endg(4,) ® Q.
The variety A, can be defined as the quotient Jy(N'-m)/I,Ji(N' - m) where I, is
the annihilator of g under the Hecke algebra acting on the Jacobian. Moreover, the
L-series of A, satisfies the relation

LA/Q )= [[  Lllg)s).

oeGal(Ky/Q)

The variety A, has dimension d and is Q-simple. However, it is not absolutely

simple. The variety A, is isogenous over M := @kew to E4. In fact, over the

extension M the character i) becomes trivial, so we have the equality of L-series
L(A,/M,s) = L(E,s)? which implies, by Falting’s isogeny theorem, that A, and E“
are isogenous over M. The abelian extension M/Q is of exponent ¢ (where t is a
divisor of 12) and we have an embedding

L L] — K,

where p; is a primitive ¢-th root of unity. Following the work of Kida [ ], we

—

define for every x € Gal(M/Q) := Hom(Gal(M/Q),C*) an abelian variety A,
(called the twist of A, by x), which is an abelian variety defined over Q together
with a map O, : A, = A, , that is an isomorphism defined over M and such that

@;LX(T) = @Xa
for every 7 € Gal(M/Q). Moreover, we have that

Ag — RGSM/Q(Ag ®Q M) ~ AQ,X'

XEGal(M/Q)

In addition, by looking at the L-series side, for every character y of the form
o(y) with o € Gal(K,/Q) we have that L(A,,,s) has a factor of the form L(E, s).
Combining this with the above diagram we obtain the following crucial result:
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Proposition 2.1.1. There is an isogeny w : A, — E¢ defined over M such that

(miw)Tvoy () (1) = mw,
where m; denotes the i-th projection and {o;}, is some ordering of Gal(K,/Q).

2.2 Heegner points

Let O, be the order of conductor ¢ in an imaginary quadratic field K. We say that
the pair (E, 0,) satisfies the ramified Heegner hypothesis if the following hold:

e ¢ is prime to N'm
e Every prime dividing m is split in 0.
e Every prime dividing N’ is ramified in &.

o If a prime p divides N’ and 1, has order 2, then the local sign of £ ® 1), is
equal to 1.

This hypothesis corresponds precisely to the dark grey cells in Table 2.

We can consider the character ¢ as a Dirichlet character ¢ : (Z/N')* — C*.
Extend the character to (Z/N’-m)* by composing with the canonical projection
(Z/N'-m)* — (Z/N')* and define

rY(N ={(2%) €To(N"-m): ¢ *(a) =1}.

Let XJ'(N'-m) be the modular curve obtained as the quotient of the extended upper
half plane H* by this group. This modular curve has a model defined over Q and
it coarsely represents the moduli problem of parametrizing quadruples (£, Q, C, [s])
where

e £ is an elliptic curve over C,
e () is a cyclic subgroup of £(C) of order m,
e (' is a cyclic subgroup of £(C) of order N’,

e [s] is an orbit in C'\ {0} under the action of ker(¢)=2) C (Z/N’)*.
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There is a canonical map IT : X' (N’ - m) — Xo(N'-m) which is the forgetful

~Krer 2
map in the moduli interpretation. This map has degree [L : Q], where L := Qk N ).

As in the classical case, there exists a rational modular parametrization
D, XJ(N'-m) = A,

given by sending a point into the Jacobian by choosing the rational oo cusp and then
projecting onto A, using the classical Abel-Jacobi map.

Our strategy is to construct Heegner points on X (N’ - m), which will be the
preimages of the classical Heegner points under II, push them through the modular
parametrization @, to the abelian variety A, and finally project them onto the elliptic
curve .

Since (F, 0,) satisfies the ramified Heegner hypothesis there is a cyclic ideal n’
of norm N’ (which is unique since there is only one prime of K above each prime
divisor of N’) and a cyclic ideal m of norm m (there are several choices, permuted
by the classical Atkin-Lehner operators w, for the primes ¢ dividing m).

A classical Heegner point on Xo(N’ - m) corresponds to a triple

Fy = (Oc,n'm, [a]) € Xo(N"-m)(H,),

where [a] € Pic(0.). Such point is represented by the elliptic curve E, = C/a and
its n’m torsion points E,[n'm] (which are isomorphic to (a(w'm)~'/a)) are defined
over H,.. Using the aforementioned moduli interpretation, points on Xép (N"-m) are
represented by quadruples (., n'm, [a] , [t]) where [t] is an orbit under ker(¢)~2) inside
(Gu/10)".

The action of Gal(Q/H.,) on E,[n'm] gives a map Gal(Q/H,) — (a(w'm)~'/a)*.
Composing such map with the character ¢=2 gives

— -2
p: Gal(Q/H,.) — (a(wm)™'/a)* 5 €.
Its kernel corresponds to an extension of degree [L : Q] of H.. Let H.= H.M.

Proposition 2.2.1. The [L : Q| points II™'(P,) lie on XU (N'-m)(H,) and are per-
muted transitively under the action of Gal(H./H.).

Proof. By the theory of complex multiplication Heegner points lie in the composition
of H. and the ray class field K,y. This is equal to H.({y+), where y is a N'-th root

of unity. It is enough to understand what happens one prime at a time. Take any

~RKer 2
prime p dividing N’ and set L, := Qk W), We are looking for an extension of H, of

degree [L, : Q] contained inside H.(u,). By genus theory, Q(y/p*) C H., therefore

the desired extension is H.Q er(i/)p)' Composing these extensions we end up with

HO"Y — g = ., 0
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2.3 Zhang’s formula

Let (E, 0.) satisfy the ramified Heegner hypothesis. Let x be a ring class character
of Gal(H./K) and consider the character y : Gal(H./K) — C* given by x = x.
This satisfies >~<|A<§ =%

Theorem 2.3.1. With the above notation L(g, X, s) vanishes at odd order at s = 1.
Furthermore, consider the Heegner point

(O.,n'm, [a],1) € XJ(N"-m)(H.),
and denote by P, its image under the modular parametrization ®,. Then
PX= Y X(0)Pf € (Ay(H,)®C)X
oeGal(He/K)

is_non-torsion if and only if L'(g,x,1) # 0. If L'(g,x,1) # 0, PX generates
(A,(H.) ® C)X over K, ® C.

Proof. See | , Theorem 4.3.1], | ], and | , Theorem 1.4.1]. O

We can compute the projection mw to the elliptic curve E using Proposition 2.1.1
as follows.

mwPY) = Y xOmwE@P)= Y X(o)(mwP).

o€Gal(H:/K) o€Gal(H:/K)

This point will be non-torsion if and only if PX is non-torsion, since in that case
(Ay(H.) ® C)X has rank one over K, ® C and there are [K,, : Q] projections.

Note that the point mw(PX) belongs to (E(H,) ® C)X. Finally, since L(g, Y, s) is
equal to L(F, x, s), and using Theorem 2.3.1 we have proved the following theorem.

Theorem 2.3.2. The point mw(PX) belongs to (E(H.) @ C)X. In addition, it is
non-torsion if and only if L'(E/K,x,1) # 0.
2.4 Heegner systems

As in the classical case, the family of Heegner points constructed using different
orders satisfy certain compatibilities.
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Proposition 2.4.1. Let { be a prime such that £ { N'-m and ( is inert in K. Then
for every Heegner point Py € A,(H.) there exists a Heegner point P. € A,(H.) with

Trl:fcz/ﬁc ch = G(CL@)PC, (2.1)
where ay is the £-th Fourier coefficient of g.
Proof. The proof mimics the classical case one (see [ , Proposition 3.7]). O]

To construct a point on £, we have to apply mw to a point on A,. But K,
does not act on E! To overcome this problem, we restrict to primes ¢ which split
completely in L. Let Q. := Trg_y mw(Pe) € E(H.).

Proposition 2.4.2. Let ¢ be a prime such that {4 N'-m, € is inert in K and ¢ splits
completely in L. Then for every Heegner point Q. € E(Hy) there exists a Heegner
point Q. € E(H.) such that

TrHC,g/HC Qcé = ach-

Proof. Apply Try_ /i, Mw to equation (2.1). Since M C H., w commutes with the

trace from H, / H.. Furthermore, since ¢ splits completely in L we know that a, € Q.
Combining these observations we get

TrHC/HC Trﬁc(/gc Trlw(Pce> = a’ZQC

Lastly,
Trg. m, T, . mw(Py) = Try,, /. Ty, m, mw(Pu),

and this expression equals Try, /g, Qce as claimed. O
The previous results are enough for proving a Kolyvagin-type theorem.

Theorem 2.4.3 (Kolyvagin, Bertolini-Darmon). If 7 (w(PX)) is non-torsion, then
dime(E(H,) @ C)x = 1.

Proof. The proof is very similar to the one given in | , Theorem 2.2] with the
following remarks (using their notation and terminology): any p-descent prime is
automatically unramified in L hence K(E[p|) and L are disjoint. We also require
special rational primes ¢ to split completely in L/Q. Recall that L is totally real,
hence such condition is compatible with the other ones and special primes do exist.
The first assertion of Proposition 3.2 in | ] is exactly our Proposition 2.4.2,
and the second one follows from | ] (proof of Proposition 3.7). With these
modifications, the proof of | | holds. O
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2.5 Splitting maps

The goal of this section is to explicitly determine a 1-dimensional factor of A, over M
corresponding to the elliptic curve E, in order to compute some numerical examples.

The modular form ¢ has inner twists | , Proposition 3.2]. More precisely, for
o € Gal(K,/Q), we know that o(a;) = arx,(£) for every ¢ not dividing the level of

g, where o (() = o (1)) /(71 (0)).

We partition the set of primes dividing N into three mutually disjoint subsets:
o A:={p| N :42 has order 1}
e B:={p| N : ¢} has order 2}
o C:={p|N:¢2 has order 3}

Moreover, define ¢4 := Hpe 4 ¥p and define ¥p, ¢ in an analogous way. Note that
¥ = Yapie. Also, define generators op, 0¢ of Gal(Q(i,/—3)/Q) by

O'B(i) = —7:, 03(\/—_3> == \/—_3,
Jc(i) = i, Uc(\/—_g) = —\/—_3.

With these definitions we have
L X;; =1 /op(¢) = Yp /s = V3,
* Xop = V2,
® Xopoe = VBUE
Recall that we had defined
I @kew? _ @mg kerxa

Following the work of Gonzalez and Lario | ], this is the field of definition of all
endomorphisms of the abelian variety A, and, in particular, the abelian variety A,
is isogenous over L to some power of an elliptic curve, called a building block of A,.
We want to obtain an explicit description of this building block. Afterward it will
be easy to find an isomorphism (defined over M) between the building block and F.

Let f, be the conductor of the Dirichlet character y,. If 1 is an endomorphism
of J(I't(N"-m)) (or one of its quotients), we denote by n* the pullback it induces
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on differential forms. For every o € Gal(K,/Q) we will consider the element 7, €
Q ® Endj,(A,) whose action on differentials is given by

m= Y X, (ua,
u mod fo

where a, denotes the operator given by slashing by the matrix ((1) ”/lf“ )
Consider the 2-cocycle ¢(o, 7) given by

G(x;")G(o(x;"))
G(xz1) ’

where G(x) denotes the Gauss sum of the character y. In | ] the authors show
the existence of a suitable splitting map § : Gal(K,/Q) — K,* such that

for every o, 7 € Gal(K,/Q).
We define the element

w = Z B(o) ',

This gives rise to the abelian subvariety wA,, which is a building block. Moreover,
we have an explicit action of this element in terms of the Fourier expansions of g and
its Galois conjugates and the map § (] , Theorem 2.1]). So we are left with the
task of finding such map [ explicitly.

It is clear that 5(Id) = 1, and evaluating the cocycle ¢ at pairs of the form
(0,07!) we obtain, using that a Gauss sum of conductor M has absolute value VM
and that the characters x, are even, that 3(c)B(c)? = cond(x, ). In order to find
such elements we prove the following lemma.

Lemma 2.5.1. Let p € BUC and let a, be the p-th Fourier coefficient of g. Then
a, € Qi) if pe B and a, € Q(v/—3) if pe C. In any case a, has norm p.

Proof. Looking at the curve E over QQ,, the coefficient a, is one of the roots of the
characteristic polynomial attached to the Frobenius element in the minimal (totally
ramified) extension where E acquires good reduction (see for example Section 3 of
[ ]). Since the norm of the local uniformizer in such extension is p (because the
extension ramifies completely) the result follows. O
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According to the previous remarks it is sensible to define

B(op) = [[ a Bloc) =] a

pEB peC

Computing ¢(op,0¢) and using that if y, x’ are two characters of conductors M
and M’ with (M : M') = 1, we have

G(x-xX') =x(M)X'(M)G(x)G(X),

we are forced to set

Blopoc) = ( 11 ap) (wé(H@) (wé(Hp>>-

peEBUC peC peEB

With this definition it is easy to see that 3 satisfies the desired relations, providing
us with the explicit splitting map that allows to effectively determine the building
block. Once we have obtained the building block, we find the 1-dimensional lattice
of periods, from which we can compute explicitly the isomorphism (defined over M)
with our original elliptic curve E.

Remark 2.5.2. Different choices of the splitting map S give rise to different building
blocks.

Remark 2.5.3. It can be easily seen that with this choice of splitting map, the maps
B(oB) ey and B(oc) ', coincide with the Atkin-Lehner operators Wiy _, ,, and
WHpEC p respectively.

2.6 Examples
Consider the elliptic curve £ = 575.cl given by the equation
y? 4y = a® — 2% — 458x + 3943,

and let fp be the corresponding newform of level 575. The local representation at
the prime p = 5 is a principal series and we find, as explained in Subsection 1.6.1, the
newform g € S5(I'0(23), x5). It has a5 = 2 + ¢, which is an element of K, = Q(7) of
norm 5. Using this element we compute the corresponding splitting map [, defined
just by B(o) = 2 +i. Applying the operator w = Id + (2 + i)~ '7,, to both g and
g we find the building block wA, and the corresponding isomorphism defined over
M := Q(&5) with the elliptic curve E.
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e The maximal order in the field K = Q(1/—5) satisfies the ramified Heegner hy-

pothesis in this context (5 is ramified and 23 is split), and it has class number
2. The class field is equal to Q(y/—5,4). The point 7 = (=15 + /=5)/(5 - 23)
is fixed by the matrix (595 %) € I'o(5 - 23) and it has the same character-
istic polynomial as v/—5. Then, computing the modular parametrization and
projecting onto E we obtain the point

€ E(H).

1 - _5_
[2_201,7 80\/25 85v/5

Its trace to E(K) yields the point

26 792 29

{ 1637 -1 3- 3-5%- 127\/—5}

We can also take the maximal order in K = Q(1/—30), whose class field is
H = Q(V/2,v/—=3,/5). Taking the Heegner point 7 = (50 + +/—30)/(5 - 23) we

obtain the point

[13+35_f 5v/—3 — 5¢_ - 65\/— +25V/10 — 25v/—15 + 15v/—30)

on E(H). The trace of this point to K is equal to

—1073213 —1 n 5-13-97-76507y/—30
23.3.2327 2 25.32.233
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