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ABSOLUTE CONTINUITY OF NON-HOMOGENEOUS

SELF-SIMILAR MEASURES

SANTIAGO SAGLIETTI, PABLO SHMERKIN, AND BORIS SOLOMYAK

Abstract. We prove that self-similar measures on the real line are absolutely con-
tinuous for almost all parameters in the super-critical region, in particular confirm-
ing a conjecture of S-M. Ngai and Y. Wang. While recently there has been much
progress in understanding absolute continuity for homogeneous self-similar measures,
this is the first improvement over the classical transversality method in the general
(non-homogeneous) case. In the course of the proof, we establish new results on the
dimension and Fourier decay of a class of random self-similar measures.

1. Introduction and main results

1.1. Non-homogeneous self-similar measures. Given λ1, λ2 ∈ (0, 1) and p ∈ (0, 1),
one can form the self-similar measure νpλ1,λ2

constructed with contraction ratios λ1, λ2
and weight p. That is, νpλ1,λ2

is the only Borel probability measure ν such that

ν = p g1,λ1ν + (1− p) g2,λ2ν,

where g1,λ(x) = λx and g2,λ(x) = λx+ 1. Here, and throughout the article, gν denotes
the image measure: gν(A) = ν(g−1A) for all Borel sets A. When λ1 = λ2, the measure
νpλ := νpλ,λ is the classical (biased) Bernoulli convolution.

Write

spλ1,λ2
=
p log p+ (1− p) log(1− p)

p log λ1 + (1− p) log λ2
for the similarity dimension of νpλ1,λ2

. It is well known that if spλ1,λ2
< 1, then νpλ1,λ2

is
always singular, even though if λ1 + λ2 > 1 its support is an interval.

In the case of Bernoulli convolutions, it was recently proved by the second author
[14] that there exists an exceptional set E ⊂ (1/2, 1) of zero Hausdorff dimension,
such that νpλ is absolutely continuous whenever λ ∈ (1/2, 1) \ E and spλ := spλ,λ > 1

and, moreover, νpλ has a density in Lq if λq−1 > pq + (1 − p)q (this range is sharp up
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to the endpoint). See Theorem 1.3, Theorem 9.1 and discussion afterwards in [14] for
details. This improved several earlier results [18, 12, 7, 13, 15] providing various bounds
on the size of exceptional sets for different notions of smoothness of νpλ. We remark,
in particular, that in an early application of the so-called “transversality method”, the

third author already in 1995 established absolute continuity of ν
1/2
λ for Lebesgue almost

all λ ∈ (1/2, 1) [18]. Also very recently, P. Varjú [19] established absolute continuity of
νpλ for many explicit algebraic values of λ near 1.

In the general case λ1 6= λ2, much less is known. For p = 1/2, Jörg Neunhäuserer [10]

and Sze-Man Ngai and Yang Wang [11] proved that ν
1/2
λ1,λ2

is absolutely continuous for
almost all λ1, λ2 in a certain simply connected region which is very far from covering the

whole super-critical parameter region λ1λ2 > 1/4 (which corresponds to s
1/2
λ1,λ2

> 1), and
in particular is disjoint from a neighborhood of (1, 1). Ngai and Wang conjectured that,

in fact, ν
1/2
λ1,λ2

is absolutely continuous for almost all λ1, λ2 ∈ (0, 1) such that λ1λ2 > 1/4.
This fits into the more general folklore conjecture that self-similar measures should be
generically absolutely continuous in the super-critical regime. Recently, Hochman [8]
proved that νpλ1,λ2

has Hausdorff dimension 1 for all λ1, λ2 such that spλ1,λ2
> 1, outside

of an exceptional set of Hausdorff dimension 1, which is uniform in p. However, it does
not seem possible to obtain absolute continuity from Hochman’s approach.

The reason why the non-homogeneous case λ1 6= λ2 is much more difficult than the
homogeneous one is that while νpλ is an infinite convolution of Bernoulli measures, νpλ1,λ2

is not. The convolution structure is crucial to all the works [18, 12, 13, 15, 14].
In this article we give a positive answer to the conjecture of Ngai and Wang, and in

fact prove a stronger statement for any number of maps and arbitrary weights p. Given
λ = (λ1, . . . , λk) ∈ (0, 1)k, translations t = (t1, . . . , tk) ∈ Rk, and a probability vector
p = (p1, . . . , pk), let ν = νpλ,t be the associated self-similar measure, i.e.

(1) ν =
k∑

i=1

pi giν, where gi(x) = λix+ ti.

Write

s(λ,p) =

∑k
i=1 pi log(pi)∑k
i=1 pi log(λi)

for the similarity dimension of νpλ,t, and recall that νpλ,t is always singular if s(λ,p) < 1.
Our main result is then the following.

Theorem 1.1. Fix k ≥ 2, distinct translations t1, . . . , tk ∈ R and a probability vector
p = (p1, . . . , pk). There exists a set

Ep ⊂ Rp := {(λ1, . . . , λk) ∈ (0, 1)k : s(λ,p) > 1}

of zero Lebesgue measure such that the following holds: for any λ ∈ Rp \ Ep, the
self-similar measure νpλ,t is absolutely continuous.
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In fact, we establish this result by proving that it holds for almost all λ in each
curve (λ, λβ2, . . . , λβk), where the numbers βi > 0 are fixed; see Proposition 6.1. Un-
fortunately, we do not obtain any estimates on the dimension of the set of exceptional
parameters, nor any information about the density. Nevertheless, this is the first result
for absolute continuity of non-homogeneous self-similar reasons extending beyond what
is achievable by the transversality method of [18, 12, 10, 11].

1.2. Outline of proof. We give a rough outline of the proof of Theorem 1.1 for k = 2.
In this case the translations do not play any role, and we may assume that t1 = 0,
t2 = 1. As mentioned before, νpλ1,λ2

is not a convolution. Indeed, if one wishes to choose

a point x ∈ R at random according to νpλ1,λ2
, then by the self-similarity relation in (1),

it suffices to consider an i.i.d. sequence ω̃ := (ω̃n)n∈N ⊆ {1, 2} of Bernoulli random
variables with parameter 1− p and take x as the unique element in R satisfying

(2) {x} =
⋂

n∈N

Bω̃|n

where ω̃|n = (ω̃1, . . . , ω̃n) ∈ {1, 2}n and, for each u ∈ {1, 2}n, we put

Bu := gu1 ◦ · · · ◦ gun([−R,R])

for R > 0 sufficiently large so as to guarantee that gi([−R,R]) ⊂ [−R,R] for i = 1, 2
(the fact that λ1, λ2 < 1 allows us to find such an R). From this description it follows
that νpλ1,λ2

is the distribution of the random sum

(3)
∑

n∈N

(
n−1∏

j=1

λω̃j

)
tω̃n

with the convention
∏0

j=1 λω̃j
= 1, from which one sees that νpλ1,λ2

is not a convo-

lution since the summands in (3) are not independent. Nevertheless, there exists a
decomposition

(4) νpλ1,λ2
=

∫
η(ω) dP(ω),

where the η(ω) = η
(ω)
λ1,λ2,p

are random measures which are not strictly self-similar, but
still possess a kind of stochastic self-similarity (see (8) below) and, crucially, do have a
convolution structure. This decomposition can be described as follows. Pick r ∈ N and
notice that it makes no difference if in (2) we take instead the intersection in “blocks of
r bits”, i.e.

(5) {x} =
⋂

n∈N

Bω̃|rn.

This corresponds to thinking of ω̃ as a sequence ω = (ωn)n∈N in ({1, 2}r)N, where each
ωi is chosen independently according to the rule P(ωi = u) = p(u)(1− p)r−(u) =: pu for
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each u ∈ {1, 2}r, where we set (u)1 := |{i : ui = 1}|. Now, for each k = 0, . . . , r we
define the weight

qk :=
∑

u∈{1,2}r :(u)1=k

pu = pk(1− p)r−k|{u : (u)1 = k}|.

Then, from the conditional probability rule

pu = P((ωi) = (u)1)P(ωi = u|(ωi) = (u)1) = q(u)1P(ωi = u|(ωi) = (u)1)

it follows that each ωi can be chosen in a 2-step procedure, by first selecting the value
of ωi := (ωi) according to the probability vector q = (q0, . . . , qr) and then choosing the
“final” value of ωi uniformly among all possibilities u with (u)1 = ωi. In conclusion, we
may choose x at random according to νpλ1,λ2

by following this 3-step procedure:

i. We choose first ω = (ωi)i∈N ∈ {0, . . . , r}N according to the Bernoulli product
measure P with marginals q.

ii. Given ω, we choose each ωi for each i ∈ N independently uniformly among all
possibilities allowed by the value of ωi.

iii. Having obtained ω, we take x as in (5).

If for each ω ∈ {0, . . . , r}N we define η(ω) as the measure which selects a point x at
random according to (ii)+(iii) above, then it is clear that (4) holds. To see that η(ω) is
indeed a convolution, we notice that by (5) the measure νpλ1,λ2

is the distribution of the
random sum

(6)
∑

n∈N

(
n−1∏

j=1

λωj

)
gωn(0)

for λωj
:= λω̃r(j−1)+1

. . . λω̃rj
and gωn

:= gω̃r(j−1)
◦ · · · ◦ gω̃rj

, and thus that η(ω) is the

distribution of the random sum in (6) given the values of the sequence ω. But since the
value of λωj

depends on ωj only through ωj = (ωj), it follows that η(ω) is a convolution
since the summands in (6) are independent once the value of ω is fixed.

We then prove absolute continuity of νpλ1,λ2
by showing that η(ω) is absolutely continu-

ous P-almost surely (for a.e. λ1, λ2), and we do this by following the approach from [13].
Namely, exploiting the convolution structure we decompose each η(ω) = (η′)(ω) ∗ (η′′)(ω),
where (η′)(ω) and (η′′)(ω) are random self-similar measures in the same general class.

More precisely, recall from (6) that η(ω) is the distribution of a random sum
∑∞

n=1X
(ω)
n

of independent discrete random variables (they also depend on r). We define (η′)(ω) as

the distribution of
∑

s|nX
(ω)
n , and (η′′)(ω) as the distribution of

∑
s∤nX

(ω)
n , for a suitable

s ∈ N.
To conclude, we prove that P-almost surely (η′)(ω) has power Fourier decay and (η′′)(ω)

has full Hausdorff dimension, provided r and then s were taken large enough. Once
this is achieved, absolute continuity follows from a Lemma from [13].
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Proving the required properties of (η′)(ω) and (η′′)(ω) involves extending to this ran-
dom setting a number of results that were known in the setting of deterministic self-
similar measures: the Erdős-Kahane method for obtaining power Fourier decay, and a
theorem of Hochman [7] giving mild sufficient conditions for a self-similar measure to
have full dimension. While we follow the strategies of the deterministic case, obtaining
these extensions involves a fair amount of work, so these will take up most of the paper.

1.3. A class of random self-similar measures. As explained above, our approach
depends on the study of a class of random measures which we now introduce formally.
They are closely related to 1-variable fractals (also sometimes called homogeneous ran-
dom fractals). The results we obtain for these measures may be of independent interest.

We will work with a finite set I of iterated function systems of similarities Φ(i) =

(f
(i)
1 , . . . , f

(i)
ki
), i ∈ I. We assume throughout that each IFS is homogeneous and uni-

formly contracting, i.e. the maps f
(i)
j are of the form

f
(i)
j (x) = λix+ t

(i)
j

for certain constants λi ∈ (0, 1) and t
(i)
j ∈ R. We emphasize that we allow ki to be 1 for

some i, i.e. to have degenerate iterated function systems. Notice that, since the maps

f
(i)
j are uniformly contractive, if R > 0 is sufficiently large then f

(i)
j ([−R,R]) ⊂ [−R,R]

for all i ∈ I, j ∈ {1, . . . , ki}.
Given a sequence ω = (ωn)n∈N ∈ Ω := IN, we define the space of words of length n

(possibly with n = ∞) with respect to ω by the formula

X(ω)
n :=

n∏

j=1

{1, . . . , kωj
}.

Note that all X(ω)
n are subsets of a common tree Xn :=

∏n
j=1{1, . . . , kmax}, for kmax :=

maxi∈I ki. For each n ∈ N and u ∈ X(ω)
n we consider the interval

(7) B(ω)
u := f (ω)

u ([−R,R]),

where f
(ω)
u := f

(ω1)
u1 ◦ · · · ◦ f

(ωn)
un . Furthermore, we define the compact set

C(ω) :=
⋂

n∈N

⋃

u∈X(ω)
n

B(ω)
u .

Note that, for every n, we have the inclusion B
(ω)
ul ⊂ B

(ω)
u , for each u ∈ X(ω)

n and
l ∈ {1, . . . , kωn+1} (where ul denotes the concatenation of u and l). In other words,
these intervals are nested. Moreover, their diameters tend to zero as n→ ∞ uniformly

over u ∈ X(ω)
n . Alternatively, we have that C(ω) = Πω

(
X(ω)

∞

)
, where Πω is the coding

map given by

{Πω(u)} =

∞⋂

n=1

B
(ω)
u|n,
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where u|n is the restriction of the infinite word u ∈ X(ω)
∞ to its first n coordinates.

Equivalently, the coding map is defined by the formula

Πω(u) :=
∑

n∈N

(
n−1∏

j=1

λωj

)
t(ωn)
un

with the convention that
∏0

j=1 λωj
= 1.

Given u ∈ X(ω)
n , we also define the cylinder [u]ω as the set of infinite words in X(ω)

∞

which start with u, and note that Πω([u]ω) ⊂ B
(ω)
u . We remark that we do not assume

that the intervals {B
(ω)
u : u ∈ X(ω)

n } are disjoint or any other separation condition.
Also, even though C(ω) is defined for every ω ∈ Ω, in the sequel we will be drawing ω
according to a probability measure P, which we shall refer to as the selection measure.

We will not be interested in the sets C(ω) themselves, but rather in measures supported

on them. For each i ∈ I, let pi = (p
(i)
1 , . . . , p

(i)
ki
) be a probability vector with strictly

positive entries. On each X(ω)
∞ we can then define the product measure

η(ω) :=
∞∏

n=1

pωn .

The projection of η(ω) via the coding map is a Borel probability measure η(ω) sup-
ported on C(ω). Equivalently, we may define η(ω) as the distribution of the random sum
Πω((Un)n∈N), where (Un)n∈N is a sequence of independent random variables satisfying
for every n ∈ N and j = 1, . . . , kωn

P(Un = j) = p
(ωn)
j .

In the deterministic case |I| = 1, η(ω) is simply a homogeneous self-similar measure
on C(ω). Furthermore, notice that in general η(ω) satisfies the following “dynamic self-
similarity” relation

η(ω) =
∑

u∈X(ω)
1

p(ω1)
u · f (ω)

u η(Tω)

where T denotes the left-shift on Ω. Iterating this, we get

(8) η(ω) =
∑

u∈X(ω)
k

pωu · f (ω)
u η(T

kω)

for each k ∈ N, where pωu = pω1
u1
· · · pωk

uk
.

Finally, in the sequel we shall refer to the triple Σ :=
(
(Φ(i))i∈I , (pi)i∈I ,P

)
as the

model under consideration.
The following are our main results on the measures η(ω).

Theorem 1.2. Let Σ be a model for which P is T -invariant and ergodic. Then there
exists α ∈ [0, 1] such that for P-almost all ω, the measure η(ω) has exact dimension α,
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that is,

lim
r↓0

log(η(ω)(B(x, r)))

log r
= α

for η(ω)-almost all x.

We will call the value of α given by this theorem the dimension of the model Σ, and
denote it dim(Σ). The proof of Theorem 1.2 will reveal also that the projections Πω

are almost surely dimension-conserving: see Corollary 3.6.
Given a model Σ, we define the similarity dimension s-dim(Σ) of Σ as

s-dim(Σ) :=

(∫

Ω

log(λω′

1
)dP(ω′)

)−1 ∫

Ω

kω′

1∑

j=1

p
(ω′

1)
j log p

(ω′

1)
j dP(ω′).

As we will see in Section 3, this number is a “candidate” for the dimension dim(Σ), and
it is always an upper bound for dim(Σ). For example, if |I| = 1, it agrees with the
standard similarity dimension of a self-similar measure. One way in which one can have
a strict inequality dim(Σ) < s-dim(Σ) is if there is an exact overlap, that is, if there

exist n ∈ N, ω ∈ Ω and u, v ∈ X(ω)
n such that f

(ω)
u = f

(ω)
v and u 6= v.1 There is also a

trivial strict inequality if s-dim(Σ) > 1.
For deterministic self-similar measures, Hochman [7, Theorem 1.1] proved that the

dimension equals the minimum between the similarity dimension and 1 if a quantita-
tive non-overlapping condition holds. We obtain an analogous result for the random

measures η(ω). For u, v ∈ X(ω)
n define

d(ω)(u, v) := |f (ω)
u (0)− f (ω)

v (0)|

and

∆(ω)
n = ∆(ω)

n (Σ) :=

{
min{d(ω)(u, v) : u, v ∈ X(ω)

n , u 6= v} if |X(ω)
n | > 1

0 if |X(ω)
n | = 1.

.

Note that exact overlapping occurs for η(ω) if and only if ∆
(ω)
n = 0 and |X(ω)

n | > 1 for
some n ∈ N (equivalently, all sufficiently large n). The following is the extension of [7,
Theorem 1.1] to our class of random self-similar measures.

Theorem 1.3. If P is an invariant ergodic probability measure for the left-shift T on
Ω, then any model Σ with selection measure P such that ki ≥ 2 for some i ∈ I satisfies
the following:

If dim(Σ) < min{1, s-dim(Σ)} then

log∆
(·)
n

n

P
−→ −∞,

1This is equivalent to there being exact coincidences f
(ω)
u = f

(ω)
v for u and v of not necessarily the

same length.
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i.e. for every M > 0 one has

lim
n→+∞

P

({
ω ∈ Ω :

log∆
(ω)
n

n
≤ −M

})
= 1.

Our final main result concerns Fourier decay of η(ω). Write P1 for the Borel proba-
bility measures on the real line. The Fourier transform of µ ∈ P1 is

µ̂(ξ) =

∫
eiπxξ dµ(x).

(We choose this slightly unusual normalization for technical reasons.) Denote

D1(σ) = {µ ∈ P1 : |µ̂(ξ)| = Oµ(|ξ|
−σ)} and D1 =

⋃

σ>0

D1(σ).

That is, D1 is the set of measures with power Fourier decay. (We note that belonging
to D1(σ) guarantees a minimum decay rate for all large frequencies; faster decay for
some or all frequencies is allowed.)

We note that if a model is such that for each i all the translations t
(i)
j , j ∈ {1, . . . , ki}

are equal (this includes the possibility ki = 1), then the generated measures are all a
single atom, so we have to exclude this class of models in order to have any chance of
obtaining power Fourier decay.

Definition 1.4. Let us say that a model Σ =
(
(Φ(i))i∈I , (pi)i∈I ,P

)
is non-degenerate if

there exist i ∈ I and 1 ≤ u1 < u2 ≤ ki such that t
(i)
u1 6= t

(i)
u2 (in particular, ki ≥ 2).

Note that this definition is independent of the λi and the selection measure P. The
next theorem asserts that almost all measures generated by “nearly all” non-degenerate
models with Bernoulli selection measure have power Fourier decay. The precise state-
ment is fairly technical, and we need to keep track of the measurability of the relevant
sets in order to be able to reverse the order of quantifiers at a later point.

Theorem 1.5. Let I be a finite set, and let (βi)i∈I be strictly positive numbers. Also,
let P be a Bernoulli measure on Ω = IN.

Then there exists a Borel set G ⊂ Ω× (0, 1) such that the following hold:

(i). For P-almost all ω,

dimH{λ : (ω, λ) /∈ G} = 0.

(ii). If (ω, λ) ∈ G, and Σ =
(
(Φ(i))i∈I , (pi)i∈I ,P

)
is any non-degenerate model with

selection measure P, such that the contraction ratio of the maps in Φ(i) is λβi,
then η(ω) ∈ D1.

This article is organized as follows. In Section 2 we fix some notational conventions.
We establish Theorems 1.2, 1.3 and 1.5 in Sections 3, 4 and 5, respectively. We complete
the proof of Theorem 1.1 in Section 6. Sections 3–6 can be read independently of each
other.
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2. Notation

In this section we introduce notation to be used throughout the rest of the article.

Let Σ =
(
(Φ(i))i∈I , (pi)i∈I ,P

)
be a model as above, with Φ(i) = (f

(i)
1 , . . . , f

(i)
ki
), i ∈ I,

and

f
(i)
j (x) = λix+ t

(i)
j .

We set λmax = max{λi : i ∈ I} and λmin = min{λi : i ∈ I}.

We have already defined f
(ω)
u := f

(ω1)
u1 ◦ · · · ◦ f

(ωn)
un and pωu = pω1

u1
· · · pωk

uk
for u ∈ X(ω)

n .
We also write

f (ω)
u (x) = λ(ω)x+ t(ω)u

for the contraction ratio and translation parts of f
(ω)
u (x). Note that, with this notation,

we have

(9) ∆(ω)
n (Σ) = min

u 6=v∈X(ω)
n

|t(ω)u − t(ω)v |,

provided |X(ω)
n | > 1.

We will often need to consider parametrized families of models, or several related
models at once. These will be denoted by Σλ, Σ

′, etc, with corresponding adaptations
for each of the components of the model.

The notation P will always refer to the selection measure for a model, while E will refer
to expectation with respect to P. Probability and expectation for any other probability
spaces will be denoted by P,E, respectively.

We use Landau’s O(·) notation: by A = O(B) we mean that |A| ≤ CB for some
positive constant C > 0. If C is allowed to depend on some parameter, this is indicated
as a subscript; thus, A = OR(B) means that |A| ≤ C(R)B for some positive function
C(R).

The set of Borel probability measures on a set A ⊆ R will be denoted P(A). Finally,
given r > 0 and a measure ν ∈ P(R), we denote the push-forward of ν under the map
that scales by r by r · ν.

Other than the notation introduced up to this point, the notation in each of the later
sections is independent of each other, so that the same symbol may refer to different
concepts in different sections.

3. Exact dimensionality and dimension conservation

In this section we prove Theorem 1.2. Consider the product space

Ω× X∞ = (I × {1, . . . , kmax})
N

and let P be the probability measure on Ω× X∞ given by the formula

(10)

∫

Ω×X∞

f(ω, u)dP(ω, u) =
∫

Ω

∫

X∞

f(ω, u)dη(ω)(u)dP(ω)

for any bounded measurable function f : Ω× X∞ → R.
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For simplicity, we abuse the notation slightly and use T to denote both the left-shift

on Ω and on Ω× X∞. Throughout this section, it will be convenient to define p
(i)
j = 0

if j > ki. We start by showing that P is T -invariant and ergodic if P is.

Lemma 3.1. If (Ω,B(Ω),P, T ) is an ergodic measure preserving system, then so is
(Ω× X∞,B(Ω× X∞),P, T ).

Proof. Given (ω, u) ∈ In × {1, . . . , kmax}
n, let [ω, u] denote the corresponding cylinder

set:
[ω, u] = {(ω′, u′) ∈ Ω× X∞ : ω′

i = ωi, u
′
i = ui for i = 1, . . . , n}.

Cylinder sets form a semi-algebra that generates B(Ω×X∞). It follows from (10) that

P([ω, u]) = P([ω]) p(ω1)
u1

· · · p(ωn)
un

,

P(T−1[ω, u]) = P(T−1[ω])p(ω1)
u1

· · · p(ωn)
un

,

so P is T -invariant. Likewise, if [ω, u], [ω′, u′] are cylinders of lengths m,m′ respectively,
then for any j > m,

P([ω, u] ∩ T−j([ω′, u′])) = P([ω] ∩ T−j[ω′])p(ω1)
u1

· · ·p(ωm)
um

· p
(ω′

1)

u′

1
· · · p

(ω′

m′
)

u′

m′

,

so that, using [20, Theorem 1.17],

lim
n→∞

1

n

n−1∑

j=0

P([ω, u] ∩ T−j[ω′, u′])

= p(ω1)
u1

· · · p(ωm)
um

· p
(ω′

1)

u′

1
· · ·p

(ω′

m′
)

u′

m′

lim
n→∞

1

n

n−1∑

j=0

P([ω] ∩ T−j([ω′]))

= p(ω1)
u1

· · · p(ωm)
um

· p
(ω′

1)

u′

1
· · ·p

(ω′

m′
)

u′

m′

P([ω])P([ω′])

= P([ω, u])P([ω′, u′]),

which, relying on [20, Theorem 1.17] again, shows that P is T -ergodic. �

We now start the proof of Theorem 1.2. We follow the ideas in [5, 3] which deal with
related, but different, models of random measures. We shall begin by showing that the
measures η(ω) are exact-dimensional.

Lemma 3.2. If P is ergodic, then for P-almost every pair (ω, u) ∈ Ω× X∞

lim
n→+∞

− log(η(ω)([u|n]ω))

n
=

∫

Ω×X∞

− log(p
(ω′

1)

u′

1
)dP(ω′, u′) =: α1.

Proof. The lemma is a straightforward consequence of the ergodic theorem for the pair

(P, T ), since for any (ω, u) ∈ Ω×X∞ one has η(ω)([(u1, . . . , un)]ω) =
∏n

i=1 p
(ωi)
ui , so that

(11)
log(η(ω)([u|n]ω))

n
=

1

n

n∑

i=1

log(p(ωi)
ui

) =
1

n

n−1∑

i=0

f(T i(ω, u)),
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where f : Ω × X∞ → R is the function given by f(ω, u) := log(p
(ω1)
u1 ). We observe

that, since u1 ∈ {1, . . . , kω1} for P-a.e. (ω, u), then f is P-integrable so that the ergodic
theorem can truly be applied. �

Remark 3.3. Since P is given by (10), it follows from Lemma 3.2 that for P-almost
every ω ∈ Ω the measure η(ω) is exact-dimensional in the sense that the limit in the
left-hand side of (11) exists for η(ω)-almost every u and is independent of u. We say
then that the exact dimension of η(ω) exists and equals dim η(ω) := α1.

In the sequel, it will be convenient to consider the following joint construction of
(η(ω))ω∈Ω. First, let (O,F ,P) be a probability space on which one has defined an array

{U
(i)
n : i ∈ I , n ∈ N} of independent random variables, each U

(i)
n with distribution pi

for every n ∈ N. Then, for each ω ∈ Ω consider the random sequence X
(ω)

= (X
(ω)

n )n∈N

given by the formula X
(ω)

n := U
(ωn)
n for all n ∈ N. Define also for each ω ∈ Ω and n ∈ N0

the random variables T nX(ω) := ΠTnω(T
nX

(ω)
), where we write T to denote both the

left-shift on Ω and on X∞. For simplicity, we denote T 0X(ω) by X(ω). Let us observe
that, for each ω ∈ Ω and n ∈ N, this construction has the following properties:

PI. X
(ω)

and X(ω) have distribution η(ω) and η(ω), respectively.

PII. T nX
(ω)

and T nX(ω) have distribution η(T
n(ω)) and η(T

n(ω)), respectively.

PIII. The random vector (X
(ω)

1 , . . . , X
(ω)

n ) is independent of T nX
(ω)

.

Moreover, one has the following classical result on the existence of a regular conditional

probability of X
(ω)

given X(ω); see [16] for a clean proof.

Theorem 3.4. For all ω ∈ Ω there exists a function Q(ω) : R × B(X(ω)
∞ ) → [0, 1] such

that:

(i). For η(ω)-almost every x the map Q(ω)(x, ·) is a probability measure on (X(ω)
∞ ,B(X(ω)

∞ ))

supported on the fiber Π−1
ω ({x}) = {u ∈ X(ω)

∞ : Πω(u) = x}.

(ii). For every B ∈ B(X(ω)
∞ ) the mapping Q(ω)(·, B) is Borel measurable and satisfies

P(X
(ω)

∈ B) =

∫
Q(ω)(X(ω), B)dP.

(iii). For each B ∈ B(X(ω)
∞ ), one has that for η(ω)-almost every x

Q(ω)(x,B) = lim
r→0

P(X
(ω)

∈ B |X(ω) ∈ B(x, r)).

Let us now return to the proof of Theorem 1.2. We will show that in fact α is given
by

(12) α =

∫
Ω×X∞

[
− log(p

(ω′

1)

u′

1
) + log

(
P(X

(ω′)

1 = u′1|X
(ω′) = Πω′(u′))

)]
dP(ω′, u′)

∫
−λω′

1
dP(ω′)

.
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Here P(X
(ω′)

1 = u′1|X
(ω′) = Πω′(u′)) is defined as in the right-hand side of Theorem

3.4(iii), i.e. it equals

lim
r→0

P(X
(ω′)

1 = u′1|X
(ω′) ∈ B(Πω′(u′), r)).

In other words, dim(Σ) equals its similarity dimension, minus a quantity (the quotient
of “fiber entropy” and the Lyapunov exponent) that measures, in some sense, the size
of the overlaps. To show this, for each n ∈ N and u ∈ X∞ define

gn(ω, u) :=





− log
(
P(X

(ω)

1 = u1|X
(ω) ∈ Bn(ω, u))

)
if u ∈ X(ω)

∞

0 otherwise,

where Bn(ω, u) := Bn(ω,Πω(u)) = B(Πω(u), 2Rλω1 . . . λωn). It is not difficult to check
that each gn is indeed B(Ω× X∞)-measurable. Furthermore, let

g∞(ω, u) := lim
n→∞

gn(ω, u),

whenever u ∈ X(ω)
∞ and the limit exists, and set g∞(ω, u) = 0 otherwise. Then g∞ is

measurable (since the gn are), and it follows from Theorem 3.4(iii) and the definition
(10) that, for P-almost all (ω, u),

gn(ω, u) → g∞(ω, u) = − log
(
P(X

(ω)

1 = u1|X
(ω) = Πω(u))

)
.

Furthermore, by the proof of [4, Proposition 3.5] (see also [3, Proposition 2.3]), there
exists a constant K > 0 independent of ω such that

∫

X(ω)
∞

[
sup
n∈N0

gn(ω, u)

]
dη(ω)(u) ≤ H(pω1) +K ≤ log kmax +K.

Now, we invoke a result of Maker [9].

Theorem 3.5. Let (X,B,P, T ) be a measure-preserving system and (gn)n∈N be a se-
quence of integrable functions on (X,B,P). If gn(x) → g∞(x) for P-a.e. x ∈ X and
supn∈N |gn| is integrable, then for P-a.e. x

lim
n→+∞

1

n

n−1∑

k=0

gn−k(T
kx) = g∞(x),

where

g∞(x) = lim
n→+∞

1

n

n−1∑

k=0

g∞(T kx).

Furthermore, if (X,B,P, T ) is ergodic then g∞(x) = P(g∞) for P-a.e. x ∈ X.
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It follows from Lemma 3.1, Theorem 3.5 and our previous discussion that if P is
ergodic, then for P-almost every (ω, u)
(13)

lim
n→∞

1

n

n−1∑

k=0

gn−k(T
k(ω, u)) = −

∫

Ω×X∞

log
(
P(X

(ω′)

1 = u′1|X
(ω′) = Πω′(u′))

)
dP(ω′, u′).

Let us compute the term gn−k(T
k(ω, u)) for each k = 0, . . . , n−1. Note that if u ∈ X(ω)

∞

then

gn−k(T
k(ω, u)) = − log

(
P(X

(T kω)

1 = (T ku)1|X
(T kω) ∈ Bn−k(T

k(ω, u)))
)

= − log

(
P(X

(T kω)

1 = (T ku)1, X
(T kω) ∈ Bn−k(T

k(ω, u)))

P(X(T kω) ∈ Bn−k(T k(ω, u)))

)

= − log

(
P(X

(ω)

k+1 = uk+1, T
kX(ω) ∈ Bn−k(T

k(ω, u)))

P(T kX(ω) ∈ Bn−k(T k(ω, u)))

)

where, for the last inequality, we use property (PII) of the construction of the (X
(ω)

)ω∈Ω.

Now, since the events in the last line depend only on T kX
(ω)

, using property (PIII) we
can rewrite the last line as

− log

(
P(X

(ω)
|k + 1 = u|k + 1 , T kX(ω) ∈ Bn−k(T

k(ω, u)))

P(X
(ω)

|k = u|k , T kX(ω) ∈ Bn−k(T k(ω, u)))

)

by multiplying and dividing by P(X
(ω)

|k = u|k) inside the logarithm. Furthermore,
notice that

(14) {X
(ω)

|k = u|k , T kX(ω) ∈ Bn−k(T
k(ω, u))} = {X

(ω)
|k = u|k , X(ω) ∈ Bn(ω, u)}.

Indeed, the equality in (14) follows at once upon noticing that for all u ∈ X(ω)
∞

(15) f
(ω)
u|k (ΠT kω(T

ku)) = Πω(u)

and for every v, v′ ∈ R

(16) |f (ω)
u|k (v)− f

(ω)
u|k (v

′)| = λω1 · · ·λωk
|v − v′|.

Thus, we obtain

(17) gn−k(T
k(ω, u)) = − log

(
P(X

(ω)
|k + 1 = u|k + 1 , X(ω) ∈ Bn(ω, u))

P(X
(ω)

|k = u|k , X(ω) ∈ Bn(ω, u))

)
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so that for all n ∈ N the average An(ω, u) =
1
n

∑n−1
k=0 gn−k(T

k(ω, u)) telescopes to yield

An(ω, u) = −
logP(X

(ω)
|n = u|n , X(ω) ∈ Bn(ω, u))

n
+

logP(X(ω) ∈ Bn(ω, u))

n

= −
logP(X

(ω)
|n = u|n)

n
+

logP(X(ω) ∈ Bn(ω, u))

n
(18)

where, for the last equality, we use that {X
(ω)

|n = u|n} ⊆ {X(ω) ∈ Bn(ω, u)}, a
fact which follows again from (15) and (16) upon noticing that the image of ΠTnω is

contained in [−R,R]. By property (PI) of the construction of the (X
(ω)

)ω∈Ω, the first
term in the right-hand side of (18) converges to α1 as n → +∞ for P-almost every
(ω, u). Therefore, by Lemma 3.2 and (13), we conclude that P-almost surely

lim
n→+∞

− logP(X(ω) ∈ Bn(ω, u))

n
= α1 − α2,

where α2 is the right-hand side of (13).
Now, recall that Bn(ω, u) = B(Πω(u), 2Rλω1 . . . λωn) and also note that

lim
n→∞

− log(2Rλω1 . . . λωn)

n
=

∫
−λω′

1
dP(ω′)

for P-almost every ω by the ergodic theorem. Thus, from (PI) and the representation
of P in (10), we deduce that η(ω) is exact-dimensional for P-almost every ω, with exact
dimension given by (12). This concludes the proof.

The following corollary is a straightforward consequence of the proof of Theorem 1.2.

Corollary 3.6. If P is ergodic then the projection Πω is dimension-conserving for P-
almost every ω ∈ Ω, i.e. the measures η(ω) and η(ω) are both exact-dimensional and,

furthermore, for η(ω)-almost every x ∈ R the measure Q
(ω)
x := Q(ω)(x, ·) is also exact-

dimensional and satisfies the equality

dim η(ω) = dimQ(ω)
x + dim η(ω).

Proof. By taking n→ +∞ in (17) we obtain for P-almost every (ω, u) that

g∞(T k(ω, u)) = − log(P(X
(ω)

|k + 1 = u|k + 1 |X(ω) = Πω(u)))

+ log(P(X
(ω)

|k = u|k |X(ω) = Πω(u))).

In particular, we see that

1

n

n−1∑

k=0

g∞(T k(ω, u)) = −
log(P(X

(ω)
|n = u|n |X(ω) = Πω(u)))

n
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which, by the ergodic theorem for the pair (P, T ), implies that for P-a.e. ω we have

(19) α2 = P(g∞) = lim
n→+∞

−
log(P(X

(ω)
|n = u|n |X(ω) = Πω(u)))

n

for η(ω)-a.e. u ∈ X∞. Now, let us take ω ∈ Ω such that (19) holds η(ω)-almost surely.
Using (iii) in Theorem 3.4, one can show that, for η(ω)-almost every u, the equality

Q(ω)(Πω(u), [u|n]ω) = P(X
(ω)

|n = u|n |X(ω) = Πω(u))

holds for all n ∈ N. From this and (19) we deduce that for η(ω)-a.e. x the measure

Q
(ω)
x is exact-dimensional and, furthermore, satisfies dimQ

(ω)
x = α2. The corollary now

follows from (12) and Remark 3.3. �

4. Dimension, entropy and super-exponential concentration

4.1. Preliminaries on entropy and entropy dimension. In this section we will
prove Theorem 1.3. Throughout this section, we work with a fixed model Σ :=(
(Φ(i))i∈I , (pi)i∈I ,P

)
for which P is a T -invariant and ergodic measure.

We start by reviewing some definitions and facts related to entropy. The Shannon
entropy of a probability measure ν with respect to a countable partition E is given by
the formula

H(ν, E) := −
∑

E∈E

ν(E) log ν(E),

where the logarithm is (from now onwards) to base 2, and 0 log 0 = 0. The conditional
entropy with respect to the countable partition F is then defined as

H(ν, E|F) :=
∑

F∈F :ν(F )>0

ν(F )H(νF , E)

where νF := 1
ν(F )

ν|F is the conditional measure on F . For a probability vector q =

(q1, . . . , qk) we write

H(q) := −
k∑

i=1

qi log qi.

Finally, we write Hn(ν) := 1
n
H(ν,Dn) for the normalized n-scale entropy of ν, where

Dn is the family of n-dyadic intervals given by

Dn =

{[
j

2n
,
j + 1

2n

)
: j ∈ Z

}
.

Below we collect some standard properties of entropy we are to use in the sequel.
We denote the total variation distance between Borel probability measures by dTV , and
recall that it is defined as

dTV (ν1, ν2) := sup
A∈B(R)

|ν1(A)− ν2(A)|.

Proposition 4.1. The entropy H satisfies the following properties:
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i. If ν is supported on k elements of E then H(ν, E) ≤ log k.
ii. If E refines F then H(ν, E) = H(ν,F) +H(ν, E|F).
iii. Both H(·, E) and H(·, E|F) are concave.
iv. If each element of E intersects at most k elements of F and vice versa then

|H(ν, E)−H(ν,F)| = O(log k)

independently of ν. In particular, if ν = λ · ν̃ + x with C−1 < λ < C then

|H(ν,Dn)−H(ν̃,Dn)| = OC(1)

independently of n, λ and x.
v. If µ, ν ∈ P([−R,R]) then for all n ∈ N

H(µ ∗ ν,Dn) ≥ H(µ,Dn)−OR(1).

vi. Given ε > 0 there exists δ > 0 such that if ν, ν̃ are probability measures with
dTV (ν, ν̃) < δ then for any partition E with k elements

|H(ν, E)−H(ν̃, E)| < ε log k +H(ε).

In particular, if ν, ν̃ ∈ P([−R,R]) are such that dTV (ν, ν̃) < δ, then

|Hm(ν)−Hm(ν̃)| < ε

(
log 2R

m
+ 1

)
+
H(ε)

m
.

Recall that for any Borel probability measure ν on R, we say that ν has entropy
dimension θ whenever

lim
n→+∞

Hn(ν) = θ,

and we denote it by dime ν = θ. As is well known, if ν has exact dimension θ then
dime ν = θ. Hence, we have the following immediate corollary of Theorem 1.2.

Corollary 4.2. There is a full measure set Ω∗ ⊂ Ω such that dime(η
(ω)) = α for all

ω ∈ Ω∗, where α is given by (12).

In particular, Hn(η
(·))

P
−→ α, i.e. for any given ε > 0 we have

lim
n→+∞

P
({
ω ∈ Ω : |Hn(η

(ω))− α| > ε
})

= 0.

4.2. A theorem on entropy growth. Theorem 1.3 is derived from a result about the
entropy of finite approximations of η(ω). Namely, if we define ν(ω,n) as the projection of

η(ω) via the n-truncated coding map Π
(n)
ω given by

Π(n)
ω :=

n∑

k=1

(
k−1∏

j=1

λωj

)
t(ωk)
uk

,

then we will show that Theorem 1.3 is a consequence of Theorem 4.3 below. For
simplicity of notation, we assume that R is chosen so large that 1

2
< 2Rλmin. Given
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n ∈ N we shall write ℓ
(ω)
n for the unique natural number such that

(20) 2R

ℓ
(ω)
n∏

i=1

λωi
≤ 2−n < 2R

ℓ
(ω)
n −1∏

i=1

λωi
.

We will often write n′ or n′(ω) for ℓ
(ω)
n . Recall that we have fixed a model Σ with

ergodic selection measure P.

Theorem 4.3. We have the following implication:

dim(Σ) < 1 =⇒
H(ν(·,n

′(·)),D(q+1)n|Dn)

n
P

−→ 0 for all q ∈ N,

where, for each n ∈ N and ω ∈ Ω, we abbreviate n′(ω) := ℓ
(ω)
n .

This result extends [7, Theorem 1.3] to our setting. We will see how Theorem 1.3 is
derived from Theorem 4.3 in Section 4.6 below (this is analogous to the deduction of
[7, Theorem 1.1] from [7, Theorem 1.3]).

4.3. Component measures and the inverse theorem. Given x ∈ R let Dn(x)
denote the unique n-level dyadic interval containing x. For D ∈ Dn let TD : R → R
denote the unique homothety mapping D to the interval [0, 1). Recall that if ν is a
probability measure on R then TD ν is the push-forward of ν through TD.

Definition 4.4. For a probability measure ν on R and a dyadic cell D with ν(D) > 0
we define:

• The raw D-component of ν as νD := 1
ν(D)

ν|D.

• The rescaled D-component of ν as νD := 1
ν(D)

TD ν|D.

Also, for x ∈ R such that ν(Dn(x)) > 0 we write νx,n := νDn(x) and νx,n := νDn(x). We
call these the n-level components of ν.

Finally, for any bounded measurable function f : P(R) → R and finite J ⊆ N we
define

(21) EJ(f(νx,i)) :=
1

|J |

∑

j∈J

∫

R
f(νy,j)dν(y),

i.e. the expectation of the random variable f(νx,i) when i is chosen at random uniformly
in J and x is chosen at random according to ν. Likewise, we write PJ(νx,i ∈ A) for
EJ(1A(νx,i)).

Notice that for any Borel set A ⊆ R one has the identity

(22) ν(A) = En(νx,i(A)).

We also define the analogue of (21) for the rescaled component measures νx,i in the
obvious manner. From this definition one obtains the identity

(23) En(Hm(ν
x,i)) =

1

m
H(ν,Dn+m|Dn)
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valid for all n,m ∈ N. See [7, Section 3.2]. Furthermore, one also has the following
result, proved in [7, Lemma 3.4] .

Lemma 4.5. Given R > 1, for every ν ∈ P([−R,R]) and m < n ∈ N

Hn(ν) = E{1,...,n}

(
Hm

(
νx,i
))

+O

(
m

n
+

logR

n

)

We can now state the inverse theorem for the entropy of convolutions which consti-
tutes the core of our approach. It is originally featured in [7, Theorem 2.8].

Theorem 4.6. For every ε > 0 and nonnegative integer m there exists δ = δ(ε,m) > 0
such that, for every n ≥ n(ε, δ,m) and every τ ∈ P([−R,R]), if

P{1,...,n}(Hm(τ
x,i) < 1− ε) > 1− ε,

then for every ν ∈ P([−R,R]) one has

Hn(ν) > ε =⇒ Hn(ν ∗ τ) ≥ Hn(τ) + δ.

4.4. Uniform entropy dimension of η(ω). Our next objective is to show the following
result, which we shall use to prove Theorem 4.3.

Theorem 4.7. There exists a full P-measure set Ω′ ⊆ Ω such that η(ω) has uniform
entropy dimension α = dim(Σ) for any ω ∈ Ω′, i.e. given any ε > 0, for every m ∈ N
sufficiently large (depending only on ε and ω)

lim inf
n→+∞

P{1,...,n}

(∣∣Hm

(
η(ω),x,i

)
− α

∣∣ < ε
)
> 1− ε,

where we write η(ω),x,i :=
(
η(ω)
)x,i

.

Again, this generalizes [7, Proposition 5.2] to our random setting. As discussed in [7,
Section 5.1], the notion of uniform entropy dimension (UED) is stronger than the one
given in Section 4.

We begin by recalling that degenerate systems generate measures supported on a
single atom, and so Theorem 4.7 is trivial in this case. Therefore, for the rest of this
section we make the following assumptions.

Assumptions 4.8. There exists i0 ∈ I such that:

(i). ki0 ≥ 2 and t
(i0)
j 6= t

(i0)
j′ for some j, j′, i.e. the model is non-degenerate.

(ii). P({ω ∈ Ω : ω1 = i0}) > 0.

Nonetheless, to avoid any possible confusion, in the sequel we will indicate it explicitly
whenever these assumptions are needed.

We begin the proof of Theorem 4.7 with a few preliminary lemmas. In the setting
of [7, Proposition 5.2], a key fact is that a self-similar measure is either continuous or
supported on a single atom. We need an analog of this fact, but the situation is more
involved since, whenever ki = 1 for some i, there will be some ω for which η(ω) is indeed
atomic. Moreover, even if we know that η(ω) is continuous P-almost surely, in general
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there will be no modulus of continuity valid P-almost everywhere. The next lemma will
help us cope with this lack of uniformity.

We say that a measure γ is (C, ρ)-Frostman if γ(B(x, r)) ≤ Crρ for all x ∈ R and

r > 0. The following result asserts that, for some fixed ρ > 0, the measures η(T
kω) are

often (C, ρ)-Frostman.

Lemma 4.9. If P verifies Assumptions 4.8, then there exist ρ > 0 and a full P-measure
set Ω(1) ⊆ Ω, such that for any δ > 0 there is a constant Cδ > 0 satisfying

lim inf
n→+∞

1

n

∣∣∣{k ∈ {1, . . . , n} : η(T
kω) is (Cδ, ρ)-Frostman}

∣∣∣ ≥ 1− δ

for every ω ∈ Ω(1).

Proof. By the ergodic theorem, our task is to show the existence of ρ > 0 such that,
given δ > 0, there is Cδ > 0 satisfying

P
(
{ω : η(ω) is (Cδ, ρ)-Frostman}

)
> 1− δ.

In turn, for this it is enough to show that there is ρ > 0 such that for P-almost all ω
there is r0 = r0(ω) > 0 satisfying

(24) η(ω)(B(x, r)) ≤ C0r
ρ for all x ∈ R, r ∈ (0, r0),

where C0 > 0 depends only on the model.
First, notice that there exist ℓ ∈ N, ε > 0, such that whenever ω1 = i0 (where i0 is

from Assumptions 4.8), then there are u, v ∈ X(ω)
ℓ such that B

(ω)
u and B

(ω)
v are (2ε)-

separated; recall (7). Indeed, pick u, v starting with j, j′ respectively, where ti0j 6= ti0j′ ,
and otherwise having equal entries. Then

dist(B(ω)
u , B(ω)

v ) ≥ |f (ω)
u (0)− f (ω)

v (0)| − 2Rλω1 · · ·λωℓ

≥ |ti0j − ti0j′ | − 2Rλℓmax.

Thus we can ensure that dist(B
(ω)
u , B

(ω)
v ) ≥ 2ε by taking ℓ large enough.

Now, given ω ∈ Ω containing infinitely many i0’s (which is the case P-almost surely)
let us define a subsequence (nj)j∈N0 = (nj(ω))j∈N0 as follows: set n0 := 0 and then,
having defined nj for j ∈ N0, set

nj+1 = min{n ≥ nj + ℓ : ωn = i0}.

Since i0 appears in (ω1, . . . , ωnj
) at most jℓ times, it follows from the ergodic theorem

that for P-a.e. ω,

lim sup
j→∞

nj

j
≤

ℓ

P({ω : ω1 = i0})
=:

C ′

2
<∞.

This implies that for P-a.e. ω there exists J(ω) ∈ N such that for any j ≥ J(ω),

(25) |{k ∈ {1, . . . , j − 1} : nk+1 − nk > 2C ′}| ≤
j

2
.
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Let
φ(ω)(r) := sup

x∈R
η(ω)(B(x, r)).

Fix j ≥ 1. For simplicity, let us write ωj := T nj−1ω, and note that ωj
1 = i0. Then, if

u, v ∈ X(ωj )
nj+1−nj

are such that dist(B
(ωj )
u , B

(ωj)
v ) > 2ε (such u, v exist since nj+1 − nj ≥ ℓ

and ωj
1 = i0) and we take r ∈ (0, ε], for every x ∈ R we have either B(x, r) ∩B

(ωj )
u = ∅

or B(x, r) ∩ B
(ωj)
v = ∅. Assuming without loss of generality that we are in the second

case, we can use the self-similarity relation (8) to estimate

η(ω
j)(B(x, r)) =

∑

e∈X(ωj)
nj+1−nj

p(ω
j)

e · f (ωj)
e η(ω

j+1)(B(x, r))

=
∑

e 6=v

p(ω
j)

e · η(ω
j+1)

((
f (ωj)
e

)−1

(B(x, r))

)

≤
∑

e 6=v

p(ω
j)

e · φ(ωj+1)

(
r

λ
nj+1−nj

min

)

≤ (1− p
nj+1−nj

min )φ(ωj+1)

(
r

λ
nj+1−nj

min

)
(26)

where pmin := min{p
(i)
j : j = 1, . . . , ki, i ∈ I} > 0 and λmin = min{λi, i ∈ I} > 0. A

similar but easier argument yields

η(ω)(B(x, r)) ≤ φ(ω1)

(
r

λn1
min

)
.

Starting with this bound, iterating (26), and recalling (25), we conclude that if j ≥ J(ω)
then

φ(ω)(ε · λ
nj

min) ≤ (1− p2C
′

min)
j/2.

Finally, pick J ′(ω) ≥ J(ω) such that
nj+1

j
≤ C ′ for all j ≥ J ′(ω). If 0 < r ≤ r0 :=

ε · λ
nJ′(ω)

min , we can find j′ ≥ J(ω) such that ε · λ
nj+1

min < r ≤ ε · λ
nj

min, so that

η(ω)(B(x, r)) ≤ φ(ω)(ε · λ
nj

min) ≤ (1− p2C
′

min)
j/2 ≤ ε−ρrρ,

where ρ = log(1−p2C
′

min)/(2C
′ log λmin). We have verified that (24) holds, as desired. �

One has the analogous result to Lemma 4.9 for the relative frequencies of the sets
where Hm(η

(T kω)) > α− δ (where we recall that α = dim(Σ)).

Lemma 4.10. There exists a full P-measure set Ω(2) ⊆ Ω such that for any δ > 0 there
is mδ ∈ N satisfying

lim inf
n→+∞

1

n

∣∣∣k ∈ {1, . . . , n} : Hm(η
(T kω)) > α− δ

∣∣∣ ≥ 1− δ

for all m ≥ mδ and every ω ∈ Ω(2).
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Proof. By Corollary 4.2, given δ > 0 there is mδ ∈ N such that

inf
m≥mδ

P
({
ω ∈ Ω : Hm(η

(ω)) > α− δ
})

> 1− δ.

The lemma now follows from the ergodic theorem applied to the indicator function of
the event {ω : Hm(η

(ω)) > α− δ}. �

Next, let us fix ω ∈ Ω and for n > k andD ∈ Dk define the n-truncated k-components
of η(ω) as

η
(ω)
n,[D] =

1

ZD,n

∑

u∈X(ω)
n,[D]

p(ω)u · f (ω)
u η(T

nω),

where

X(ω)
n,[D] = {u ∈ X(ω)

n : B(ω)
u ⊆ D},

and ZD,n is a normalizing constant making η
(ω)
n,[D] a probability measure. We also write

η
(ω)
n,[x,k] = η

(ω)
n,Dk(x)

for simplicity. Put into words, the measure η
(ω)
n,[x,k] differs from η

(ω)
x,k in that, instead of

restricting

η(ω) =
∑

u∈X(ω)
n

p(ω)u · f (ω)
u η(T

nω)

to Dk(x), we exclude all terms whose support is not entirely contained in Dk(x).
Our next goal is to show that, for a suitably chosen k, and for N large but fixed

independent of k, the measures η
(ω)
k+N,[x,i] and η

(ω)
x,i are close in the total variation distance

(in particular, they have close entropies) with large Pk-probability. See Proposition 4.11

for the precise statement. This will allow us to eventually replace η
(ω)
x,k by η

(ω)
k+N,[x,k], the

point being that the latter is a convex combination of measures of the form f
(ω)
u η(T

nω),
and hence we can estimate its entropy from below. This step is carried over in Corollary
4.12.

Recall the coefficient ℓ
(ω)
k defined in Section 4, i.e. the integer ℓk satisfying

2Rλω1 . . . λωℓk
≈ 2−k.

In the course of this section we often denote this number by k′(ω) or k′ if the dependence
on ω is clear from context.

Proposition 4.11. For any ε > 0 and choice of constants C, ρ > 0, there exists

Nε = N(ε, C, ρ) ∈ N such that the following holds: if ω ∈ Ω, k ∈ N are such that η(T
k′ω)

is (C, ρ)-Frostman, and we take n = k′(ω) +Nε, then

Pk

(
dTV

(
η
(ω)
x,i , η

(ω)
n,[x,i]

)
< ε
)
> 1− ε.



22 SANTIAGO SAGLIETTI, PABLO SHMERKIN, AND BORIS SOLOMYAK

Proof. For simplicity, we suppress the dependence of Nε on C and ρ from the notation,
and fix ω, k as in the statement for the rest of the proof. Given ε > 0, let us choose

δ ∈ (0, 1
2
) such that any interval of length smaller than 2Rδ has η(T

k′ω)-measure less

than ε2

8
(which is possible by the Frostman assumption), and pick Nε ∈ N such that

λNε
max <

δ
2
.

For u ∈ X(ω)
k′ consider those v ∈ X(T k′ω)

Nε
such that B

(ω)
uv is not entirely contained

in some D ∈ Dk. Then the measure f
(ω)
uv η(T

nω) must be supported on an interval J
of length 2Rδλω1 . . . λωk′

≤ δ2−k centered at an endpoint of an element of Dk. Since

f
(ω)
u η(T

k′ω) is supported on an interval of length less than 2−k, it follows that f
(ω)
u η(T

k′ω)

can give positive mass to at most two of such intervals J . Moreover, by choice of δ

we have that f
(ω)
u η(T

k′ω)(J) < ε2

8
for any of them. Using the self-similarity relation (8)

applied to η(T
k′ω), we conclude that for each u ∈ X(ω)

k′

∑

v:uv/∈X(ω)
n [Dk]

p(T
k′ω)

v <
ε2

4
,

where

X(ω)
n [Dk] :=

⋃

D∈Dk

X(ω)
n,[D] = {z ∈ X(ω)

n : B(ω)
z ⊆ D for some D ∈ Dk}.

Therefore, it follows that also

∑

z /∈X(ω)
n [Dk]

p(ω)z <
ε2

4
.

On the other hand, by Markov’s inequality we obtain

Pk

(
dTV

(
η
(ω)
x,i , η

(ω)
n,[x,i]

)
≥ ε
)
≤

1

ε
Ek

(
dTV

(
η
(ω)
x,i , η

(ω)
n,[x,i]

))

≤
1

ε

∑

D∈Dk

dTV

(
η
(ω)
D , η

(ω)
n,[D]

)
η(ω)(D).

A simple calculation using the definition of dTV shows that

dTV

(
η
(ω)
D , η

(ω)
n,[D]

)
≤

2

η(ω)(D)

∑

z∈X(ω)
n,(D)

p(ω)z ,

where
X(ω)

n,(D) = {z ∈ X(ω)
n : B(ω)

z ∩D 6= ∅, B(ω)
z * D},

which yields

Pk

(
dTV

(
η
(ω)
x,i , η

(ω)
n,[x,i]

)
≥ ε
)
≤

2

ε

∑

D∈Dk

∑

z∈X(ω)
n,(D)

p(ω)z ≤
4

ε

∑

z /∈X(ω)
n [Dk]

p(ω)z < ε



ABSOLUTE CONTINUITY OF NON-HOMOGENEOUS SELF-SIMILAR MEASURES 23

and thus concludes the proof. �

Proposition 4.11 has the following important corollary.

Corollary 4.12. For each ε > 0 and choice of C, ρ > 0 there exist positive integers m′
ε

and N ′
ε (depending on ε, C and ρ) such that the following holds: if m ≥ m′

ε then, for

any k ∈ N such that η(T
k′(ω)ω) is (C, ρ)-Frostman and such that n := k′(ω)+N ′

ε satisfies
Hm(η

(Tnω)) > α− ε
4
, one has

Pk

(
Hm

(
η(ω),x,i

)
> α− ε

)
> 1− ε.

Proof. Given ε > 0, choose 0 < ε′ < ε sufficiently small so that dTV (ν, ν
′) < ε′ implies

that |Hm(ν) − Hm(ν
′)| < ε

2
for every m ∈ N and ν, ν ′ ∈ P([−R,R]) (which exists by

Proposition 4.1(vi)) and set N ′
ε := Nε′ where Nε′ is as in Proposition 4.11.

Now, fix k such that η(T
k′ω) is (C, ρ)-Frostman, and such that n = k′(ω)+N ′

ε satisfies

Hm(η
(Tnω)) > α−

ε

4
.

By Proposition 4.11 and choice of ε′, to conclude it will suffice to show that

Hm(TD η
(ω)
n,[x,k]) > α−

ε

2

for any D ∈ Dk and m large enough. But since η
(ω)
n,[x,k] is a convex combination of

f
(ω)
u η(T

nω) for u ∈ X(ω)
n , by the concavity of entropy we have that

Hm(TD η
(ω)
n,[x,k]) ≥

1

Zn,D

∑

u∈X(ω)
n,[D]

p(ω)u ·Hm(TD f
(ω)
u η(T

nω))

≥


 1

Zn,D

∑

u∈X(ω)
n,[D]

p(ω)u ·Hm(λωk′+1
. . . λωn · η(T

nω))


− O

(
1

m

)
,

where, for the second inequality, we have used Proposition 4.1(iv) and the fact that
2−k ≈ 2Rλω1 . . . λωk′

. Thus, if we choose m sufficiently large so as to guarantee that

Hm(κ · µ)− O

(
1

m

)
> α−

ε

2

for all λ
N ′

ε

min < κ < 1 and all probability measures µ supported on [−R,R] with Hm(µ) >
α− ε/4 (possible by Proposition 4.1(iv)), our choice of k and n yields the result. �

We now finish the proof of Theorem 4.7.

Proof of Theorem 4.7. Consider the full P-measure set Ω′ := Ω∗ ∩ Ω(1) ∩ Ω(2) given by
Corollary 4.2 and Lemmas 4.9-4.10, take ε ∈ (0, 1) and fix an auxiliary ε′ ∈ (0, ε

2
). Let

ρ be the number given by Lemma 4.9 and, given ω ∈ Ω′, choose Cε′ as in Lemma 4.9
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and m′′
ε′ := max{mε′ , m

′
ε′} where mε′ ∈ N is as in Lemma 4.10 and m′

ε′ as in Corollary
4.12. Then, for any n ∈ N and m ≥ m′′

ε′

P{1,...,n}

(
Hm

(
η(ω),x,i

)
> α− ε′

)
≥

|Θ(ω) ∩ {1, . . . , n}|

n
(1− ε′),

where

Θ(ω) :=

{
k ∈ N : η(T

k′ω) is (C, ρ)-Frostman and Hm

(
η(T

k′+N′

ε′ (ω))

)
> α− ε′

4

}
.

Using Lemmas 4.9-4.10 and our choice of parameters, a straightforward calculation
shows that

lim inf
n→+∞

|Θ(ω) ∩ {1, . . . , n}|

n
≥ 1− 2(log λ−1

min)ε
′.

We deduce that

(27) lim inf
n→+∞

P{1,...,n}

(
Hm

(
η(ω),x,i

)
> α− ε′

)
≥ 1− ε′′,

where ε′′ = ε′′(ε′) goes to 0 with ε′.
On the other hand, since for n sufficiently large (depending on ω) we have |Hn(η

(ω))−
α| < ε′

2
by Corollary 4.2, it follows from Lemma 4.5 that

∣∣E{1,...,n}

(
Hm

(
η(ω),x,i

))
− α

∣∣ < ε′

2

for all n sufficiently large in terms of ω and m. Since Hm

(
η(ω),x,i

)
≥ 0, combining this

with (27) we reach the conclusion of the theorem. �

We record the following immediate corollary; this is the statement that will get used
in the proof of Theorem 4.3.

Corollary 4.13. For any ε > 0 we have

lim
m→+∞

P

({
ω ∈ Ω : lim inf

n→+∞
P{1,...,n}

(∣∣Hm

(
η(ω),x,i

)
− α

∣∣ < ε
)
> 1− ε

})
= 1.

4.5. Proof of Theorem 4.3. We need one final proposition before we can conclude
the proof of Theorem 4.3. In order to state it, observe that the measure η(ω) can be
decomposed for every l ∈ N as

η(ω) = ν(ω,l) ∗ τ (ω,l)

where ν(ω,l) is the l-level discrete approximation of η(ω) defined in §4.2, i.e. the projection
of η(ω) under the l-truncated coding map, and

τ (ω,l) := λω1 . . . λωl
· η(T

lω).

We will study this decomposition with l = n′ = ℓ
(ω)
n .
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Proposition 4.14.

lim
n→+∞

P(G(n)
ε,δ,q) = 1

for any ε, δ > 0 and q ∈ N, where

G
(n)
ε,δ,q =

{
ω : Pn

(
1

qn

∣∣∣H(ν
(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n)−H(τ (ω,n
′),D(q+1)n)

∣∣∣ < δ

)
> 1− ε

}
.

Proof. Fix q ∈ N and consider the set Ω∗ from Corollary 4.2. Now, take ω ∈ Ω∗ and
observe that for any n ∈ N we have the identity

1

(q + 1)n
H(η(ω),D(q+1)n) =

1

q + 1

(
1

n
H(η(ω),Dn)

)
+

q

q + 1

(
1

qn
H(η(ω),D(q+1)n|Dn)

)
.

Since ω ∈ Ω∗, both the left-hand side above and the term 1
n
H(η(ω),D

(ω)
n ) converge to α

as n→ +∞. It follows that

(28) lim
n→+∞

1

qn
H(η(ω),D(q+1)n|Dn) = α

as well.
By (22) and the linearity of the convolution, for any Borel set A ⊆ R and n ∈ N we

have

ν(ω,l) ∗ τ (ω,l)(A) = En(ν
(ω,l)
x,i ∗ τ (ω,l)(A)).

Thus, if for n ∈ N we define n′ := ℓ
(ω)
n as in (20), the concavity of conditional entropy

yields that

H(η(ω),D(q+1)n|Dn) = H(ν(ω,n
′) ∗ τ (ω,n

′),D(q+1)n|Dn)(29)

≥ En

(
H(ν

(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n|Dn)
)
.

Moreover, since each of the measures ν
(ω,n′)
x,i ∗τ (ω,n

′) is supported on an interval of length
at most 4Rλω1 . . . λωn′

, this support can intersect at most three elements of Dn, so that

|H(ν
(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n|Dn)−H(ν
(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n)| = O(1).

Hence, from this and (29) we obtain

H(η(ω),D(q+1)n|Dn) ≥ En

(
H(ν

(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n)
)
− O(1)

which, by (28), implies that

lim sup
n→+∞

1

qn
En

(
H(ν

(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n)
)
≤ α.

In particular, we obtain that for any δ > 0

(30) lim
n→+∞

P

({
ω ∈ Ω :

1

qn
En

(
H(ν

(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n)
)
< α + δ

})
= 1.
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Now, on the other hand, observe that for each δ > 0 we have

(31) lim
n→+∞

P

({
ω ∈ Ω :

∣∣∣∣
1

qn
H(τ (ω,n

′),D(q+1)n)− α

∣∣∣∣ < δ

})
= 1

since:

i. For any ω ∈ Ω the relation

H(τ (ω,n
′),D(q+1)n) = H(η(T

n′

ω),Dqn) +O(1)

holds due to Proposition 4.1(iv) and the fact that

2R · 2−qn <
2−(q+1)n

λω1 . . . λωn′

<
2R

λmin

· 2−qn.

ii. By Corollary 4.2 and the fact that P is T -invariant, one has

P

({
ω :

∣∣∣∣
1

qn
H(η(T

n′

ω),Dqn)− α

∣∣∣∣ < δ

})
= P

({
ω :

∣∣∣∣
1

qn
H(η(ω),Dqn)− α

∣∣∣∣ < δ

})

tends to 1 as n→ ∞.

Also, by Proposition 4.1(v) for every raw component ν
(ω,n′)
x,i one has

1

qn
H(ν

(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n) ≥
1

qn
H(τ (ω,n

′),D(q+1)n)−O

(
1

qn

)
,

Combining this with Equations (30) and (31), we get for any ε, δ > 0 that

lim
n→+∞

P

({
ω ∈ Ω : Pn

(∣∣∣∣
1

qn
H(ν

(ω,n′)
x,i ∗ τ (ω,n

′),D(q+1)n)− α

∣∣∣∣ < δ

)
> 1− ε

})
= 1.

The proof is concluded from a final application of (31). �

Proof of Theorem 4.3. Given ω ∈ Ω and δ > 0, let us consider (if it exists) a raw

component ν
(ω,n′)
x,n satisfying that
∣∣∣∣
1

qn
H(ν(ω,n

′)
x,n ∗ τ (ω,n

′),D(q+1)n)−
1

qn
H(τ (ω,n

′),D(q+1)n)

∣∣∣∣ <
δ

2
.

Then, by scaling ν
(ω,n′)
x,n and τ (ω,n

′) by the factor 2−n′

≈ 2Rλω1 . . . λωn, a new application
of Proposition 4.1(iv) yields for n sufficiently large (depending only on δ)

Hqn(ν
(ω,n′),x,n ∗ η(T

n′

ω),Dqn) < Hqn(η
(Tn′

ω),Dqn) + δ.

The idea now is to apply the inverse theorem (Theorem 4.6) on this inequality to

conclude. The problem is that η(T
n′

ω) will not always fall under the hypotheses of the
theorem, but will rather do so only with high probability. Hence, we must refine our
argument.
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Consider a sequence (εj)j∈N ⊆ R>0 such that
∑

j εj < +∞ and, using Corollary 4.13
and the T -invariance of P, for each j ∈ N choose mj ∈ N such that for all n sufficiently
large

(32) P
({
ω ∈ Ω : P{1,...,n}

(∣∣∣Hmj

(
η(T

n′

ω),x,i
)
− α

∣∣∣ < εj

)
> 1− εj

})
> 1−

εj
2
.

Furthermore, for each j ∈ N take δj := δ(εj, mj) given by Theorem 4.6, and choose
nj ≥ n(εj , δj, mj), where n(εj, δj , mj) is also the one from Theorem 4.6, such that

(33) P(G(nj)
εj ,δj ,q

) ≥ 1−
εj
2
,

where G
(nj)
εj ,δj ,q

are the events from Proposition 4.14.

For each j ∈ N let Ωj be the intersection of the events in (32) and (33), where we
put n = nj in (32) (making nj larger if needed). Assume α < 1 and fix ω ∈ Ωj . By
Theorem 4.6, we have the implication

Hnj
(ν) > δj =⇒ Hnj

(ν ∗ η(T
n′

ω)) ≥ Hnj
(η(T

n′

ω)) + δj ,

for all ν ∈ P([0, 1]) and all j large enough so as to guarantee that α + εj < 1 − εj.

Now, rescaling the convolution ν
(ω,n′)
x,i ∗ τ (ω,n

′) by a factor of (λω1 · · ·λωn′
)−1, using the

linearity of convolution, and appealing once more to Proposition 4.1(iv), we get

Pnj

(
Hqnj

(ν(ω,n
′

j),x,i) ≤ εj

)
> 1− εj .

Thus, by the identity in (23) and the fact that Hn(ν) ≤ 1 for any measure ν supported
on the interval [0, 1], we deduce that

1

qnj
H(ν(ω,n

′

j),D(q+1)nj
|Dnj

) ≤ 2εj.

Recall that this holds for a fixed ω ∈ Ωj where P(Ωj) > 1− εj. Since
∑

j εj < +∞, we
conclude from the Borel-Cantelli Lemma that

lim
j→+∞

1

qnj
H(ν(ω,n

′

j),D(q+1)nj
|Dnj

) = 0

for P-almost every ω ∈ Ω. Finally, since the argument above can be repeated exactly
to show that for any subsequence (nk)k∈N there exists a further subsequence (nkj )j∈N
so that

1

qnkj

H(ν
(ω,n′

kj
)
,D(q+1)nkj

|Dnkj
) −→ 0

for P-almost every ω, this immediately yields

1

qn
H(ν(·,n

′),D(q+1)n|Dn)
P

−→ 0

which concludes the proof. �
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4.6. Proof of Theorem 1.3. We show now how to derive Theorem 1.3 from Theorem
4.3. First, let us fix ω ∈ Ω∗ with Ω∗ as in Corollary 4.2 and, for each n ∈ N, consider
again the decomposition

η(ω) = ν(ω,n
′) ∗ τ (ω,n

′),

where n′ := ℓ
(ω)
n . The following lemma shows that ν(ω,n

′) is a good approximation of
η(ω) at scale n.

Lemma 4.15. For each ω ∈ Ω∗,

lim
n→+∞

Hn(ν
(ω,n′)) = α.

Proof. By the definitions of ν(ω,n
′) and η(ω), we have that

Hn(ν
(ω,n′)) =

1

n
H(η(ω), (Π(n′)

ω )−1Dn),

Hn(η
(ω)) =

1

n
H(η(ω), (Πω)

−1Dn).

In light of Proposition 4.1(iv), it is enough to show that each element of (Π
(n′)
ω )−1Dn

meets at most O(1) elements of (Πω)
−1Dn and viceversa. But this is indeed the case,

since

‖Πω −Π(n)
ω ‖∞ ≤ λω1 · · ·λωn′

(1− λmax)
−1max

i,u
|t(i)u | = O(2−n).

�

In particular, since Ω∗ is a full P-measure set, the convergence in Lemma 4.15 above
takes place P-almost surely. Thus, if α < 1 then for any fixed q ∈ N the decomposition

H(ν(ω,n
′),D(q+1)n)

n
= Hn(ν

(ω,n′)) +
H(ν(ω,n

′),D(q+1)n|Dn)

n

together with Theorem 4.3 yields that

H(ν(·,n
′(·)),D(q+1)n)

n

P
−→ α.

In particular, if also α < s-dim (Σ), then there exists δ > 0 such that

(34) lim
n→+∞

P

({
ω ∈ Ω :

H(ν(ω,n
′),D(q+1)n)

n
< s-dim(Σ)− δ

})
= 1.

Now, observe that for the approximation ν(ω,n
′) we have the following representation:

ν(ω,n
′) =

∑

u∈X(ω)

n′

p(ω)u · δ
f
(ω)
u (0)

.
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Thus, if each value f
(ω)
u (0) belonged to a different element of D(q+1)n then we would

have

(35)
H(ν(ω,n

′),D(q+1)n)

n
=

∑
u∈X(ω)

n′

p
(ω)
u log(p

(ω)
u )

n
=
n′

n
·

∑n′

i=1H(pωi
)

n′
=: s-dim(Σ(ω)

n ).

Hence, if the left-hand side of (35) is different from s-dim(Σ
(ω)
n ), then at least two

of these values f
(ω)
u (0) must belong to the same element of D(q+1)n, implying that

∆
(ω)
n ≤ 2−(q+1)n. But applying the ergodic theorem to the maps ω 7→ H(pω1) and

ω 7→ log λω1, yields that s-dim(Σ
(ω)
n ) → s-dim(Σ) for P-a.e. ω ∈ Ω. Combining this fact

with (34), we conclude

lim
n→+∞

P

({
ω ∈ Ω :

log∆
(ω)
n

n
≤ −(q + 1)

})
= 1.

Since q ∈ N was arbitrary, the result immediately follows.

5. Fourier transform estimates

Throughout this section we will assume that I = {1, . . . , N} for notational simplicity.
Theorem 1.5 is a direct corollary of the following more precise statement.

Theorem 5.1. let (βi)i∈{1,...,N} be strictly positive numbers, and let P be a fully sup-
ported Bernoulli measure on Ω = IN.

Fix a compact set

H = [a, b]× [βmin, βmax]× [pmin, pmax] ⊂ (1,∞)× (0,∞)× (0, 1),

and fix also α > 0.
Then there exist a Borel set GH,α ⊂ Ω × [b−1, a−1] and a constant σ = σ(H,α) > 0

such that the following hold:

(i). For P-almost all ω,

dimH{λ ∈ [b−1, a−1] : (ω, λ−1) /∈ GH,α} ≤ α.

(ii). If (ω, λ) ∈ GH,α, and Σ = ((Φ(i))i∈I , (pi)i∈I ,P) is a non-degenerate model such
that:

• for each i ∈ I, the mappings f
(i)
j have contraction ratio λβi,

• p
(i)
j ∈ [pmin, pmax] for all i ∈ I such that ki ≥ 2 and all j ∈ {1, . . . , ki},

then η(ω) ∈ D1(σ).

Theorem 1.5 follows immediately by taking

G =
⋃

k,n

GHn,1/k,

where Hn = [1 + 1/n, n]× [min βi,maxβi]× [1/n, 1− 1/n].
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From now on, we fix the numbers βi and the Bernoulli measure P, as in the statement
of Theorem 5.1.

5.1. Probabilistic estimates. Let

X1 = X1(ω) = min{i ≥ 1 : ωi = 1}, Xn+1(ω) = X1(T
X1(ω)+···+Xn(ω)ω), n ≥ 1.

Thus, Xn+1(ω) is the waiting time between the n-th and (n + 1)-st appearance of 1 in
the sequence ω. (Later on we will assume that the symbol 1 ensures non-degeneracy of

the model, i.e. k1 ≥ 2 and t
(1)
1 6= t

(1)
2 .) The process (Xn)n∈N is defined almost surely

(when there are infinitely many 1’s in ω). Since P is Bernoulli, (Xn)n∈N is an i.i.d.
sequence of exponential random variables.

Note that there exists ε > 0 such that

(36) C1 := E[eεX1 ] ∈ (1,∞).

Before embarking on the proof of Theorem 5.1, we state the property which provides
the full measure set appearing in the first part of Theorem 5.1.

Lemma 5.2. Consider the process (Xn)n∈N defined as above. There exists a positive
constant L1 such that for P-a.e. ω, for any ̺ > 0 and all M sufficiently large (depending
on ̺ and ω),

(37) max

{∑

n∈Ψ

Xn(ω) : Ψ ⊂ {0, . . . ,M − 1}, |Ψ| ≤ ̺M

}
≤ L1 · log(1/̺) · ̺M.

Remark 5.3. Observe that for any given ˜̺> 0, we have for P-almost all ω and all n
sufficiently large (depending on ω) that

(38) Xn(ω) ≤ ˜̺n;
Indeed, 1

n

∑n
i=1Xi → E[X1] < ∞ almost surely, by the Law of Large Numbers, and

hence Xn(ω)/n→ 0 for P-a.e. ω.

Proof of Lemma 5.2. Note that, since the (Xi)i∈N are i.i.d., by the exponential Tcheby-
chev inequality we have

(39) P
[ n∑

i=1

Xi ≥ Kn
]
≤ E[eε

∑n
i=1 Xi]e−εKn = Cn

1 e
−εKn ≤ e−εKn/2

for any K ≥ 2 logC1/ε, where ε and C1 are the ones from (36). Furthermore, again
using that (Xi)i∈N are i.i.d., we can use the version of (39) in which

∑n
i=1Xi is replaced

by
∑n

k=1Xik for an arbitrary (but deterministic) increasing sequence i1 < . . . < in.
Now, consider the event

W(M, ̺,K) =





max
Ψ⊂{0,...,M−1}

|Ψ|≤̺M

∑

n∈Ψ

Xn ≥ K(̺M)
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Then we have for K ≥ 2 logC1/ε,

P
(
W(M, ̺,K)

)
≤

∑

Ψ⊂{0,...,M−1}
|Ψ|≤̺M

P

[∑

n∈Ψ

Xn ≥ K(̺M)

]

≤
∑

i≤̺M

(
M

i

)
e−εK(̺M)/2,

in view of (39). By Stirling’s formula, there exists C2 > 1 such that

∑

i≤̺M

(
M

i

)
≤ exp [C2̺ log(1/̺)M ] for ̺ < e−1 and all M > 1.

Therefore,

∑

i≤̺M

(
M

i

)
e−εK(̺M)/2 ≤ exp[−εK(̺M)/4] for K ≥

4C2

ε
log(1/̺).

Now the Borel-Cantelli Lemma implies that the event W(M, ̺, L1 log(1/̺)) does not
occur for all M sufficiently large, P-almost surely, with

L1 := ε−1max{4C2, 2 logC1},

and this is precisely the claim of Lemma 5.2. �

5.2. Proof of Theorem 5.1. We are now ready to start the proof of Theorem 5.1.

Proof of Theorem 5.1. Let Σ be a non-degenerate model as in the second part of the

statement. Without loss of generality, we may assume that k1 ≥ 2, t
(1)
1 6= t

(1)
2 . Since

translating and scaling a measure does not change whether the measure is in D1(σ),

we may assume also that t
(1)
1 = 0, and t

(1)
2 = 1. Also, the statement of the proposition

remains equivalent if we simultaneously replace βi by cβi, and [a, b] by [a1/c, b1/c], for
some c > 0. Thus, we can assume without loss of generality that β1 = 1. We may also
assume that N ≥ 2, otherwise this is a standard homogeneous self-similar measure and
the claim follows e.g. from [13, Proposition 2.3].

We write η
(ω)
λ for the measures generated by the model Σ; we keep in mind that

there is also a dependence on the probabilities and the translations. We write λi for
the contraction ratio of the IFS corresponding to the symbol i, and recall that λi = λβi

by assumption. By definition, η
(ω)
λ is the distribution of a sum of independent random

variables, hence it can be represented as an infinite convolution measure

η
(ω)
λ = ∗n∈N

(
kωn∑

j=1

p
(ωn)
j δ

λω1 ···λωn−1 t
(ωn)
j

)
,
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where δx is Dirac’s delta centered at x. We thus have

|η̂
(ω)
λ (ξ)| =

∏

n∈N

∣∣∣∣∣

kωn∑

j=1

p
(ωn)
j eπiλω1 ···λωn−1 t

(ωn)
j ξ

∣∣∣∣∣

≤
∏

n:ωn=1

(∣∣∣p(1)1 + p
(1)
2 eπiλω1 ···λωn−1ξ

∣∣∣+
(
1−

k1∑

j=2

p
(1)
j

))

≤
∏

n:ωn=1

(
1− c0‖λω1 · · ·λωn−1ξ‖

2
)
,(40)

where ‖x‖ denotes the distance from x to the nearest integer and c0 > 0 is a constant
depending only on [pmin, pmax].

We will impose a number of conditions on ω which hold P-a.e. First of all, clearly
a.e. ω contains infinitely many 1’s. Let

ω = W1W2W3 . . . , with Wi = W ′
i1,

where W ′
i are words in the alphabet {1, . . . , N} not containing 1’s (the W ′

i may be
empty).

For a finite word v = v1 . . . vn let λv = λv1...vn := λv1 · · ·λvn . Then (40) can be
rewritten as

(41) |η̂
(ω)
λ (ξ)| ≤

∞∏

k=1

(
1− c0‖λW1...Wk−1W

′

k
· ξ‖2

)
,

with the convention that the word equals W ′
1 when k = 1.

Denote θ = λ−1 = λ−β1, θi = λ−1
i = λ−βi and θv = λ−1

v , and let

Θ(k) := (λW1...Wk−1W
′

k
)−1 = ΘW1 · · ·ΘWk−1

ΘW ′

k
.

Now suppose ξ ∈ [Θ(M),Θ(M+1)] for some M ∈ N (this depends on the λi, and we will
keep this in mind), and let τ = ξ/Θ(M). Let

Θ
(M)
k :=

Θ(M)

Θ(M−k)
, k = 0, . . . ,M − 1;

then (41) yields

(42) |η̂
(ω)
λ (ξ)| = |η̂

(ω)
λ (Θ(M) · τ)| ≤

M−1∏

k=0

(
1− c0‖Θ

(M)
k τ‖2

)
.

Note that τ ∈ [1,Θ
(M+1)
1 ].

The following proposition captures the key combinatorial estimate at the heart of
Theorem 5.1. It is a typical “Erdős-Kahane” estimate, although we need to take extra
care in our setting due to the fact that we deal not with a deterministic parametrized
family, but with a random collection of parametrized families. We should note that the
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rest of the proof has many common features with another version of the Erdős-Kahane
argument in a random setting, which appeared in [1, Section 10].

Proposition 5.4. Fix a compact set H as in the statement of Theorem 5.1 and α > 0.
There exist positive constants ρ = ρ(H,α) and δ = δ(H,α) such that, for P-a.e. ω, there
exists M0 = M0(ω,H) such that for any M ≥ M0 and any β1, . . . , βN ∈ [βmin, βmax],
the set
(43)

Eρ,δ,M :=

{
θ ∈ [a, b] : max

τ∈[1,Θ
(M+1)
1 ]

1

M

∣∣{k ∈ {0, . . . ,M − 1} : ‖Θ
(M)
k τ‖ ≥ ρ}

∣∣ < δ

}

can be covered by OH(a
αM/2) balls of radius OH(a

−M/2). Note that Eρ,δ,M is a random
set, depending on ω.

First we derive Theorem 5.1 from Proposition 5.4. Let Ω1 be the full measure set
from the proposition, and let

GH,α =

{
(ω, λ) : λ−1 ∈ lim sup

M→+∞
Eρ,δ,M

}
.

It is easy to see that GH,α is Borel: the numbers Θ
(M)
k depend on ω and λ in a Borel

manner, and because ‖ · ‖ is continuous, the set (43) can be defined in terms of maxima
over rational τ , rather than all τ .

Now fix ω ∈ Ω1. Define the exceptional set E = E(ω) = {λ : (ω, λ) /∈ GH,α}.
Explicitly,

E−1 = lim sup
M→+∞

Eρ,δ,M .

By Proposition 5.4 we have dimH(E) = dimH(E
−1) ≤ α.

On the other hand, for λ 6∈ E we have that λ−1 6∈ Eρ,δ,M for all M ≥ M1 =M1(ω, λ).
Then for ξ ≥ Θ(M1) choose M ≥M1 such that ξ ∈ [Θ(M),Θ(M+1)] and obtain from (42)
that

(44) |η̂
(ω)
λ (ξ)| ≤ (1− c0ρ

2)δM .

By the Law of Large Numbers there exists c1 > 0 such that for P-a.e. ω,

(45) |{n ∈ {1, . . . , L} : ωn = 1}| ≥ c1L

for L sufficiently large (in fact, we can take any c1 < P(ω1 = 1)). Hence, for M
sufficiently large we have

|W1 . . .WM+1| ≤ c−1
1 (M + 1).

Then ξ ≤ Θ(M+1) ≤ bβmaxc
−1
1 (M+1), where βmax = max{βi : i ∈ I}, and (44) yields

|η̂
(ω)
λ (ξ)| = Oω(|ξ|

−σ), where σ = −δβ−1
max · c1 log(1− c0ρ

2)/ log b,

as desired. Note that σ depends on H , but not on ω — just on the model. �
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Proof of Proposition 5.4. Fix M ∈ N. For n = 0, . . . ,M − 1, let

(46) Θ(M)
n τ = K(M)

n + ε(M)
n , where K(M)

n ∈ N, |ε(M)
n | ≤ 1/2,

so that ‖Θ
(M)
n τ‖ = ε

(M)
n . Note that τ ≥ 1 and Θ

(M)
n ≥ θn ≥ an, so

(47) K(M)
n ≥ max{1, an − 1}.

We will next drop the superscript (M) from the notation of Kn and εn, but will keep
the dependence in mind. These numbers also depend on λi and τ , of course. All the
constants implicit in the O(·) notation below are allowed to depend on H .

It follows from (46) that

(48)
Θ

(M)
n+1

Θ
(M)
n

−
Kn+1

Kn
=
εn+1

Kn
−

Θ
(M)
n+1

Θ
(M)
n

εn
Kn

.

Observe that

Θ
(M)
n+1

Θ
(M)
n

= θWM−n
= θβ(WM−n), where β(v1 . . . vℓ) :=

ℓ∑

j=1

βv_j .

We obtain from (48):

(49)

∣∣∣∣θβ(WM−n) −
Kn+1

Kn

∣∣∣∣ ≤
θβ(WM−n)|εn|+ |εn+1|

Kn
.

Replacing n by n+ 1 gives
∣∣∣∣θβ(WM−(n+1)) −

Kn+2

Kn+1

∣∣∣∣ ≤
θβ(WM−(n+1))|εn+1|+ |εn+2|

Kn+1
.

It is important that β(Wj) does not depend on θ, but only on the sequence ω. Using
the inequality

|xs − ys| ≤ |x− y|, for x, y > 0, s ∈ (0, 1],

we obtain from (49):

(50)

∣∣∣∣θ −
(Kn+1

Kn

)β(WM−n)
−1
∣∣∣∣ ≤

θβ(WM−n)|εn|+ |εn+1|

Kn
,

since WM−n contains a 1 and β1 = 1 by assumption. Similarly,

(51)

∣∣∣∣θ −
(Kn+2

Kn+1

)β(WM−(n+1))
−1
∣∣∣∣ ≤

θβ(WM−(n+1))|εn+1|+ |εn+2|

Kn+1
.

From (49), using trivial bounds, we obtain

(52)
Kj+1

Kj
≤ θβ(WM−j) +

θβ(WM−j) + 1

2Kj
≤ 2θβ(WM−j) ≤ (2b)β(WM−j),

for j = n, n+ 1. Combining (50) and (51) and using the inequality

|xs − ys| ≤ smax(xs−1, ys−1) · |x− y|, for x, y > 0, s ≥ 1,
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with s = β(WM−n−1), yields, after a little calculation using (52),
∣∣∣∣∣
Kn+2

Kn+1
−
(Kn+1

Kn

)β(WM−n−1)

β(WM−n)

∣∣∣∣∣(53)

≤ Ln

[
θβ(WM−n)|εn|+ |εn+1|

Kn
+
θβ(WM−n−1)|εn+1|+ |εn+2|

Kn+1

]
,

where

Ln = β(WM−n−1)(2b)
β(W ′

M−n−1)

= (1 + β(W ′
M−n−1))(2b)

β(W ′

M−n−1) ≤ (2eb)β(W
′

M−n−1).

Now, (53) and then (52) imply
∣∣∣∣∣Kn+2 −Kn+1

(Kn+1

Kn

) β(WM−n−1))

β(WM−n)

∣∣∣∣∣

≤ Ln

[
Kn+1

Kn

(
θβ(WM−n)|εn|+ |εn+1|

)
+ θβ(WM−n−1)|εn+1|+ |εn+2|

]

≤ Ln

[
(2b)β(WM−n)(bβ(WM−n) + 1) + (bβ(WM−n−1) + 1)

]
·max(|εn|, |εn+1|, |εn+2|)

≤ 2(2eb)β(W
′

M−n−1)
[
(2b2)β(WM−n) + bβ(WM−n−1)

]
·max(|εn|, |εn+1|, |εn+2|)

≤ 4(12b3)βmax(|WM−n|+|WM−n−1|) ·max(|εn|, |εn+1|, |εn+2|),(54)

using crude bounds in the last two steps. Let

(55) Bn := 4(12b3)βmax(|WM−n|+|WM−n−1|), ρn = (2Bn)
−1.

Note that these numbers depend on ω and M , and recall that the Kn depend, addi-
tionally, on θ and τ .

Lemma 5.5. Fix M ∈ N and ω such that ω has infinitely many 1s. Then
(i) given Kn, Kn+1, there are at most 2Bn + 1 possibilities for Kn+2, independent of

θ ∈ [a, b] and τ ≥ 1;
(ii) if max(|εn+2|, |εn+1|, |εn|) < ρn, then Kn+2 is uniquely determined by Kn and

Kn+1, independent of θ ∈ [a, b] and τ ≥ 1.

The claims of the lemma are immediate from (54), using the fact that Kn+2 is an
integer.

Let Ẽδ,M be defined by

Ẽδ,M :=
{
θ ∈ [a, b] : there exists τ ∈ [1,Θ

(M+1)
1 ] for which

∣∣{n ∈ {0, . . . ,M − 3} : max{‖Θ(M)
n τ‖, ‖Θ(M)

n+1τ‖, ‖Θ
(M)
n+2τ‖} ≥ ρn}

∣∣ < δM
}
,
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where ρn is the one from (55). First we claim that P-almost surely,

(56) Ẽ4δ,M ⊃ Eρ,δ,M

for M sufficiently large (depending on ω only), with

ρ = (1/8) · (12b3)−4βmax/(c1δ),

where c1 > 0 is the constant from (45). Recall that

Eρ,δ,M =
{
θ ∈ [a, b] : there exists τ ∈ [1,Θ

(M+1)
1 ] for which

∣∣{n ∈ {0, . . . ,M − 1} : ‖Θ(M)
n τ‖ ≥ ρ}

∣∣ < δM
}
.

Observe that there are fewer than δM/2 integers n ∈ {1, . . . ,M−1} for which |WM−n| >
2/(c1δ), for M sufficiently large, by (45), hence there are fewer than δM integers n ∈
{1, . . . ,M − 1} for which |WM−n|+ |WM−n−1| > 4/(c1δ), for M sufficiently large, hence
fewer than δM integers n ∈ {1, . . . ,M − 1} for which ρn ≤ ρ, in view of (55). Suppose

that θ 6∈ Ẽ4δ,M . Then for all τ ∈ [1,Θ
(M+1)
1 ],

∣∣{n ∈ {0, . . . ,M − 3} : max{‖Θ(M)
n τ‖, ‖Θ

(M)
n+1τ‖, ‖Θ

(M)
n+2τ‖} ≥ ρ}

∣∣ ≥ 3δM,

and therefore, ∣∣{n ∈ {0, . . . ,M − 1} : ‖Θ(M)
n τ‖ ≥ ρ}

∣∣ ≥ δM,

showing that θ 6∈ Eρ,δ,M and confirming the claim (56).

It remains to estimate the number of balls of radius OH(a
−M/2) needed to cover Ẽ4δ,M .

Suppose that θ ∈ Ẽ4δ,M ; choose appropriate τ from the definition of Ẽ, and find the
corresponding Kn, εn from (46). We have from (47) and (50) that for n = 1, . . . ,M −2,

(57)

∣∣∣∣θ −
(Kn+1

Kn

)β(WM−n)
−1
∣∣∣∣ ≤

θβ(WM−n)|εn|+ |εn+1|

Kn
≤
bβmax|WM−n| + 1

an − 1
,

Again using (45), we note that for M sufficiently large

min{|WM−n| : n ∈ [M/2− 2,M − 2]} ≤ 2c−1
1 ,

hence we can find n ∈ [M/2 − 2,M − 2] for which the right-hand side of (57) is
OH(a

−M/2). Thus (57) provides an interval of size OH(a
−M/2) to cover θ. Since

the center of this interval is determined by Kn and Kn+1 (recall that W ′
M−n are

fixed in advance by ω), it suffices to estimate the number of sequences K0, . . . , KM−1

which may arise this way. Let ΨM be the set of n ∈ {0, . . . ,M − 3} where we have

max{|εn|, |εn+1|, |εn+2|} ≥ ρn. By the definition of Ẽ4δ,M we have |ΨM | ≤ 4δM . By
Lemma 5.5, for a fixed ΨM the number of possible sequences K0, . . . , KM−1 is at most

BM :=
∏

n∈ΨM

(2Bn + 1),
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times the number of “beginnings” K0, K1. The number of choices for K0, K1 is bounded
above by

Θ
(M+1)
1 · (Θ

(M+1)
1 Θ

(M)
1 ) ≤ bβmax(2|WM+1|+|WM |),

by (46), in view of the assumption τ ∈ [1,Θ
(M+1)
1 ]. Let ˜̺= ˜̺(H,α) > 0 be such that

b3˜̺βmax < aα/4.

Then for P-a.e. ω, for M sufficiently large, the number of choices for K0, K1 is bounded
above by aαM/4, in view of (38). It remains to estimate BM . In view of (37) in Lemma
5.2 and (55),

BM ≤ exp
(
OH(1) ·

∑

n∈ΨM

(|WM−n|+ |WM−n−1|)
)
≤ exp

(
OH(1) · L1 · log(1/4δ) · δM

)
,

for M sufficiently large. Combining everything, we obtain that the number of balls of

radius OH(a
−M/2) needed to cover Ẽ4δ,M is not greater than

aαM/4 ·
∑

i≤4δM

(
M

i

)
· exp

(
OH(1) · L1 · log(1/4δ) · δM

)
,

which can be made smaller than aαM/2 by taking appropriate δ = δ(H,α) > 0. This
concludes the proof of Proposition 5.4, and now Theorem 5.1 is proved completely. �

6. Absolute continuity of self-similar measures

In this section we prove Theorem 1.1. Fix translations t1 < . . . < tk and p and let

G = {λ ∈ (0, 1)k : νpλ,t is absolutely continuous}.

Recall that for any λ,p, the measure νpλ,t, being self-similar, is either absolutely contin-
uous or purely singular. It follows from [17, Theorem 1.10] that G is an Fσ set.

Fix positive numbers 1 = β1, . . . , βk, and write νpλ = νp
(λβ1 ,...,λβk ),t

and (with a slight

abuse of notation) also s(λ,p) = s((λβ1, . . . , λβk),p). By the coarea formula (see e.g.
[2, Theorem 3.10]), applied to the map

(λ1, . . . , λk) 7→ (log(λ2)/ log(λ1), . . . , log(λk)/ log(λ1))

and the measurable function 1G , in order to establish Theorem 1.1 it is enough to prove
the following:

Proposition 6.1. Given ε > 0, there exists a null set Ep ⊂ (0, 1) (depending on the ti,
βi and p) such that if λ ∈ (0, 1) \Ep is such that s(λ,p) > 1 + ε, then νpλ is absolutely
continuous.

The rest of this section is devoted to the proof of Proposition 6.1. We write (gλ,i(x) =
λβix+ ti) for the IFS corresponding to the parameter λ. Moreover, if u ∈ {1, . . . , k}n,
we will write gλ,u = gλ,u1 ◦ · · · ◦ gλ,un for short.
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Lemma 6.2. For any δ > 0 there exist r ∈ N, depending on δ and p, and a parametrized

family of models Σλ = ((Φ
(i)
λ )i∈I , (p̃i)i∈I ,P), such that the following holds:

(i). The measure P depends only on p and r, the number of maps ki in Φ
(i)
λ depends

only on r (and k), the probability vectors p̃i are all uniform, and if we write

Φ
(i)
λ = (f

(i)
λ,1, . . . , f

(i)
λ,ki

),

then the maps f
(i)
λ,j depend on λ (and ti, βi).

(ii). {gλ,u : u ∈ {1, . . . , k}r} is the disjoint union of the sets {f
(i)
λ,1, . . . , f

(i)
λ,ki

}, i ∈ I.
(iii). P is a globally supported Bernoulli measure.

(iv). νpλ =
∫
η
(ω)
λ dP(ω), where η

(ω)
λ are the random measures generated by the model

Σλ.
(v). s-dim(Σλ) > (1− δ)s(λ,p).

Proof. The proof is very similar to [6, Lemma 6.6] but we provide all details for com-
pleteness. See also §1.2 for an alternative explanation of Part (iv) in the special case
k = 2. Fix r ∈ N, and let

I :=

{
(n1, . . . , nk) ∈ Nk

0 :

k∑

j=1

nj = r

}
.

For each word u ∈ {1, . . . , k}r, let Nj(u) be the number of times the symbol j appears
in u. Let us define a map Ψ : {1, . . . , k}r → I as

Ψ(u) = (N1(u), . . . , Nk(u)).

Further, for each ~n ∈ I, let

q~n =
∑

u∈Ψ−1(~n)

pu1 · · · pur = |Ψ−1(~n)|p~n1
1 · · · p~nk

k .

Write k~n = |Ψ−1(~n)|, and enumerate Ψ−1(~n) = (u
(~n)
1 , . . . , u

(~n)
k~n

). Set also

f
(~n)
λ,j = g

λ,u
(~n)
j

,

p̃
(~n)
j = p

u
(~n)
j

/q~n = k−1
~n .

Finally, define P as the Bernoulli measure on IN with marginal q.
This data defines a family of models that clearly satisfy (i), (ii) and (iii). In particular,

all the maps f
(~n)
λ,j , j = 1, . . . , k~n, have the same contraction ratio

∏k
i=1 λ

niβi.
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Using the self-similarity relation (8) and the definition of P, we get

∫

Ω

η
(ω)
λ dP(ω) =

∫

Ω

kω1∑

j=1

p̃
(ω1)
j f

(ω1)
λ,j (η

(Tω)
λ ) dP(ω)

=
∑

~n∈I

q~n

∫

Ω

k~n∑

j=1

p̃
(~n)
j f

(~n)
λ,j (η

(ω)
λ ) dP(ω)

=
∑

~n∈I

k~n∑

j=1

p
u
(~n)
j

∫

Ω

g
λ,u

(~n)
j

(η
(ω)
λ ) dP(ω)

=
∑

u∈{1,...,k}r

pu

∫

Ω

gλ,u(η
(ω)
λ ) dP(ω)

=
∑

u∈{1,...,k}r

pu gλ,u

(∫

Ω

η
(ω)
λ dP(ω)

)
,

which, by uniqueness of self-similar measures, establishes (iv).
It remains to estimate the similarity dimension of Σλ. For u ∈ {1, . . . , k}r, we write

λu = λβu1+...+βur , i.e. λu is the contraction ratio of gλ,u. With this notation in hand,
we have

s-dim(Σλ) =
−
∑

~n∈I q~nH(p̃~n)∑
~n∈I q~n log

∏k
j=1 λ

njβj

=

∑
~n∈I

∑k~n
i=1 pu(~n)

i

log(p
u
(~n)
i

/q~n)
∑

u∈{1,...,k}r pu log(λu)

=
−H

(
(pu)u∈{1,...,k}r

)
−
∑

~n∈I q~n log(q~n)∑
u∈{1,...,k}r pu log(λu)

≥
−H

(
(pu)u∈{1,...,k}r

)
+ log |I|∑

u∈{1,...,k}r pu log(λu)

≥
−rH(p) + log((r + 1)k)H(p)/H(p)

r
∑k

i=1 pi log(λ
−βi)

=
r − log((r + 1)k)/H(p)

r
s(λ,p),

which shows that (v) holds provided r is taken large enough in terms of δ and H(p). �

We go back to the proof of Proposition 6.1. Let δ = ε/2 and choose r ∈ N so that
Lemma 6.2 holds for this choice of δ and p. Let (Σλ) be the models given by Lemma
6.2. Using parts (i),(ii) of the lemma, write

(58) Φ
(i)
λ = (λγix+ t̃

(i)
λ,j)1≤j≤ki,
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where γi > 0 depend on β1, . . . , βk. Note that, once λ and ω have been fixed, the

measure η
(ω)
λ can be interpreted as the distribution of the random sum

∑

n∈N

(
n−1∏

j=1

λγωj

)
t̃
(ωn)
λ,un

,

where the sequence (un) is chosen according to the product measure η(ω) (which does
not depend on λ). Fix s ∈ N. By splitting

∑
n∈N into

∑
n∈N,s|n and

∑
n∈N,s∤n, we can

decompose η
(ω)
λ as a convolution

(59) η
(ω)
λ = (η′λ)

(ω) ∗ (η′′λ)
(ω).

That is, (η′λ)
(ω) corresponds to “keep only every s-th term” and (η′′λ)

(ω) to “skip every

s-th term” in the construction of η
(ω)
λ . Formally, define two maps Π̃′

λ,ω, Π̃
′′
λ,ω : Ω → R as

follows:

Π̃′
λ,ω(u) =

∑

n∈N,s|n

(
n−1∏

j=1

λγωj

)
t̃
(ωn)
λ,un

,

Π̃′′
λ,ω(u) =

∑

n∈N,s∤n

(
n−1∏

j=1

λγωj

)
t̃
(ωn)
λ,un

.

Then (59) holds for (η′λ)
(ω) = Π̃′

λ,ω(η
(ω)) and (η′′λ)

(ω) = Π̃′′
λ,ω(η

(ω)).

Recalling the decomposition given by Lemma 6.2(iv), notice that if η
(ω)
λ is absolutely

continuous for P-almost all ω, then so is νpλ (since if A is Lebesgue-null, then η
(ω)
λ (A) = 0

for P-almost all ω, and so νpλ (A) = 0). To establish absolute continuity of η
(ω)
λ , we will

rely on the following result from [13].

Lemma 6.3. Let µ′, µ′′ be two Borel probability measures on R such that µ′ ∈ D1 and
dimH µ

′′ = 1. Then µ′ ∗ µ′′ is absolutely continuous.

In light of this lemma and (59), the proof of Proposition 6.1 (and therefore of Theorem
1.1) will be finished once we have proved the following two lemmas:

Lemma 6.4. For any choice of s ∈ N, for almost all λ ∈ (0, 1), the measure (η′λ)
(ω) is

in D1 for P-almost all ω.

Lemma 6.5. There is s ∈ N such that for almost all λ ∈ (0, 1) such that s(λ,p) > 1+ε,
the measure (η′′λ)

(ω) has exact dimension 1 for P-almost all ω.

Proof of Lemma 6.4. The idea is to realize (η′λ)
(ω) as a family of random measures

generated by a related model Σ′
λ, and apply Theorem 1.5 to Σ′

λ, together with Fubini.

We begin by defining Σ′
λ. Let I ′ = Is and, for ~i ∈ I ′, consider the IFS

(Φ′
λ)

(~i) =
(
λ~i1 · · ·λ~isx+ t̃

(~is)
λ,j

)k~is
j=1

,
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Further, let p̃′~i = p̃~is , and set

F (ω) =
(
(ωjs+1, . . . , ω(j+1)s)

)∞
j=0

∈ (I ′)N.

It is a consequence of the definitions that if we denote the random measures generated

by the model Σ′
λ =

(
((Φ′

λ)
(~i))~i∈I′, (p̃

′
~i
)~i∈I′, F (P)

)
by η̃ω

′

λ , then

(60) η̃
(F (ω))
λ = (η′λ)

(ω)

Note that the contraction ratio of the maps in (Φ′
λ)

(~i) is λβ
′

~i, where β ′
~i
> 0 are numbers

that depend only on s and the γi, which in turn depended only on r and the βi (recall

Lemma 6.2). It also follows from Lemma 6.2(ii) and the definition of the f
(~i)
λ,j that, for

any choice of s and for any λ ∈ (0, 1), the model Σ′
λ is non-degenerate. Finally, we note

that F (P) is a (globally supported) Bernoulli measure.
Let L be Lebesgue measure on (0, 1). We can then apply Theorem 1.5, the identity

(60) and Fubini’s Theorem to conclude that there exists a full (P × L)-measure Borel
set G ⊂ Ω× (0, 1), such that (η′λ)

(ω) ∈ D1 for (ω, λ) ∈ G. We remark that, even though
the translations in the model Σ′

λ also depend on the parameter λ, in Theorem 1.5
the exceptional set is independent of the translations (as long as the model stays non-
degenerate). We can apply again Fubini’s Theorem to reach the desired conclusion. �

The proof of Lemma 6.5 relies on a result of M. Hochman [7, Theorem 1.8]. We state
only the consequence we will require.

Lemma 6.6. If hi(x) = λix + ti are affine maps, write ∆̃(h1, h2) = 1 if λ1 6= λ2 and

∆̃(h1, h2) = |t1 − t2| if λ1 = λ2. Given λ ∈ (0, 1), define

∆̃n(λ) = min
u 6=u′∈{1,...,k}n

∆̃(gλ,u, gλ,u′).

Then the following holds: the set

E ′ = E ′(β1, . . . , βk) = {λ ∈ (0, 1) : log ∆̃n(λ)/n→ −∞}

has zero Hausdorff dimension (in particular, zero Lebesgue measure).

Proof. Note that for any distinct u, u′ ∈ {1, . . . , k}N, the map

ψu,u′(λ) =
∞∑

n=0

λβu1 · · ·λβun tun+1 − λ
βu′

1 · · ·λβu′n tu′

n+1

is non-zero. Indeed, using that the translations ti are all different, and looking at the
first place where the sequences u and u′ differ, we can write ψu,u′ in the form

∑
j vjλ

ζj

for some non-zero numbers vj and a strictly decreasing (finite or infinite, but nonempty)
sequence of ζj ≥ 0. This shows that the assumption of [7, Theorem 1.8] is met, giving
the claim. �
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Proof of Lemma 6.5. The idea is similar to the proof of Lemma 6.4, but relying on
Theorem 1.3 together with Lemma 6.6 instead.

For the time being we let s ∈ N be arbitrary. Write I ′′ = Is, for each ~i ∈ I ′′ let
K~i =

∏s−1
ℓ=1{1, . . . , k~iℓ}, and consider the IFS

(Φ′′)(
~i) =

(
λ~i1 · · ·λ~isx+

s−1∑

ℓ=1

λ~i1 · · ·λ~iℓ−1
t̃
(~iℓ)
λ,jℓ

: j ∈ K~i

)
.

Let also p̃′′~i be the uniform probability vector on K~i and (once again)

F (ω) =
(
(ωjs+1, . . . , ω(j+1)s)

)∞
j=0

∈ (I ′′)N.

Abusing notation slightly, for any ℓ ∈ N we will also define F : Isℓ → (I ′′)ℓ in the
obvious way:

F (ω) =
(
(ωjs+1, . . . , ω(j+1)s)

)ℓ−1

j=0
.

Similar to Lemma 6.4, an inspection of the definitions shows that, denoting the

measures generated by the model Σ′′
λ =

(
((Φ′′

λ)
(~i))~i∈I′′, (p̃

′′
~i
)~i∈I′′ , F (P)

)
by η̃ω

′′

λ (we use

the same notation as for the measures in Lemma 6.4, but the measures are different),
it holds that

(61) η̃
(F (ω))
λ = (η′′λ)

(ω).

Observe that for any ω ∈ Isℓ,

(62) ∆
(F (ω))
ℓ (Σ′′

λ) ≥ ∆
(ω)
sℓ (Σλ).

To see this, let (X′′
λ,ℓ)

(ω) denote the finite code spaces for the model X ′′
λ , and note that

if u := (u(j))ℓj=1, v = (v(j))ℓj=1 ∈ (X′′
λ,ℓ)

(ω) and we write

ũ =
(
u
(1)
1 , . . . , u

(1)
s−1, i0, . . . , u

(ℓ)
1 , . . . , u

(ℓ)
s−1, i0

)
,

ṽ =
(
v
(1)
1 , . . . , v

(1)
s−1, i0, . . . , v

(ℓ)
1 , . . . , v

(ℓ)
s−1, i0

)

where i0 is an arbitrary element of I, then

(t′′u)
(F (ω)) − (t′′v)

(F (ω)) = t
(ω)
ũ − t

(ω)
ṽ ,

where t, t′′ denote the translations with respect to models Σλ,Σ
′′
λ, respectively. Indeed,

this holds simply because the model Σ′′
λ is obtained by “skipping every s-th term and

recoding” from Σλ. Recalling (9), we see that (62) holds.
In turn, it follows from Lemma 6.2(ii) that for any ω ∈ Isℓ,

∆
(ω)
sℓ (Σλ) ≥ ∆̃rsℓ(λ).

By Lemma 6.6, and since ∆̃n is non-increasing in n, there is a null set E ⊂ (0, 1) such

that log ∆̃rsℓ(λ)/ℓ 9 −∞ for all λ ∈ (0, 1) \ E. We deduce from the above discussion
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that, given λ ∈ (0, 1) \ E, there are a sequence nj → ∞ and M > −∞ such that

log∆(ω′′)
nj

(Σ′′
λ)/nj ≥M for all j and all ω′′ ∈ (I ′′)nj such that |(X′′

λ,nj
)(ω

′′)| > 1.

Since for F (P)-almost all ω′′ it holds that |(X′′
λ,n)

(ω′′)| > 1 for n ≥ n(ω′′), we have
verified that the hypotheses of Theorem 1.3 hold for Σ′′

λ. We deduce from Theorems 1.2
and 1.3 and the identity (61) that for all λ ∈ (0, 1) \E and P-almost all ω, the measure
(η′′λ)

(ω) has exact dimension min(s-dim(Σ′′
λ), 1).

Hence, taking into account Lemma 6.2(v) and our choice δ = ε/2, in order to finish
the proof it remains to show that if s is chosen large enough, then s-dim(Σ′′

λ) > 1

provided that s-dim(Σλ) > 1 + ε/3. Firstly, we note that for ~i ∈ I ′′ = Is,

H(p̃′′~i ) = log |K~i| =
s−1∑

ℓ=1

log kiℓ =
s−1∑

ℓ=1

H(p̃~iℓ).

Hence, denoting the marginal of P by (qi)i∈I and recalling (58), we can calculate:

s-dim(Σ′′
λ) =

∑
~i∈Is H(p̃′′~i ) q~i1 · · · q~is

−
∑

~i∈Is log(λ
γ~i1 · · ·λγ~is ) q~i1 · · · q~is

=
(s− 1)

∑
i∈I H(p̃i)qi

−s
∑

i∈I log(λ
γi)qi

= (1− 1/s) s-dim(Σλ).

This confirms that we can ensure that s-dim(Σ′′
λ) > 1 by taking s large enough in terms

of ε, completing the proof. �
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