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Abstract

The first total synthesis and structural validation of phosdiecin A was accomplished in 13 steps 

(LLS) through asymmetric iridium-catalyzed alcohol-mediated carbonyl reductive coupling. The 

present route is the shortest among >30 total and formal syntheses of fostriecin family members.

Graphical Abstract

Fostriecin (CI-920), a metabolite produced by Streptomyces pulveraceus isolated from a 

Brazilian soil sample in 1983,1 is the forerunner to a ever-growing family of phosphorylated 

polyketide natural products that modulate signal transduction pathways in mammalian cells, 

including the regulation of tumor microenvironment functions that support tumor 

development and protect cancer cells from chemotherapeutic stress.2 These properties are 

linked to their protein phosphatase inhibitory action, in particular, the serine/threonine 
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phosphatases PP1 and PP2A, which display functional roles that include cell cycle 

regulation (PP1 and PP2A), RNA splicing (PP1), cell differentiation (PP2A), apoptosis 

(PP2A), among others.2 Phase I clinical trials were launched for fostriecin but were halted 

before the maximum tolerated dose was established, as its instability and unpredictable 

purity limited supply.3 In 1992, Ohkuma and coworkers reported the isolation of a 

metabolite, dubbed sultriecin, from S. roseiscleroticus No. L827–7 from an Indian soil 

sample bearing a related hydroxylated dihydropyranone and a (Z,Z,E)-triene linked by an 

anti-1,3-diol tether, which was proposed to incorporate a sulfate moiety at C-9.4 In 2010, 

Boger and coworkers reassigned the structure as the C-9 sodium phosphate monoester and 

established its relative and absolute configuration, renaming it phostriecin.5 Like fostriecin, 

phostriecin has garnered interest as a potential chemotherapeutic agent due to its potent and 

selective inhibition of protein phosphatase 2A (PP2A).2,5 More recently, Thomasi and 

coworkers isolated two new phosphorylated polyketides, phosdiecins A and B, from the 

fermentation broth of Streptomyces sp. SS99BA-2 collected on the Brazilian coast.6 The 

structural assignment of phosdiecins A and B (including absolute stereochemistry) has not 

been corroborated by total synthesis and the biological properties of these compounds 

remain unexplored.

The prospect of developing chemotherapeutic agents based on serine/threonine protein 

phosphatase inhibition has driven efforts toward the de novo chemical synthesis of fostriecin 

and related phosphorylated polyketide natural products (Figure 1).7 To date, over 30 total 

and formal syntheses of “fostriecin family” members have been reported.7 The reported 

syntheses of these compounds range between 17–47 steps (LLS) in length. While their 

complexity is variable and earlier syntheses emphasized structure elucidation, it is clear that 

the challenges posed by this compound class are not fully resolved. Recently, one of the 

present authors developed a set of carbonyl reductive couplings and related hydrogen auto-

transfer processes that directly convert lower alcohols to higher alcohols.8 The redox-

economy of these processes has been shown to contribute to increased efficiency in 

polyketide construction.9 Given the longstanding challenges posed by the synthesis of the 

fostriecin family of natural products, and to further benchmark the utility of our catalytic 

methods, a campaign toward phosdiecin A was undertaken. Here, we disclose a 13 step 

(LLS) total synthesis of phosdiecin A - the shortest among >30 syntheses of fostriecin 

family members.

Due to uncertainty regarding the structural assignment of phosdiecins A and B, as a prelude 

to our experimental work DP4+ calculations were undertaken to assess the veracity of the 

proposed structure (see Supporting Information).10 In particular, the assignment of relative 

stereochemistry between the pyran C4–C5 stereotriad with respect to the C9–C11 stereotriad 

was ambiguous. The computational work validates the relative configuration proposed by 

Thomasi and coworkers, which emerged from these studies as the most probable 

stereoisomer. Retrosynthetically, phosdiecin A was envisioned to arise through the 

convergent assembly of Fragments A, B and C (Figure 2). Fragment A was anticipated to be 

accessible through the Sharpless asymmetric epoxidation (SAE)-kinetic resolution (KR)11 of 

furfural adduct 2 (via Achmatowicz reaction) followed by iridium-catalyzed internal redox 

isomerization.12 Fragment B shows higher complexity due to the C9–C11 stereotriad.13 For 
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this fragment, successive use of the present authors carbonyl reductive coupling 

methodology was employed.14,15 Specifically, crotylation of the acetylenic aldehyde 614 

followed by allylation of the β,γ-stereogenic alcohol 915 was planned. Cross-metathesis of 

Fragments A and B, and Suzuki cross-coupling of the resulting vinyl bromide 10 with 

Fragment C would deliver phosdiecin A. Realization of this concise, convergent approach 

could serve as a prelude to the synthesis of other fostriecin family members, as well as the 

design of synthetic analogues for structure-activity studies.

Preparation of Fragment A begins with addition of vinyl magnesium bromide to furfural 1 
(Scheme 1). The resulting allylic alcohol 2 was subjected to conditions for SAE-KR11 to 

provide the lactol 3 in 41% yield, 3:1 dr and 92% ee. Next, to install the C4–C5 syn-diol, an 

iridium-catalyzed dynamic kinetic internal redox isomerization was performed.12 Lactone 4 
was obtained in 36% yield as a single stereoisomer (see Supporting Information for 

determination of relative and absolute stereochemistry). Protection of the secondary alcohol 

as the PMB-derivative delivers Fragment A in a total of four steps (LLS) from furfural 1.

In pursuit of an efficient route to Fragment B, we recently developed the anti-diastereo- and 

enantioselective crotylation of TIPS-protected acetylenic aldehyde 6 through 2-propanol-

mediated reductive coupling of α-methyl allyl acetate catalyzed by the iridium-complex (R)-

Ir-I.14 This reaction was conducted on gram-scale without any erosion in yield or 

stereoselectivity. To convert the homoallylic alcohol 7 to Fragment B, the C11 alcohol was 

transformed to the PMB ether, the acetylenic TIPS moiety was removed and the resulting 

terminal alkyne was treated with NBS to form the acetylenic bromide 8.16 Selective 

ozonolytic cleavage of the terminal alkene17 followed by diimide reduction18 delivered the 

vinyl bromide 9. Finally, direct iridium-catalyzed allylation of the alcohol 9,15 which 

bypasses discrete generation of the configurationally labile chiral α-stereogenic aldehyde, 

provide Fragment B (see Supporting Information for determination of relative and absolute 

stereochemistry). Here, catalyst-directed diastereoselectivity is amplified by Felkin-Anh 

selectivity,19 guiding assembly of the C9–C11 stereotriad with high levels of control 

(Scheme 2).

With Fragments A and B in hand, a challenging cross-metathesis was attempted (Scheme 3). 

This process required extensive experimentation, as the vinyl bromide moiety poses issues 

of functional group compatibility.20 Additionally, the vinyl-substituted pyrans are prone to 

competing olefin isomerization.21 Ultimately, optimal reaction conditions employing Grubbs 

2nd generation catalyst afforded vinyl bromide 10 in 31% yield. Suzuki-Miyaura cross-

coupling with Fragment C22 was conducted using McDonald’s protocol.23 The reaction 

byproducts were most easily removed by subjecting the crude (Z,Z)-diene 11 to 1H-

tetrazole-promoted phosphorylation conditions using diallyl N,N-

diisopropylphosphoramidite followed by peroxide-mediated oxidation to provide the 

protected phosphate ester 12 in 56% yield over the two steps.24 Removal of the PMB 

protecting group followed by palladium-catalyzed allylic reductive cleavage of the diallyl 

phosphate ester 1225 provided (+)-phosdiecin A as the sodium salt. A work up procedure 

involving treatment with Dowex-50 provided the protonated material. The spectral data (1H 
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and 13C NMR) were virtually identical to natural phosdiecin A (see Supporting 

Information).

In summary, the first total synthesis of phosdiecin A was accomplished in 13 steps (LLS) 

through asymmetric iridium-catalyzed alcohol-mediated carbonyl reductive coupling. In >30 

total and formal syntheses of structurally related natural products, 17–47 steps (LLS) were 

required. This work validates the initial structure proposed by Thomasi for this natural 

product.6 Most importantly, the methods and strategies utilized in the present synthesis 

should be transferrable to other fostriecin family members and functional analogues. Studies 

toward this end are in progress and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Total synthesis of fostriecin and related phosphorylated polyketide natural products. LLS = 

Longest linear sequence. See Supporting Information and ref. 7 for literature references 

pertaining to the syntheses of the indicated compounds, graphical summaries of their 

syntheses and a detailed inventory of step count.
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Figure 2. 
Retrosynthetic analysis of phosdiecin A.
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Scheme 1. 
Preparation of Fragment A.a

aYields are of material isolated by silica gel chromatography. Diastereoselectivities were 

determined by 1H NMR of crude reaction mixtures. Enantioselectivities were determined by 

chiral stationary phase HPLC analysis. See Supporting Information for experimental details.
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Scheme 2. 
Preparation of Fragment B.a

aAs described in Scheme 1. See Supporting Information for experimental details.
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Scheme 3. 
Union of Fragments A, B and C and total synthesis of phosdiecin A.a

aYields are of material isolated by silica gel chromatography. See Supporting Information 

for experimental details.
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