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Abstract
Emerging contaminants derive from pharmaceuticals, pesticides, disinfection by-products, home and care products, and

wood preservation and industrial chemicals that contain specific drugs, metals, metal oxides and metalloids as nanopar-

ticles (NPs) in their formulations. Although the use of silicon dioxide (SiO2) NPs in commercial products increases, its

impacts on the environment and on animal and human health are largely unknown. Thus, the aim of this study was to

evaluate the ecotoxicity of colloidal SiO2-NPs in Rhinella arenarum larvae exposed to 0.001, 0.01, 0.1, and 1 mg/L

colloidal SiO2-NPs for 48 h. Biotoxicological endpoints (median lethal concentration-LC50; 95% confidence limits), the

no-observed-effect concentration (NOEC), the lowest-observed-effect concentration (LOEC), Toxic Units (TU), oxidative

stress enzyme activity (glutathione S-transferase-GST), and genotoxicity (frequency of micronuclei, and other erythrocyte

nuclear abnormalities-ENAs) were measured in exposed larvae. Scanning electron microscopy equipped with an energy

dispersive X-ray system allowed detecting that SiO2-NPs aggregate on the dorsal skin of SiO2-treated larvae. The 48 h

LC50 of colloidal SiO2-NPs was 0.0251 mg/L (0.0163- 0.0338 mg/L). The NOEC and LOEC values after 48 h were

0.001 mg/L and 0.01 mg/L, respectively. According to the hazard classification system for wastewaters discharged into the

aquatic environment, the colloidal SiO2-NPs evaluated are Class V, i.e., of very high acute toxicity (TU = 3984.06). At

48 h of exposure to NOEC, GST activity and ENAs frequency were significantly increased (118.75 and 58%, respectively)

with respect to controls. The results of the present study indicate that, at low concentration, colloidal SiO2-NPs exerted

high toxicity on R. arenarum tadpoles.

Keywords Rhinella arenarum � Nanotoxicity � Emerging contaminants � Biomarkers � Personal care products

Introduction

There is increasing widespread concern about the potential

impacts of emerging contaminants (ECs) on the environ-

ment as well as on wildlife and human health (Kendall

et al. 2016). ECs are defined as synthetic or naturally

occurring chemicals that have appeared in freshwater

ecosystems and potable water during the last decades

(Sgroi et al. 2017). Pharmaceuticals, personal care products

and endocrine disrupting compounds are among the prime

examples of ECs. ECs enter water systems from different

sources, such as human excretion (sewage and hospital

effluents), clandestine or untreated disposal of animal

manure from feedlots, leaching and runoff from agricul-

tural fields that use organic fertilizers, or from industries

(Archer et al. 2017). However, monitoring data sets (pre-

viously limited by analytical capabilities) and accurate risk

assessment and environmental legislation are currently

lacking (Lindsey et al. 2001; Klavarioti et al. 2009; Al-

Odaini et al. 2013).

Some ECs recently detected in waters are nanoparticles

(NPs) (Sauvé and Desrosiers 2014), named as engineered

nanomaterials. Nanotechnology has created new type of

materials, which have revolutionized the world with a large
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range of applications (Bhushan 2004). Nanomaterials are

diverse types of small-scale materials that have structural

elements smaller than 100 nm (nano-sized particles or

NPs), in at least one dimension (EPA 2015; Calderón-

Jiménez et al. 2017) and have facilitated the development

of new cosmetics, pharmaceuticals, personal care products,

sunscreen, powdered food, insecticides, and biocidal

products for human ectoparasites (e.g., Jones et al. 2008;

Gandhi et al. 2016). The use of NPs in cosmetic or personal

care products poses significant challenges, because NPs

frequently occur at low concentrations and are often

incompatible with the analytical instruments that would be

required for their identification, quantification and charac-

terization (Contado 2015).

The number of consumer products that have incorpo-

rated NPs into their formulations has grown from a total of

54 products identified in 2005 to over 1800 nanomaterial-

and NP-containing consumer products in 2014 in 32

countries (Vance et al. 2015). One of the main concerns

regarding long-term environmental and human exposures

to NPs is the limited information (Sajid et al. 2015). As a

consequence, there is a need to evaluate their toxicity (Ray

et al. 2009; Ostroumov and Kotelevtsev 2011). In general,

the chemical dynamics of NPs is different from that of non-

particulate contaminants, so new paradigms will be needed

for the NPs present in the water, soil, sediment and biota

(Mahdi et al. 2017). Silicon dioxide-based NPs (known as

silica) (SiO2-NPs) are one of the main NPs used for per-

sonal care products for children and as bio-pesticides for

veterinary treatments, human health, and as pesticides in

agriculture (Barik et al. 2008, 2012). The products that

contain SiO2-NPs in complex matrices such as water and

soils (Sferratore et al. 2006) require risk evaluation and

characterization in non-target organisms (Sauvé and Des-

rosiers 2014).

Different investigations have demonstrated that SiO2-

NPs in zebrafish (Danio rerio) (embryos and larvae) cause

embryonic developmental toxicity by oxidative damage,

which results in persistent effects on larval behavior (Duan

et al. 2013, Ye et al. 2013). Moreover, Ambrosone et al.

(2014) reported that SiO2-NPs treatment of Hydra vulgaris

(Cnidaria) leads to the modification of homeostasis and

modulation of gene expression. In mice, it has been

demonstrated that SiO2-NPs with a diameter of 100 nm

induce liver injury (Nishimoria et al. 2009; Hasezaki et al.

2011). Furthermore, insecticides containing NPs such as

titanium dioxide NPs (TiO2-NPs) in pediculicidal formu-

lations (Gandhi et al. 2016) act mechanically by obstruct-

ing the respiratory openings of the cuticle surfaces of the

insects and produce abrasions or block the spiracle, thus

leading to biological and behavioral changes, including the

reduction of movements, feeding, and death. Likewise,

Shrivastava et al. (2007) and Wijnhoven et al. (2009) have

suggested that Ag-NPs could accumulate in fish skin and

affect cellular modulation and therefore inhibit bacterial

growth.

In the present study, larvae of the common South

American toad Rhinella arenarum were selected as test

organisms. This species has an extended geographical

distribution and is frequently present in natural and artifi-

cial aquatic ecosystems (e.g., forests, wetlands, agricultural

lands, and urban regions) (Bionda et al. 2015). This species

is suitable and useful as a laboratory experimental model

for monitoring aquatic ecosystems and its sensitivity to

some xenobiotics has been proven in many biomarker

studies (e.g., Venturino et al. 2003; Lajmanovich et al.

2014). It is important to highlight the ecological role of

amphibian tadpoles as a link between terrestrial and aquatic

habitats (Altig et al. 2007), in relation to the potential for

NPs to be taken up by organisms and be transferred in food

webs (Bundschuh et al. 2016).

Some researchers have evaluated the undesired biolog-

ical effects of ECs (e.g., McConnell and Sparling 2010;

Melvin 2016; Peltzer et al. 2017), including some NPs, on

amphibian tadpoles (e.g., Hinther et al. 2010; Salvaterra

et al. 2013; Nations et al. 2015; Thompson et al. 2017), but

little is known about the ecotoxicity of SiO2-NPs on anuran

larvae. For these reasons, the aim of this study was to

investigate the acute and sublethal effects of colloidal

SiO2-NPs using larvae of the common toad R. arenarum as

a biological model. The development of such information

may allow the assessment and characterization of potential

ecological risks following future massive use of NPs as

ECs.

Materials and Methods

Test Organisms

Premetamorphic larvae at Gosner stages (GS) 26–30

(Gosner 1960) of R. arenarum (n = 150), with average size

(snout-tail tip) 16 ± 0.25 mm and weight

0.045 ± 0.005 g, were collected from the temporary pond

called ‘‘Lago Parque del Sur’’ (31�39’53.9000S—
60�42051.2000W, Santa Fe Province, Argentina) in

November 2016. In this site, pesticides are never applied

because pesticide application is restricted by law because

they might have a toxic effect on human and wildlife health

(Martinuzzi et al. 2016). Larvae were acclimated in labo-

ratory conditions for 48 h at a 12-h light/dark cycle with

dechlorinated tap water (DTW), pH 7.2 ± 0.05, conduc-

tivity of 165 ± 12.5 lmhos cm-1, dissolved oxygen con-

centration of 6.5 ± 1.5 mg L-1, and hardness of

48.5 mg L-1 of CaCO3 at 23 ± 3 �C, and fed on boiled

lettuce (Lactuca sativa) at the beginning of the experiment.
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The bioassays using larvae were approved by the bioethical

committee of the Facultad de Bioquı́mica y Ciencias

Biológicas, Universidad del Litoral, Santa Fe, Argentina

(Res. CD No.: 388/06), and the experimental protocol was

according to the norms of ASIH-American Society of

Ichthyologists and Herpetologists (2004) criteria.

NPs and Experimental Design

For short-term (48-h) static toxicity tests, a personal care

formulation with a colloidal suspension of SiO2-NPs used

to control ectoparasite insects was purchased in a local

pharmacy. Sedimentation and re-dispersion were used to

obtain only NPs and remove agents and surfactants from

the NPs (Anon. 2008). The method consisted in centrifu-

gation at 10,000 rpm for 20 min; and then, to obtain the

final concentration of NPs, the pellet was weighed by

electronic balance (Ohaus�, ± 0.0001 g) and dissolved in

deionized water (Anon 2008; Gandhi et al. 2016). Stock

solutions containing colloidal SiO2-NPs were prepared for

the toxicity tests. Test concentrations were prepared by

diluting the stock solution in DTW. These SiO2-NPs were

previously characterized using a Scanning Electron

Microscope (SEM) (FEI-QuantaTM200) equipped with an

Energy Dispersive X-ray (EDX) system. The same proce-

dure was followed with dehydrated treated larvae. Particles

on the images obtained were measured using ImageJ

software (available free over the Internet at: http://rsb.info.

nih.gov/ij/index.html); the average primary particle diam-

eter was calculated from 20 to 30 particles.

Range-finding toxicity tests consisted in exposing larvae

to colloidal SiO2-NPs to estimate the median lethal con-

centration (LC50), the no-observed-effect concentration

(NOEC), and the lowest-observed-effect concentration

(LOEC). Ten tadpoles/container were exposed to 0.001,

0.01, 0.1, and 1 mg/L colloidal SiO2-NPs and a control

(only DTW) in glass aquaria (13 cm in diameter and 14 cm

in height) with 1 L DTW. Both the control and the test

solutions were made in triplicate. Treatments were ran-

domly assigned to the experimental containers, as was the

order in which the glass containers were sampled. Because

of the lack of data on the environmental concentration of

NPs deposited on water bodies and uncertainties associated

with the fate of these xenobiotics for biomarker assess-

ment, a subsample of tadpoles per control and NOEC-48 h

exposures were euthanized in accordance with the ASIH

(2004) guidelines and with approval of the animal ethics

committee of the Facultad de Bioquı́mica y Ciencias

Biológicas, Universidad del Litoral, Santa Fe, Argentina.

The residual water of the experiments was disposed by the

Waste Management Program of the same institution.

Antioxidant Enzymes

Each larva was homogenized (on ice) in 0.1% t-octylphe-

noxypolyethoxy-ethanol (triton X-100) in 25 mM tris

(hydroxyl methyl) aminomethane hydrochloride (pH 8.0),

using a polytron. Suspensions were centrifuged at

10,000 rpm for 15 min at 4 ± 1 �C and the supernatant

(crude extract) was extracted. The Biuret method was used

to determine protein concentration in the supernatants

(Kingsley 1942). When sample volume was enough,

enzyme kinetics assays were carried out in duplicate.

Glutathione S-transferase (GST) activity was determined

spectrophotometrically using the method described by

Habig et al. (1974) and adapted by Habdous et al. (2002)

for mammal serum GST activity. The enzyme assay was

performed at 340 nm in 100 mM Na–phosphate buffer (pH

6.5) (F.V. = 920 lL), 20 lL of 0.2 mM 1-chloro-2,

4-dinitrobenzene, 50 lL of 5 mM reduced glutathione, and

the sample. Enzyme kinetics assays were performed at

25 �C and whole GST activity was expressed as

nmol min-1 mg-1 protein using a molar extinction coef-

ficient of 9.6 9 103M-1 cm-1.

Genotoxicity

One smear per larva was prepared on clean slides with

blood samples obtained by cardiac puncture, then fixed and

stained using the May-Grünwald-Giemsa method (Laj-

manovich et al. 2005). It is important to consider that red

blood cells in amphibians are nucleated and undergo cell

division in the circulation, particularly during the devel-

opmental stages. In mature erythrocytes, the frequencies of

micronuclei (MN) and other erythrocyte nuclear abnor-

malities (ENAs) such as binucleated erythrocytes (BER),

erythroplastids (EP), kidney-shaped nuclei (KN), lobed

nuclei (LN), multi-micronucleated erythrocytes (MMER),

and notched nuclei (NN), were recorded according to the

procedures of Guilherme et al. (2008). The ENAs value

was the sum of BER ? EP ? KN ? LN ? MMER ? NN

(Lajmanovich et al. 2014). Coded and randomized slides

were examined blind by a single operator.

Data Analyses

The lethal concentration (LC50) values and their respective

95% confidence limits were calculated using the Trimmed

Spearman-Karber method (Hamilton et al. 1977). Mortality

data were statistically evaluated using the Dunnett’s test for

post hoc comparison of means to determine NOEC and

LOEC (U.S.EPA 1989). Taking into account that NPs

emitted by wastewater are considered to be widely present

in the natural environment (Li et al. 2016), the toxicity
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value (LC50) was transformed into Toxic Units (TU)

according to the following equation: TU = 100/LC50 and

classified under the hazard classification system for

wastewaters discharged into the aquatic environment

(Table 1; Persoone et al. 2003). The data of GST activity

were expressed as means ± standard error (SEM). The

Mann–Whitney U test was used to compare enzymatic

activities between control and SiO2-NPs-treated larvae.

Data of MN and other ENAs were analyzed using the

binomial proportion test (Margolin et al. 1983). These

statistical methods were performed using BioEstat software

5.0 –(Ayres et al. 2008). A value of p\ 0.05 was con-

sidered significant.

Results

SEM analyses of the colloidal SiO2-NPs clearly showed

spherical shapes, mostly aggregated, of an average particle

size of 102 ± 12 nm (Fig. 1a). EDX spectroscopy con-

firmed the purity of colloidal SiO2-NPs with high Si con-

tents (Fig. 1b).

Acute Toxicity Tests

No mortality was observed in the controls. The 48 h col-

loidal SiO2-NPs acute LC50 value (95% CL) calculated

based on the Trimmed Spearman-Karber was 0.0251 mg/L

(0.0163% - 0.0338 mg/L). The LC50 values were stabilized

at 24 h of exposure. The NOEC value was 0.001 mg/L,

whereas the LOEC value was 0.01 mg/L. The highest

concentration of colloidal SiO2-NPs (1 mg/L) killed all

exposed larvae. The value for TU was 3984.06, which,

according to the hazard classification system for wastew-

aters discharged into the aquatic environment, is consid-

ered Class V, i.e., of very high acute toxicity (TU[ 100;

Table 1).

Morphological observations of untreated dehydrated

larvae exhibited normal external surface (Fig. 2a). The skin

of the larvae treated with 0.01 mg/L colloidal SiO2-NPs

(LOEC value) showed several NPs absorbed or adhered,

although no intercellular epidermal edemas or focal dermal

inflammations were observed (Fig. 2b, c). EDX spec-

troscopy exhibited the chemical components of these NPs

and confirmed the high percentage of Si on the tadpoles

skin, which was similar to that of the colloidal SiO2-NPs

sample (Fig. 2d).

GST Activity

The mean value of GST activity in controls was

105.88 ± 12.93 nmol min-1 mg-1 total protein at 48 h.

GST activity was highly significantly increased (118.75%)

by colloidal SiO2-NPs at NOEC exposure (U = 81.00;

p\ 0.01) (Fig. 3).

Table 1 Criteria of classification for hazardous substances for

wastewaters discharged (Persoone et al. 2003)

TU Class Toxicity

\ 0.4 Class I No acute toxicity

\ 0.4\TU\ 1 Class II Slight acute toxicity

1\TU\ 10 Class III Acute toxicity

10\TU\ 100 Class IV High acute toxicity

TU[ 100 Class V Very high acute toxicity

Fig. 1 a Scanning Electron Microscopy (SEM) image of 99% of colloidal silicon dioxide nanoparticles (SiO2-NPs). b SEM–EDX spectra of

SiO2-NPs. The vertical axis corresponds to the intensity (counts per second). The highest peak is due to the silice (Si) contents on the sample
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Effect of SiO2-NPs on ENAs

Normal mature erythrocytes of R. arenarum larvae are

oblong/oval-shaped with a central nucleus visibly struc-

tured and a well-defined boundary, which enabled the

recognition of fragments in their cytoplasm (Fig. 4a). The

MN quantified were spherical nuclear fragments separated

from the nucleus (Fig. 4b). Binucleated, erythroplastid,

kidney-shaped, multi-micro nucleated, and notched nuclei

were also observed in larvae treated with colloidal SiO2-

NPs at the NOEC value (0.001 mg/L) (Fig. 4c–h).

After 48-h exposure, at the NOEC value of SiO2-NPs

(0.001 mg/L), blood of R. arenarum larvae showed a

significant increase (58%) in the frequency of ENAs

respect to controls (z = - 2.25; p\ 0.01) (Fig. 5).

Discussion

NPs are being increasingly used in imaging, diagnosis, care

products, cosmetics, and drug delivery, but their toxicity in

aquatic organisms has only recently begun to be investi-

gated. In the present study, very low concentrations

(\ 1 mg/L) of colloidal SiO2-NPs induced high lethal

toxicities in R. arenarum larvae with an LC50 48 h value of

0.0251 mg/L. The TU calculated estimate the risk associ-

ated as a result of the discharge of effluents containing

Fig. 2 Scanning electron microscopy (SEM) images of R. arenarum

tadpoles (see reference: h head, t tail) exposed to colloidal silicon

dioxide nanoparticles (SiO2-NPs). a Control with dechlorinated tap

water (DTW). b Tadpole dead at the LOEC value (0.01 mg/L) (**)

see detail of SiO2-NPs aggregates adhered to the dorsal skin of R.

arenarum larvae. (C) Magnification of area exposed (**) in Fig. 2b.

d SEM–EDX spectra for SiO2-NPs aggregates indicated by the red

mark in Fig. 2c. The vertical axis corresponds to the intensity (counts

per second). The highest peak is due to the silice (Si) contents on the

skin sample
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these test compounds. As mentioned above, according to

the hazard classification system applied for wastewaters

discharged into the aquatic environment (Persoone et al.

2003), colloidal SiO2-NPs belong to Class V, which indi-

cates a very high acute toxicity.

It is generally recognized that SiO2-NPs are not toxic

(e.g., Ryu et al. 2014; Caltagirone et al. 2015; Diab et al.

2017). However, the increase in the use of NPs in many

industry fields has prompted the careful investigation of

their toxicity in non-target organisms. Here, we determined

different biological effects elicited by SiO2-NPs on R.

arenarum larvae. Apparently, as shown in Fig. 2, these

NPs were absorbed or adhered onto the tadpole’s skin,

possibly by the affinity to lipids and caused the death

simply by physical means, similarly to that described for

larvicidal and pediculicidal effects by TiO2-NPs (Gandhi

et al. 2016). It should be noted that the mode of action of

insecticidal compounds for ectoparasite control that con-

tain SiO2-NPs in their formulations is through dehydration

of the insect cuticle by physical sorption of lipids, and they

are also expected to cause damage in the plasma cell

membrane, resulting in cell lysis and death of the organism

solely by physical means-asphyxiation mechanism (Tiwari

and Behari, 2009). Recent studies on the in vitro toxicity of

SiO2-NPs have shown that their toxicity is mediated by

adsorption of NPs to extracellular components as serum

proteins (Napierska et al. 2010; Zhang et al. 2012). Also,

Ambrosone et al. (2014) suggested that, in the case of not-

target organisms (e.g., H. vulgaris) in contact with amor-

phous SiO2-NPs, this interaction first occurs with the

external cuticle and induces a progressive morpho-physi-

ological alteration (i.e., changes in hydrostatic pressure)

and normal behavior (feeding behavior).

Several studies have reported oxidative stress and

pathological changes in aquatic species, specifically in

fishes after exposure to TiO2-NPs (e.g., Federici et al.

2007). An increased activity of GST can reveal disorders

that could be indicative of redox alterations related to a

possible oxidative stress situation (Oruç et al. 2004). After

48 h, R. arenarum larvae treated with colloidal SiO2-NPs

at the NOEC value (0.001 mg/L) showed an increase in

GST activity in relation to the controls. Similarly, an

increase in GST activity induced by SiO2NPs has been

reported in various cell lines after 48 of exposure (Mun-

teanu et al. 2010). However, the antioxidant adaptation

system to SiO2-NPs is insufficient to prevent the formation

of reactive oxygen species (ROS) and thus biomolecules

Fig. 3 Glutathione S-transferase (GST) activity in SiO2-NPs-treated

R. arenarum larvae at 48 h of exposure. (Co) control. SiO2-NPs:

0.001 mg/L. Bars represent the mean ± SEM, n = 10. Significant

difference was **p\ 0.01 with respect to the control (Mann–

Whitney U test). n = 10

Fig. 4 Detail of red blood cells observed in SiO2-NPs-treated R.

arenarum larvae. a normal mature erythrocyte (NE); b micronuclei

(MN); c binucleated erythrocyte (BER); d erythroplastid (EP);

e kidney-shaped nuclei (KN); g multi-micronucleated erythrocyte

(MEER); h notched nuclei (NN). May Grünwald-Giemsa 100X

Fig. 5 Induction of micronuclei (MN) and erythrocyte nuclear

abnormalities (ENAs) (per 1000 red blood cells; RBCs) in R.

arenarum larvae at 48 h of exposure to colloidal silicon dioxide

nanoparticles (SiO2-NPs). (Co) control. SiO2-NPs: 0.001 mg/L. Bars

represent the mean ± SEM, n = 10. Significant difference was

**p\ 0.01 with respect to the Co (binomial proportion’s test). n = 10
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are damaged (Petrache Voicu et al. 2015). SiO2-NPs induce

ROS production in R. arenarum larvae and, consequently,

a response of antioxidative defences (GST). Similarly, GST

activity could be induced to neutralize SiO2-NPs toxicity

and could thus be a suitable biomarker for the evaluation of

colloidal SiO2-NPs at very low exposure in potentially

contaminated aquatic ecosystems.

Some NPs (e.g., TiO2) may generate ROS, which also

can lead to DNA damage (Jaeger et al. 2012). For example,

Bacchetta et al. (2017) reported genotoxicity and oxidative

stress in fish after short-term exposure to silver NPs. MN

and other ENAs such as kidney shaped, lobed and seg-

mented nuclear abnormalities, binucleated erythrocytes,

erytrhoplastids, kidney-shaped nuclei, lobed nuclei, and

others have been used by many authors as suitable indica-

tors for the assessment of genotoxicity of xenobiotics on

fishes and amphibians (Ayllon and Garcı́a-Vazquez 2000;

Gravato and Santos 2002; Pacheco and Santos 1997; Laj-

manovich et al. 2014), and for natural environment

biomonitoring programs (Phan et al. 2007; Attademo et al.

2011). Different frequencies of MN and other ENAs may

be caused by specific genotoxic events, which are subjected

to different mechanisms of mutagenicity (Bolognesi et al.

2006). The synchronized expressions of ENAs and MN in

red blood cells are considered as indicators of cytotoxicity

and genetic toxicology, respectively (Grisolia et al. 2009).

In the present study, total ENAs of R. arenarum tadpoles

exposed to colloidal SiO2-NPs increased significantly.

Therefore, this study is the first report investigating the

cytotoxic effects of these types of substances by ENAs in

amphibians. There is limited evidence concerning whether

or not SiO2-NPs are genotoxic and opposed results have

been reported (e.g., Wang et al. 2007; Kwon et al. 2014).

However, the latest researches confirmed the genotoxic

potential of these NPs (e.g., Demir and Castranova, 2016;

Åkerlund et al. 2017; Scherzad et al. 2017; de Souza et al.

2018). In this sense, several researches have also pointed

out that MN assays are more sensitive and frequently used

to confirm the genotoxicity of NPs (Kisin et al. 2007;

Landsiedel et al. 2009). The molecular mechanisms

(genotoxicity, cytotoxicity) of SiO2-NPs are not quite clear

and further investigations are needed.

Conclusions

Many reports about the toxicity of SiO2-NPs either mention

the effects of pure ingredients or are carried out in vitro or

in cell cultures. However, the present results showed the

biotoxicity effects of SiO2-NPs contained in a biocidal

commercial product on a non-target aquatic vertebrate. The

LC50 here recorded for SiO2-NPs-treated R. arenarum

larvae indicates that high toxicities were induced by very

low concentrations of this xenobiotic. The present results

indicate that these NPs have high acute biotoxicity and are

thus potentially deleterious to aquatic ecosystems. Also,

colloidal SiO2-NPs at NOEC value can induce signs of

cytotoxicity. However, further studies are necessary to

elucidate the role of the possible synergy of the surfactants,

additives, and dispersing agents with SiO2-NPs within a

commercial product that can produce high lethal toxicity,

oxidative stress, and genotoxicity in amphibian larvae.

A combination of ecotoxicological studies on non-target

organisms and a multi-scale monitoring program, fate and

risk assessment tools with respect to NPs as emerging

contaminants is required as a base for sustainable water

resource management and overall protection of ecological

communities in the aquatic environment.
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Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S,

Derr R, Odnevall Wallinder I, Hendriks G, Karlsson HL (2017)

Genotoxic and mutagenic properties of Ni and NiO nanoparticles

investigated by comet assay, c-H2AX staining, Hprt mutation

assay and ToxTracker reporter cell lines. Environ Mol Mutagen.

https://doi.org/10.1002/em.22163 (epub ahead of print)
Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S, Abdulghani M (2013)

The occurrence of human pharmaceuticals in wastewater efflu-

ents and surface water of Langat River and its tributaries,

Malaysia. Int J Environ Anal Chem 93(3):245–264. https://doi.

org/10.1080/03067319.2011.592949

Altig R, Whiles MR, Taylor CL (2007) What do tadpoles really eat?

Assessing the trophic status of an understudied and imperiled

group of consumers in freshwater habitats. Freshw Biol

52:386–395. https://doi.org/10.1111/j.1365-2427.2006.01694.x

Ambrosone A, Scotto di Vettimo MR, Malvindi MA, Roopin M, Levy

O, Marchesano V, Pompa PP, Tortiglione C, Tino A (2014)

Impact of amorphous SiO2 nanoparticles on a living organism:

morphological, behavioral, and molecular biology implications.

Int J Environ Anal Chem. https://doi.org/10.3389/fbioe.2014.

00037

Anon. (2008) Working with microspheres, Bangs Laboratories, Inc.,

9025 Technology Dr., Fishers, IN 46038-2886, TechNote 201,

pp 20

Archer E, Petrie B, Kasprzyk-Hordern B, Wolfaardt GM (2017) The

fate of pharmaceuticals and personal care products (PPCPs),

endocrine disrupting contaminants (EDCs), metabolites and

illicit drugs in a WWTW and environmental waters. Chemo-

sphere 174:437–446. https://doi.org/10.1016/j.chemosphere.

2017.01.101

International Journal of Environmental Research

123

Author's personal copy

https://doi.org/10.1002/em.22163
https://doi.org/10.1080/03067319.2011.592949
https://doi.org/10.1080/03067319.2011.592949
https://doi.org/10.1111/j.1365-2427.2006.01694.x
https://doi.org/10.3389/fbioe.2014.00037
https://doi.org/10.3389/fbioe.2014.00037
https://doi.org/10.1016/j.chemosphere.2017.01.101
https://doi.org/10.1016/j.chemosphere.2017.01.101


ASIH-American Society of Ichthyologists and Herpetologists (2004)

Guidelines for use of live amphibians and reptiles in field and

laboratory research. Herpetological Animal Care and Use

Committee (HACC), Washington DC

Attademo AM, Cabagna Zenklusen M, Lajmanovich RC, Peltzer PM,
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