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ABSTRACT: The adsorption of gases onto heterogeneous surfaces has been
reviewed, highlighting models capable of taking energetic topography effects
into account. The basic ideas are contained in the fundamental Generalized
Gaussian Model (GGM) developed to represent mobile adsorption onto
heterogeneous surfaces at low coverage, where the energetic topography is
considered through an adsorptive energy distribution with a spatial correlation
function. Adsorbate molecules interact amongst them via Lennard-Jones
interactions. Model predictions have been compared to Monte Carlo simulations
of adsorption onto heterogeneous solids obtained by doping a pure crystalline
solid with different concentrations of impurities. Energetic topography effects
were shown to be important, being predicted correctly by the model at low
coverage. In addition, a simplified patchwise model was also considered. The
adsorption of particles with nearest-neighbour attractive and repulsive
interactions was studied using Monte Carlo simulation on bivariant surfaces
characterized by patches of weak and strong adsorbing sites of size “i”. Patches
were considered to have either a square or a strip geometry, arranged either in a
deterministic ordered structure or in a random way. Quantities have been
identified which scale obeying power laws as a function of the scale length “l”.
The consequences of this finding for the determination of the energetic
topography of a surface from adsorption measurements were discussed.

1. INTRODUCTION

The role of the surface characteristics of the adsorptive in many processes of practical importance
is a topic of increasing interest in surface science. Adsorption, surface diffusion and reactions on
catalysts are some of the phenomena which are strongly dependent upon surface structure. Most
materials have heterogeneous surfaces which, when interacting with gas molecules, present a
complex spatial dependence of the adsorptive energy. It is of substantial interest to attempt a
complete characterization of such heterogeneity. Although physical adsorption has been used for
determining the energetic properties of heterogeneous substrates for some 50 years, the role of the
surface characteristics of the adsorptive still remains an open question in many cases (Steele 1974;
Jaroniec and Madey 1988; Rudziński and Everett 1992; Rudziński et al. 1997).

For a very long time in the history of studies of heterogeneous adsorbents, the adsorptive energy
distribution (AED) was considered as the only important characteristic necessary for a description
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of the behaviour of adsorbed particles, and much effort was dedicated to its determination by
inverting the integral equation (Jaroniec and Bräuer 1986):

(1)

where θ– is the mean total coverage at temperature T and chemical potential µ, θ is the local
coverage (usually called the local isotherm) corresponding to an adsorptive energy ε and f(ε) is
the AED. It should be noted that equation (1) is strictly and generally valid only for non-
interacting particles, which is a quite unrealistic case. If adsorbed particles interact with each
other, then the local coverage at a point with a given adsorptive energy depends on the local
coverage on neighbouring points with different adsorptive energies and, in general, equation (1)
should be replaced by a much more complex one, such as (Riccardo et al. 1992):

(2)

where θ now depends not only on the adsorptive energy at a single point on the surface but also
on the adsorptive energy at (in general) M neighbouring points, and fM(ε1,..., εM) is a multivariate
probability distribution which specifies how adsorptive energies are spatially distributed, or in
other words, the energetic topography of the surface.

It should be pointed out that, even for interacting particles, equation (2) reduces to equation (1)
for two extreme topographies: (a) random sites topography (RST), where adsorptive energies are
distributed totally at random among adsorbing sites, and (b) large patches topography (LPT),
where the surface is assumed to be a collection of homogeneous patches sufficiently large to allow
border effects between neighbouring patches with different adsorption energies to be neglected.
Of course, the local adsorption isotherm will be different for these two extreme topographies. It is
by now clear that RST and LPT are particular limiting cases (which occur only rarely in real
systems) of heterogeneous surfaces with more general topographies, and that the topography has
a strong effect on many molecular processes occurring on such surfaces, viz. adsorption, surface
diffusion and chemical reactions (Riccardo et al. 1992; Zgrablich et al. 1996a,b; Bulnes et al.
1999a,b, 2002; Ripa and Zgrablich 1975), thus making the simple determination of the AED
insufficient for characterizing the heterogeneity. It is therefore necessary to obtain the multivariate
probability distribution, or at least the AED plus the spatial correlation function.

At this point, it is possible to see precisely the difficulties involved in the characterization of a
general heterogeneous surface. As is well known, equation (1) — which applies to simple cases
of two extreme topographies — is ill-suited for the determination of the AED f(ε) due to the form
of the kernel of the integral equation determined by the local isotherm. The determination of the
AED from experimental adsorption isotherms requires the use of elaborate computational
methods which have been developed with much effort over many years (Jaroniec and Bräuer
1986). Equation (2), where the local isotherm is a much more complex equation (if available at
all), must be used when treating more general topographies, and where a multiple integral of the
energy must be employed and the unknown quantity to be calculated is the multivariate adsorptive
energy distribution. Even in the simplest case in which the topography may be described by a
two-point correlation function, the problem cannot be solved by inverting the multi-dimensional
integral equation. 

θ µ θ µ ε ε ε ε ε ε( , ) ... ( , , ,..., ) ( ,..., ) ...T T f d dM M M M= ∫∫ 1 1 1

θ µ θ µ ε ε ε( , ) ( , , ) ( )T T f d= ∫
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It is therefore of great importance to develop simple models capable of describing the energetic
topography on the basis of a few parameters and to study the effects of these parameters on several
surface processes in the hope that methods to obtain the relevant parameters from the
experimental data will be envisaged as a result. These models can be of two kinds: continuum
models or lattice–gas models. The former are more suited to mobile adsorption (generally,
physisorption) and thus more closely related to the surface energetic characterization problem,
while the latter are more suited to localized adsorption (for example, chemisorption). 

In the present work, we consider two kinds of theoretical approaches. Firstly, we review the
Generalized Gaussian Model (a continuum model based on a bivariant energy distribution with
spatial correlations), extend it to deal with particles interacting through a Lennard-Jones
potential and compare its predictions to Monte Carlo simulations of mobile adsorption on solids
with well-controlled heterogeneity. In Section 2, the basic concept of the Adsorptive Energy
Surface (AES) is introduced on the basis of a simple example and the characteristics
determining the topography are discussed. In Section 3, the Generalized Gaussian Model
(GGM) is reviewed and extended to deal with Lennard-Jones interacting particles. A Monte
Carlo simulation method to obtain adsorption isotherms for solids with well-characterized
heterogeneity is then developed in Section 4. Results from simulations and from the model are
presented and compared in Section 5. 

Secondly, we refer to the bivariant model, a lattice–gas model based on the concept of
bivariant surfaces, i.e. surfaces composed by two kinds of sites (say weak and strong sites, with
adsorptive energies ε1 and ε2, respectively, arranged in patches of size “l”). Recent developments
in the theory of adsorption on heterogeneous surfaces, such as the supersite approach (Steele
1999), and experimental advances in the tailoring of nano-structured adsorbates (Yang et al.
1998; Lopinski et al. 2000), encourage this kind of study. A special class of bivariant surfaces
with a chessboard structure has been observed to occur recently in a natural system (Fishlock et al.
2000), although such an arrangement has been used extensively already in modelling adsorption
and surface diffusion phenomena (Nitta et al. 1984, 1997; Balazs et al. 1991; Patrykiejew 1993;
Nieto and Uebing 1998). To a rough approximation, bivariant surfaces may also mimic more
general heterogeneous adsorbates. To give two examples; surfaces with energetic topographies
arising from a continuous distribution of adsorptive energy with spatial correlations, such as
those described by the Dual Site–Bond model (Zgrablich et al.1996b), or that arising from a
solid where a small amount of randomly distributed impurity (strongly adsorptive) atoms are
added (Bulnes et al. 1999a). In both cases, the energetic topography may be roughly represented
by a random spatial distribution of irregular patches (of a characteristic size) of weak and
strong sites. 

Accordingly, the scope of the present work has been to determine, via Monte Carlo simulation,
the general properties of the adsorption of interacting particles on model bivariant surfaces with a
characteristic correlation length, l, and find out to what extent this length scale may be
determined from adsorption measurements. In Section 6, we present the bivariant adsorption
model and simulation method. The behaviour of relevant quantities, such as adsorption isotherms
and isosteric heats of adsorption, is discussed in Section 7. Section 8 is dedicated to the
determination of general scaling properties leading to power-law behaviour and to the discussion
of its implications in the determination of the characteristic correlation length, l, from
experimental measurements. Section 9 is devoted to an application of the model to the highly
interesting case of particle adsorption with multi-site occupation. Finally, Section 10 lists the
general conclusions arising from this work.
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2. THE ADSORPTIVE ENERGY SURFACE (AES)

In order to base our analysis on a well-defined simple system, let us consider a heterogeneous
solid consisting of a regular crystal of atoms A (for example, an hcp crystal) where a small fraction
of such atoms are substituted by impurity atoms B. We move a probe atom P on the (X,Y) surface
of the crystal; the probe interacts with atoms A and B with a Lennard-Jones potential:

(3)

where S stands for the substrate atom, A or B, and ε and σ are the usual energy depth and
particle-diameter parameters, respectively. At each point i = (X,Y), the total interaction energy of
the probe atom is calculated as a function of Z by summing up all pairwise interactions with the
atoms of the substrate within a cut-off distance rc =  4σPS:

(4) 

Then, by finding the minimum in the coordinate Z, we obtain the equilibrium height Z0 and the
adsorptive energy at position (X,Y) on the surface. In this way, we obtain the adsorptive energy
surface (AES) seen by the probe atom, defined as E(X,Y,Z0) = minz{E(X,Y,Z)}.

Figure 1 shows this energy surface for a crystal containing 20% of impurity atoms with 
εPA/kB = 160 K, εPB/kB = 320 K and σPS = 0.35 nm; the darker regions represent stronger adsorptive
energy, while the brighter ones correspond to weaker adsorptive energy. It will be noted that a
significant correlation is present. Thus, the strong adsorptive regions appear to be significantly
larger than one lattice size despite the low density of the impurity atoms, thereby reflecting the
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Adsorptive Energy Surface

E(X,Y,Z0)

Figure 1. Adsorption Energy Surface (AES) for a crystal composed of atoms A with 20% impurity of atoms B.
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fact that the probe atom interacts simultaneously with many atoms of the substrate. As a first
rough approximation, the energy surface may be considered as a collection of irregular patches of
different strengths. However, the energetic topography shows considerably greater complexity
and such a picture could lead to an oversimplified model not reflecting important behaviours in
molecular processes occurring on the surface. The slices through the borders of the sample give
the adsorptive energy profiles along the X- and Y-directions, reinforcing the idea of a high
complexity. This poses the problem as to how to model in a simple, but still realistic way, such
complex behaviour? In other words, which are the characteristic (and relevant) quantities
necessary to construct simple models capable of reproducing the main topographic features in a
statistical sense?

In a very general way, we can say that the AES is mathematically described by a stochastic
process (Gardiner 1985; Hill 1956), i.e. a random function depending on some parameter. In our
case, the adsorptive energy is a random function of the position on the surface, , where the 

symbol (^) indicates a random quantity and is the position vector on the surface whose
components are (X,Y). A particular realization of the stochastic process is the function
E(X,Y) represented in Figure 1 (the dependence upon Z0 may be ignored). The statistical
description of such a stochastic process could be very complex. However, some simplifying
assumptions, based on physical grounds, may greatly reduce this complexity. In fact, it is
reasonable to assume that the surface is statistically homogeneous, i.e. any macroscopic portion
of the surface possesses all the meaningful information, and that the adsorptive energy distribution
can be approximately described by a multivariate Gaussian distribution depending on the distance
between pairs of points on the surface. This approach leads to the Generalized Gaussian Model
(GGM) (Riccardo et al. 1992; Ripa and Zgrablich 1975) which is capable of describing the
energetic topography on the basis of the mean and the dispersion of the adsorptive energy, and a
correlation function depending on the distance on the surface.

3. GENERALIZED GAUSSIAN MODEL (GGM)

The GGM was introduced and developed (Riccardo et al. 1992; Ripa and Zgrablich 1975) for
particles interacting through a square-well potential. Here, we review briefly the main formulation
of the model and calculate adsorption isotherms corresponding to particles interacting through a
Lennard-Jones potential. The model is based on a Gaussian multivariate probability density
distribution (Feller 1971; Gardiner 1985) for the adsorptive energies at n points on the surface
given by:

(5)

where the covariance matrix:
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is a function of the relative position vector between two points. Here Ω is the adsorptive energy
dispersion and C the correlation function. If the surface is statistically isotropic, C is only a
function of the distance r between two points.

In this model, the mean value of any macroscopic quantity of interest depending on the AES
could then be evaluated by knowing E

–
, Ω and C(r). The correlation function C(r) carries all the

useful information about the energetic topography and should, in principle, be determined from
the geometric and chemical structure of the adsorbent (even though the methodology to achieve
this has not been developed so far). However, we could simplify the model even more by
proposing for C(r) a simple Gaussian decay as:

(7)

where r0 is a correlation length. This expression, which we do not intend to take as a realistic
correlation function valid for any surface, simply stresses that the spatial correlation between
adsorptive energies at points separated by a distance r < r0 is very high (close to 1) while for r > r0 it is
very low (close to zero). Thus, the present model becomes very attractive in the sense that the
energetic topography is characterized by a single parameter, the correlation length, and this opens the
possibility for determining the three simple parameters of the model (E

–
, Ω and r0) by, for example,

fitting experimental adsorption isotherms. It is worth remarking that the present model is a continuous
one and not a lattice model of adsorption sites. This is an appealing feature, since, as we can see from
Figure 1, adsorption sites hardly form a regular lattice and furthermore many of them are so shallow
that an adsorbed particle will most probably be quite mobile on appreciably large regions.

The adsorption isotherm is obtained as a virial gas–solid expansion (Hill 1956) in density in the
form:

(8)

where ρ is the adsorbate surface density, Bn(T) is the nth two-dimensional virial coefficient and
K(T) is a constant. By assuming that the potential energy of the system of adsorbed particles is

the sum of the inter-particle potential Ugg and the gas–solid potential (Steele 1974)

(9)

and that the stochastic process has the distribution given by equation (5), then the
coefficients in equation (8) are obtained as (Ripa and Zgrablich 1975):

(10)

(11)B T
n n

dR dR R R S
kn n n

B

( )
( )!

... ... ( ... ) exp,...,= −
−

+ +
1

2 1 1 1

� � � �
δ ′

Ω
TT

C R Ri j
i j

n 





−










> − =

∏∫∫
2

1

( )
� �

n

K T k Tk
E

k T k TB z
B B

( ) ( / ) exp/=


















2
1

2
1 2

2

π
Ω−

ˆ ( )E R
�

U R Z k Z Z E Rgs z( , ) ( ) ( )
�

= − +1
2 0

2
�

Ê

R Ri j

� �
−( )

P K T
n

n
B Tn

n

n

=
−









−

≥
∑( ) exp ( )ρ ρ

1
1

2

C r
r

r
( ) exp= −



















1

2 0

2

370 A.J. Ramirez-Pastor et al./Adsorption Science & Technology Vol. 25 No. 6 2007

AST 25(6)_38  01/02/08  2:47 pm  Page 370



where

and so on. It is clear that the calculation of gas–solid virial coefficients is very difficult so that only
the first few of them may be evaluated. This means that the model will be useful only at low values
of the adsorbed-phase density. On the other hand, however, the most important effects of
heterogeneity can be seen for the low-pressure part of the adsorption isotherm.

In order to study how the first few virial coefficients depend on the energetic topography, we
assume an inter-particle interaction given by a Lennard-Jones potential:

Ugg (12) 

where σ is the particle diameter and kBTgg is the depth of the potential. Detailed calculations of B2
and B3 have been reported elsewhere (Nazzarro and Zgrablich 2003).

Adimensional virial coefficients can be defined as Bn� = Bn/(πσ2/2)n. Using the notation 
E
–

= –kBTa and Ω = kBTs, the second and third coefficients are shown in Figure 2 as a function of
T/Tgg for Ts/Tgg = 2.0 (which represents a reasonably high heterogeneity with respect to
inter-particle interactions) and different values of r0. As can be seen from the data depicted in the
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Figure 2. Normalized gas–solid virial coefficients, (a) B*
2 and (b) B*

3, for a Lennard-Jones potential as a function of the
reduced temperature T/Tgg, for different values of the correlation length r0 and for a given value of the standard deviation
of the adsorptive potential kBTs.
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figure, the sensitivity of the virial coefficients with respect to the correlation length r0 is very high
at low temperature and still appreciable even at relatively high temperature. As Ts/Tgg decreases
(figures not shown here), the effect of topography becomes weaker and virtually disappears for
Ts/Tgg < 0.5. It is interesting to analyze the adsorption process to understand the peculiar behaviour
of B2 at low temperature. For r0 = 0 (completely random topography) and r0 → ∞ (macroscopic
homogeneous patches), the relative positions of adsorbed particles is not dictated by the
adsorption energy topography but rather by the interparticle potential, with a prevalence of the
attractive region, thus making B2 → + ∞ as T → 0. In contrast, for 0 < r0 < 2σ, adsorbed particles
are forced by the adsorptive energy topography to be sufficiently close that the repulsive part of
the interparticle potential is dominant and B2 → – ∞ as T → 0. Thus, virial coefficients for r0
greater than a few particle diameters will behave approximately as for r0 = ∞.

Once the virial coefficients have been evaluated, the adsorption isotherm for low pressure is
obtained via:

(13)

(14) 

The constant K(T), known as the Henry constant, representing the slope of the adsorption
isotherm at very low pressure, depends not only on the mean adsorptive energy, E

–
= –kBTa, as

believed classically (Rudzinski and Everett 1992), but also on the adsorptive energy dispersion
Ω = kBTs. 

Adsorption isotherms calculated from the above equations for Ts/Tgg = 2, T/Tgg = 2 and different
values of the correlation length r0 are shown in Figure 3. The effect of the correlation length is
clearly shown as a considerable decrease in the adsorption density as r0 increases. Theoretical
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Figure 3. Adsorption isotherms calculated from the GGM for Lennard-Jones interacting particles, for T/Tgg = 2.0 and
different values of the correlation length.
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adsorption isotherms could be fitted to the experimental ones to obtain the parameters K(T), Ts
and r0 characterizing the adsorptive energy surface for a given real gas–solid system. In what
follows, however, we point to a quite stronger test of the GGM. Thus, we produce artificial
(computer-generated) heterogeneous adsorbents with well-controlled energetic topographies,
determine the AEDs and correlation functions corresponding to the gas–solid system concerned,
then simulate the adsorption process in the continuum and finally compare the observed behaviour
with the predictions (not data-fitting) of the GGM.

4. SIMULATIONS ON IDEAL HETEROGENEOUS SYSTEMS

A collection of solids is prepared as explained in Section 2, corresponding to different
concentrations of impurity atoms, and their AES values generated. We can then study the
statistical properties of these AES values in the same manner as the AED and the spatial
correlation function C(r). These statistical properties for a set of ideally prepared heterogeneous
solids are shown in Figures 4 and 5. As the concentration of impurity atoms increases, the mean
value of the adsorption energy distribution (Figure 4) shifts toward lower energy values (stronger
adsorption) and its dispersion also increases. At the same time, the spatial correlation function
(Figure 5) presents an attenuated oscillatory behaviour, decaying slower for higher concentrations
of impurity atoms.

Once the ideal heterogeneous solids are prepared, the adsorption process is simulated through
a continuum space Monte Carlo method in the Grand Canonical ensemble (Binder 1986;
Nicholson and Parsonage 1982).
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Figure 4. Adsorptive energy distributions (AEDs) for ideal heterogeneous solids with different concentrations of impurity
atoms as indicated.
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5. COMPARISON TEST FOR THE GGM

We now compare the predictions of the GGM with the behaviour observed through simulations
for ideal heterogeneous systems

As can be seen from Figure 4, the adsorptive energy distribution may be qualitatively described
by a Gaussian distribution, as assumed by the GGM, whose dispersion increases as the
concentration of impurity atoms increases. The case corresponding to 0% concentration of
impurity atoms is the least favourable, but it is also true that a distortion of the AED in the
high-energy region (weak adsorption energy) is not important for adsorption at low pressure
where the deeper adsorptive energy regions are preferentially occupied by adsorbed particles. For
more general heterogeneous solids, where the heterogeneity could be due not only to impurity
atoms but also to a number of defects or even the presence of amorphous structures, the AEDs
would be expected to be even more similar to a Gaussian distribution.

The Gaussian decay assumed by the GGM is also qualitatively acceptable for the spatial
correlation function, as can be seen from Figure 5 where the filled symbols represent the Gaussian
decay for different correlation lengths while the open symbols represent the spatial correlation
function obtained from the AES for different concentrations of impurity atoms. In fact, even if the
“real” correlation function presents an oscillatory structure induced by the periodic character of
the solid lattice, these oscillations are not relevant to the adsorption of molecules whose sizes are
usually larger that the solid lattice spacing. What is important is the attenuation of the oscillations.
Visual inspection of Figure 1 suggests the importance of the sizes of the dark and bright regions,
rather than the small grains within these regions. Hence, the important fact is that the GGM
provides a simple correlation function which takes into account such a decay involving only one
parameter, i.e. the correlation length r0.
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Figure 5. Comparison between “real” spatial correlation functions (shown by open data symbols) and those assumed by
the GGM (shown by filled data symbols).
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We now choose (by visual comparison) more or less appropriate AEDs and correlation length
values for different samples of heterogeneous solids, as indicated by the parameters listed in Table 1,
and compare the adsorption isotherms obtained by the GGM with the simulated isotherms for these
samples. This comparison is shown in Figure 6, where the filled symbols represent simulated
isotherms while the full curves represent the GGM predictions. As already mentioned above, such a
comparison can only have significance at low pressure given that only the virial expansion up to the
third coefficient is employed. The data depicted indicate that, considering that this is not the result
of a parameter-fitting procedure, the predictions of the model are satisfactory in this region. 

6. BIVARIANT MODEL AND SIMULATION METHOD

We now turn to a completely different kind of approach. We assume that the substrate is
represented by a two-dimensional square lattice consisting of  adsorption sites, with periodic
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Figure 6. Comparison between adsorption isotherms simulated on ideal heterogeneous solids (black symbols) and those
predicted by the GGM (dotted lines) for three different samples.

TABLE 1. Parameter Values Used in the GGM to Obtain
the Adsorption Isotherms Depicted in Figure 7 

Concentration of r0 kBTa kBTs Ts/Tgg
impurities (%)

1 2.0 2.76 0.10 0.20 
7 2.5 2.85 0.16 0.32 

30 3.5 3.49 0.32 0.64 
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boundary conditions. Each adsorption site can be either a “weak” site with an adsorptive energy
ε1, or a “strong” site with an adsorptive energy ε2 (ε1 < ε2). Weak and strong sites form patches of
different geometry:

1. Square patches of size l (l = 1, 2, 3, ...), which are spatially distributed either in a determin-
istic alternate way [chessboard topography — see Figure 7(a)], or in a non-overlapping
random way [random topography — see Figure 7(b)].

2. Strips of transversal size l (l = 1, 2, 3, ...), which are spatially distributed either in an ordered
alternate way [Figure 7c)], or in a non-overlapping random way [random topography —
Figure 7(d)].

In order to readily identify a given topography, we introduce the notation “lC” for a chessboard
topography of size “l” and, similarly, “lR” for random-square patches, “lOS” for ordered strips and
“lRS” for random strips. Thus, in Figures 7(a)–(d), the topographies are 4C, 4R, 4OS and 4RS,
respectively. We also use the notation “bp” to refer to the extreme case of the topography of big
patches (l → ∞), i.e. a surface consisting of one-half weak sites and one-half strong sites.
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(a) (b)

(c) (d)

Figure 7. Schematic representation of heterogeneous bivariant surfaces with a chessboard arrangement: (a) random-square
patches; (b) ordered strips; (c) random strips, (d) overall topography. The patch size in this figure is l = 4.
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The substrate is exposed to an ideal gas phase at temperature T and chemical potential µ.
Without any loss of generality, it is possible to consider that all energies are measured in units of
kBT and that ε1 = 0 and ε2 = ε1 + ∆E, in such a way that the adsorptive energy is characterized by
the single adimensional parameter ∆E. The adsorption process is simulated through a Grand
Canonical Ensemble Monte Carlo (GCEMC) method (Binder 1986; Nicholson and Parsonage
1982). Mean values of thermodynamic quantities such as the surface coverage, θ, and the internal
energy, U, may be obtained by simple averaging over uncorrelated configurations, while the
differential heat of adsorption, qd, as a function of the coverage is calculated from qd = ∂ <U>/∂θ
(Bakaev and Steele 1992). 

7. ADSORPTION RESULTS

The cases of repulsive and attractive interactions are treated separately below in Sections 7.1 and
7.2, respectively.

7.1. Repulsive interactions

Since all energies are measured in units of kBT, the results obtained will be independent of the
temperature and, furthermore, since the critical temperature for the appearance of a c(2 × 2)
ordered phase in a zero-field Ising model is given by kBT0 = 0.567w (Yeomans 1992), there will
be a critical NN interaction w0 =1.763668 above which the formation of the ordered phase is
possible at θ = 0.5.

In order to understand the basic phenomenology, we firstly consider a chessboard topography
with l = 4 (the size of each homogeneous patch). Figure 8(a) shows the behaviour of the
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Figure 8. (a) Adsorption isotherms and (b) differential heats of adsorption for different topographies and repulsive
interactions in Regime I.
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adsorption isotherms while Figure 8(b) shows that of qd(θ) for different square-patches
topographies for w = 4 and ∆E = 24. It will be seen that all the curves are contained between two
limiting curves: one corresponding to 1C and the one corresponding to bp. For chessboard
topographies, four different adsorption processes can be visualized, separated by shoulders in the
adsorption isotherm and by steps in qd: (i) strong-site patches are filled first up to θ = 0.25, where
a c(2 × 2) structure is formed on them (in this region qd = 24); (ii) since 4w < ∆E, the filling of
strong-site patches is completed up to θ = 0.5 (in this region qd decreases continuously from
24 while zero-occupied NN increase to 8 four-occupied NN); processes (iii) and (iv)
corresponding to the regions 0.5 < θ > 0.75 and 0.75 < θ > 1, respectively, are equivalent to
processes (i) and (ii) for weak-site patches. Random topographies are seen to behave in a similar
manner with a particularly interesting feature: the behaviour of a random topography of size l
seems to approach that of a chessboard topography with an effective size leff > l. As can be easily
understood, as long as the condition w/∆E ≤ 1/4 is satisfied, the adsorption process is similar to
the one described above, i.e. strong-site patches are filled first and weak-site patches are
subsequently filled. We call this feature Regime I.

Figure 9(a) shows the behaviour of the adsorption isotherms and Figure 9(b) that of qd(θ) for
different square-patches topographies for w = 4 and ∆E = 12. In this case, where w/∆E ≥ 1/3, the
adsorption process follows a different regime which we call Regime II: (i) the strong-site patches
are filled until the c(2 × 2) ordered phase is formed on them; (ii) the weak-site patches are filled
until the c(2 × 2) ordered phase is formed on them; (iii) filling of the strong-site patches is
completed; (iv) filling of the weak-site patches is completed.

It should be noticed that Regimes I and II are disconnected. In between, i.e. 1/4 < w/∆E < 1/3,
the system behaves as a mixed transition regime changing continuously from one to the other.

Strip topography presents a similar behaviour to that of square-patches topography (not shown
here), with the feature that ordered strips behave like chessboard square patches with a higher leff
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Figure 9. (a) Adsorption isotherms and (b) differential heats of adsorption for different topographies and repulsive
interactions in Regime II.
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and random strips behave like random-square patches also with a higher leff. A more detailed
description of the behaviour of the adsorption isotherms and differential heats of adsorption can
be found elsewhere (Bulnes et al. 2001, 2002).
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Figure 10. (a) Adsorption isotherms and (b) differential heats of adsorption for square-patches topographies and attractive
interactions.
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Figure 11. (a) Adsorption isotherms and (b) differential heats of adsorption for strips topographies and attractive
interactions.
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7.2. Attractive interactions

Only Regime I is possible for the case of attractive interactions, i.e. for all values of ∆E and w
strong patches fill first and weak patches fill last. Figures 10 and 11 illustrate the typical behaviour
observed for square patches and for strips, respectively. Only the ordered-strips topography has
been represented in the latter case, since the density of the curves is already high. The plateau in
the isotherms and the corresponding abrupt drop in the differential heat of adsorption indicate that
the strong patches are being filled before adsorption starts on the weak patches. Again, we observe
that all curves vary between the bp topography and the 1C topography and that random
topographies behave like the ordered ones with a larger effective size.

8. SCALING BEHAVIOUR AND TEMPERATURE DEPENDENCE

The fact that both the adsorption isotherms and heat of adsorption curves for different
topographies characterized by a length scale l vary between two extreme curves suggests that we
should search for some appropriate quantity to measure de-deviation among these curves and
study the behaviour of such a quantity as the length scale is varied.

The most suitable quantity we have found is the area between a given curve and a reference
curve. For adsorption isotherms, this quantity, χa, is defined as:

(15)

where θR(µ) is the reference adsorption isotherm. A similar quantity, χh, can be defined for the
adsorption heat curves. This quantity is related to the difference in free energy arising between the
filling processes for the two involved surfaces and therefore leads to a physical interpretation of
the scaling behaviour (Bulnes et al. 2007). 

By taking as a reference isotherm the one corresponding to the bp topography, we find that, for
a given adsorption regime, the functions χ collapse onto a single curve for any topography when
represented in terms of an effective length scale (representing an effective patch size), leff, given by:

leff =  σl (16)

where σ = 1 for chessboard topography, σ = 2 for random-square patches and for ordered strips, and
σ = 4 for random strips. These values of χ have been calculated analytically by Bulnes et al. (2002).
Figure 12 shows how simulation data for the function χ lie on a single curve for Regime I when the
effective length scale is used. In general, it is found that χ obeys a power law in leff of the form:

ln χ =  const  +  α ln leff (17) 

This scaling behaviour is found to hold over the whole range of energy, with different values of
the exponent α given by:

α =  α1 =  –0.976  ± 0.053 for w/∆E ≤ 1/4

α =  α2 +  [12(1/3  –  w/∆E)]β (α1 –  α2) for 1/4 ≤ w/∆E ≤ 1/3 (18)

α =  α1 =  –1.525  ± 0.065 for w/∆E ≥ 1/3

with β = 0.42 ± 0.04.

χ θ µ θ µ µa
R d= −

−∞

∞

∫ ( ) ( )
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It should be noted that in the case of attractive interactions, w < 0, only Regime I is possible
and the value of exponent α is given by α1 over the whole energy range.

As the temperature is changed, the scaling exponent does not change for Regime I, while for
Regime II its value approaches that corresponding to Regime I as temperature increases, in the
form (Romá et al. 2003):
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Figure 12. Power-law behaviour of the quantity χ showing the collapse of data for different topographies onto a single
curve when the effective length scale leff is used for repulsive interactions.
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α2 (kBT/∆E)  =  –1  – 0.806 exp(–5.2174kBT/∆E) (19)

Simulations have shown that this variation with temperature is also approximately valid in the
intermediate range between Regimes I and II; hence equations (18) and (19) give the general behaviour
of α over the whole energy range and for all temperatures. This behaviour is shown in Figure 13.

It is important to remark that the scaling exponent α presents universality properties in the
sense that its behaviour and value are identical for different degrees of heterogeneity, ∆E, different
topographies, different reference curves (even a theoretical reference curve such as, for example,
the mean field solution corresponding to bp) and for a definition of χ involving the function qd(θ)
instead of the function θ(µ).

9. MULTI-SITE ADSORPTION ON PATCHWISE BIVARIANT SURFACES

Whilst the adsorption of monomers (particles occupying only one adsorption site) is sensitive to
the energetic topography only in that case where interparticle interactions are present, the
adsorption of k-mers (particles occupying k adsorption sites) is sensitive to the topography even
in the absence of lateral interactions.

For the adsorption of non-interacting dimers on chessboard and random-square patches
bivariant surfaces (González and Ramirez-Pastor 2002), the same scaling behaviour is found as
for monomers in Regime I (this is the only possible regime for non-interacting dimmers), with the
same exponent and the same universality properties. It is expected that the inclusion of
interactions (especially in the case of repulsive interactions) will give rise to a rich variety of
behaviours and this will be the subject of future investigations.

10. CONCLUSIONS

Several conclusions can be drawn from the present contribution. On the one hand, the mobile
adsorption of gases onto heterogeneous surfaces at low pressure (i.e. more suited to physical
adsorption) has been addressed. The importance of the adsorptive energy topography — which
can be taken into account by a theoretical model such as the GGM — has been stressed and such
a model has been extended by calculating the second and third gas–solid virial coefficients for
particles interacting through a Lennard-Jones potential. Due to its simplicity, the GGM turns out
to be quite an attractive model; in fact, in this model, the adsorptive energy surface is statistically
described by only three parameters, viz. the mean value of the adsorptive energy distribution,
kBTa, and its dispersion, kBTs, and the correlation length, r0. This last parameter is the most
relevant for describing the topography. The gas–solid virial coefficients were shown to depend
strongly on the topography and, consequently, so does the adsorption isotherm at low pressure.

The only way to test the validity of such a model is to compare its predictions with the behaviour
of a system whose adsorptive energy surface properties are well specified. This is the case when
adsorption is simulated on ideally constructed heterogeneous solids, as has been undertaken here.
The test turned out to be satisfactory for adsorption at low pressure. From the above, it may be
stated that the present form of the GGM can be used to fit experimental adsorption isotherms of
physically adsorbed gases on heterogeneous solids at low pressure, thereby allowing the parameters
characterizing the heterogeneity to be obtained. We may expect that the model would work better
with substrates presenting a rough AES, either due to chemical impurities or to roughness in the
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physical surface, such as in the case of activated carbons. Finally, since virial coefficients are found
to be more sensitive to the correlation length at lower temperature, the appropriate adsorbates
should be selected in such a way as to obtain experimental low-density adsorption isotherms at the
lowest possible temperatures, thereby ensuring good sensitivity in the fitting parameters.

Using Monte Carlo simulations, we have also studied the adsorption of particles interacting
through an NN interaction, w, on heterogeneous bivariant surfaces characterized by different
energetic topographies. The heterogeneity was determined by two parameters: the difference of
adsorptive energy between strong and weak sites, ∆E, and an effective correlation length, leff,
representing the length scale for homogeneous adsorptive patches.

Unique scaling properties and power-law behaviours have been established for relevant adsorption
quantities, such as the adsorption isotherm and the differential heat of adsorption. Two distinct filling
regimes, Regime I and Regime II, separated by an intermediate mixed regime, may be clearly
identified in the adsorption process. The scaling exponent α as a function of w/∆E was found to
follow a universal behaviour. Its value was constant with temperature for Regime I, while it increased
with temperature for Regime II and in the intermediate regime towards the value corresponding to
Regime I. This temperature dependence is given as an empirical equation obtained by Monte Carlo
data-fitting. These findings provide for the first time a method for characterizing the energetic
topography (i.e. obtaining the parameters from experimental measurements) of a class of
heterogeneous surfaces which can be approximately represented as bivariant surfaces.
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