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BY RECENT BIOERODERS
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ABSTRACT—We describe osteichthyan remains from the Upper Jurassic of the Ameghino (¼ Nordenskj€old) Formation
of the Antarctic Peninsula. The fossils are referred to a suspension-feeding pachycormid based on the shape, morphology,
and presence of acus fanunculi (needle teeth) on their gill rakers. Due to the fragmentary condition of the Antarctic
material, we refer it to aff. Asthenocormus. The remains described here represent the first record of a suspension-feeding
pachycormid from the Upper Jurassic of the Antarctic Peninsula and the oldest pachycormid yet recovered from
Antarctica. The new fossil fish supports a possible early dispersal route through the Mozambique Corridor (¼ Trans-
Gondwana or South African Seaway). We also describe the weathering produced by modern lichens, which might be mis-
interpreted as original bone structure.

SUPPLEMENTAL DATA—Supplemental materials are available for this article for free at www.tandfonline.com/UJVP
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First pachycormiform (Actinopterygii, Pachycormiformes) remains from the Late Jurassic of the Antarctic Peninsula and
remarks on bone alteration by recent bioeroders. Journal of Vertebrate Paleontology. DOI: 10.1080/
02724634.2018.1524384.

INTRODUCTION

Pachycormiformes is a stem-teleost marine fish group that
was present in the seas during the Jurassic and became extinct
at the Cretaceous/Paleogene mass extinction. Pachycormiforms
comprise two distinct ecological morphotypes: predatory
toothed fishes and suspension-feeding fishes, which are tooth-
less (Lambers, 1992; Liston, 2008). Despite a few exceptionally
preserved specimens (e.g., Arratia and Schultze, 2013), most
pachycormiform descriptions are based on poorly preserved
and mostly fragmentary material (Mainwaring, 1978; Lambers,
1992; Gouiric-Cavalli and Cione, 2015a); thus, much morpho-
logical information is still missing.
From the Middle Jurassic to the Late Cretaceous, suspen-

sion-feeding vertebrates are represented with certainty by a
clade of pachycormid actinopterygians (Wagner, 1863; Liston,

2008; Schumacher et al., 2016). However, an elasmosaurid ple-
siosaur (O’Keefe et al., 2017) and an elasmobranch family
(Shimada et al., 2015) may have used a comparable feeding
strategy. Notwithstanding the relatively wide temporal range
occupied by these large-bodied pachycormids, they are mainly
represented in the fossil record by poorly preserved material
(e.g., Lambers, 1992; Liston, 2008; Friedman et al., 2010;
Gouiric-Cavalli, 2017). In particular, for suspension-feeding
pachycormids, poor preservation could be partly explained by
the feeble ossification of their skeleton ossified skeleton
(Liston et al., 2013).

Suspension-feeding pachycormids include modestly sized
taxa (ranging from 2 to ca. 5 m in standard length, i.e.,
Asthenocormus, Martillichthys, Bonnerichthys, and
Rhinconichthys; Liston, 2008; Friedman et al., 2013;
Schumacher et al., 2016) and large forms (larger than 8 m, such
as Leedsichthys; Liston et al., 2013). Suspension feeding
involves specialization of the oral cavity, and among actino-
pterygians these modifications are most clearly visible in the
gill arches (Gouiric-Cavalli, 2017).
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Several osteichthyan remains were recovered from Longing
Cape near the Ameghino shelter (64�260S, 58�590W) during
2016 by an Antarctic summer field expedition carried out by
the Instituto Ant�artico Argentino (Gouiric-Cavalli et al., 2016;
Fig. 1). Many of the osteichthyan remains recovered show
some degree of structural weathering. We observed that a
diverse lichen population proliferated in the area and also that
the fish bone had recent lichens attached to its surface. This is
not surprising because Antarctica here has a terrestrial vegeta-
tion rich in lichens and mosses (Chown et al., 2015), and the
lichens form part of the lithobiotic communities living on the
surface of rocks or colonizing the inside of lithic substrata (De
los R�ıos et al., 2005).
The goals of this contribution are (1) to make a taxonomic

assignment of the fish remains; (2) to explore and discuss the
relevance of a suspension-feeding fish in the Antarctic
Peninsula in a paleobiogeographic context; (3) to comment
about the ecospace occupied by suspension-feeding vertebrates
in the Mesozoic; and (4) to describe the structural weathering
observed in the fish bones.

GEOLOGICAL SETTING

The Ameghino (¼ Nordenskj€old) Formation is a mudstone sedi-
mentary sequence corresponding to the basal infill of the James
Ross Basin (Medina and Ramos, 1981, 1983; Farquharson, 1982). It
is exposed at a few locations in the northeastern part of the
Antarctic Peninsula (Macdonald et al., 1988; del Valle et al., 1992).
The Ameghino Formation consists of two members (Whitham and
Doyle, 1989): the Longing and Ameghino members (Fig. 1B).

The sedimentary environment of the Ameghino Formation
is inferred to be marine, pelagic to hemipelagic, close to an
active volcanic arc, and under anoxic (Longing Member) to
dysoxic (Ameghino Member) conditions (Doyle and Whitham,
1991; Whitham, 1993; Scasso, 2001; Kietzmann et al., 2009).

The paleontology of the Ameghino Formation is mainly
characterized by invertebrates such as ammonoids, nautiloids,
bivalves, and radiolarians (e.g., Medina and Ramos, 1983;
Whitham and Doyle, 1989; Kiessling and Scasso, 1996;
Kiessling et al., 1999). Among vertebrates, there is a predomin-
ance of osteichthyan remains (Arratia et al., 2004; Gouiric-

FIGURE 1. A, Antarctic Peninsula location map. Modified from del Valle and Nu~n�ez (1988). The square shows the study area. B, geological map
and lithostratigraphic log of the Ameghino (¼ Nordenskj€old) Formation. The stratigraphic position of the fish remains is indicated. Modified from
Kiessling et al. (1999) and Arratia et al. (2004). C, oblique aerial photograph of the study area showing the strata close to the camp site and the
position of the studied fossil material (photograph by S. Gouiric-Cavalli). The star indicates the collection site. The prominent black bed is a bas-
altic sill. Abbreviation: As, Ameghino shelter.
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Cavalli et al., 2016), but a few marine reptiles were also recently
reported (Gouiric-Cavalli et al., 2016, 2018; O’Gorman et al.,
2018). A few fossilized leaves and some fossil wood have also
been recovered (e.g., Gouiric-Cavalli et al., 2016).
The Ameghino Formation is considered to be Kimmeridgian

to Berriasian in age (Doyle and Whitham, 1991; Kiessling
et al., 1999), with the Longing Member being
Kimmeridgian–lowermost early Tithonian in age and the
Ameghino Member being late Tithonian–Berriasian in age.
Ameghino Formation outcrops are scattered along the
Antarctic Peninsula. They mostly occur in isolation and are
surrounded by ice, or in a complex tectonic contact with other
rocks (Kiessling et al., 1999). Some reworked blocks of the
Ameghino Formation are present on James Ross Island. These
blocks are embedded in the Lower Cretaceous rocks of the
Whisky Bay Formation (Macdonald et al., 1988; Richter and
Thomson, 1989).

Institutional Abbreviation—IAA-Pv, Repositorio Ant�artico
de Colecciones Paleontol�ogicas y Geol�ogicas of the Instituto
Ant�artico Argentino (IAA), San Mart�ın, Argentina.

MATERIALS AND METHODS

The studied specimens were collected at the Longing Gap
locality, in the Longing Member of the Ameghino (¼
Nordenskj€old) Formation (Fig. 1). Fish remains were recov-
ered from one fossiliferous level of late Kimmeridgian age
located behind the camp site and gently dipping to the south
(Fig. 1C). An exploration grid of 2� 3 m was studied in the
field. Each bone fragment was carefully cleaned with a soft
brush and observed with a magnifying glass. In spite of the
material being severely crushed and affected by weathering,
we have established that all the remains belong to a single
specimen. The specimen was studied with a stereoscopic
microscope, using different magnifications, at the laboratory
of the Vertebrate Paleontology Division of the La Plata
Museum. Many fragments were restored and glued with
cyanoacrylate.
The bioerosion was analyzed with an FEI Quanta 200 scanning

electron microscope (SEM). A chemical microanalysis using the
electron probe energy-dispersive X-ray spectroscopy silicon drift
detector (EDX SDD) Apollo 40 was carried out to compare the
composition of the materials found on the remains with that of
the unaltered bone and matrix surfaces. Digital images were com-
piled and processed using the image software programs Adobe
Photoshop and Adobe Illustrator. Measurements were taken with
vernier calipers on the specimens and with the free software Fiji,
using high-resolution photographs. The descriptive bone termin-
ology follows Lambers (1992) and Liston (2006, 2013). Open
nomenclature follows Bengtson (1988).
Lichens were identified using the systematic classification of

Øvstedal and Lewis Smith (2001). Apothecia were mounted in
glycerin gelatin. The asci and ascospores were measured (25
spores for each sample) using a Nikon Eclipse E200 optic
microscope (1000�) and a Nikon Coolpix S10 camera. The
usual histochemical reactions were performed: K (KOH 10%)
to detect anthraquinones (typical in Teloschistaceae such as
Caloplaca spp. and allied genera), C (NaClOH2) that gives a
pink reaction with depsides such as lecanoric or gyrophoric
acid of Cryptothecia and Xanthoparmelia, and I (KI3) that
indicates the amyloid reactions of the asci and hamathecium
with blue staining.

SYSTEMATIC PALEONTOLOGY

ACTINOPTERYGII Cope, 1887
NEOPTERYGII Regan, 1923

PACHYCORMIFORMES Berg, 1937
PACHYCORMIDAE Woodward, 1895

aff. ASTHENOCORMUS Woodward, 1895
(Figs. 2, 3)

Material—IAA-Pv 330 consists of several fragments of a sin-
gle individual preserved in slabs 3–20mm thick.

Geographic and Stratigraphic Occurrence—Tierra de San
Martin (¼ Graham Land), Antarctic Peninsula, Longing
Member of the Ameghino (¼ Nordenskj€old) Formation (late
Kimmeridgian), 64�26025.500S, 58�58044.200W (Fig. 1).

Remarks—Most of the bones in IAA-Pv 330 could not be
identified with any degree of certainty, but nevertheless we identi-
fied a fragmentary hyomandibula, ceratohyal, epibranchial, and
gill rakers. The morphology of the gill rakers (fanunculi) allowed
us to identify the specimen as belonging to a suspension-feeding
fish of the order Pachycormiformes (Figs. 2, 3). Suspension-feed-
ing pachycormids are large fishes whose size varies between 2.5
and ca. 16 m in total length (Liston, 2008). They are usually repre-
sented by fragmentary material. Their low preservation potential
might be associated with the poorly ossified nature of their skel-
eton (Liston, 2013; Gouiric-Cavalli, 2017).

We compared the Antarctic gill raker with homologous
structures in other suspension-feeding pachycormids, i.e.,
Asthenocormus, Leedsichthys, Martillichthys, and
Rhinconichthys (in Bonnerichthys, the gill rakers are unknown)
and conclude that the Antarctic gill rakers (IAA-Pv 330)
resemble those of Asthenocormus because they have a short
bone that bears four to eight well-developed teeth in its distal
part (Lambers, 1992:fig. 2b; Liston, 2013; Figs. 2A, B, 3). In
contrast, Rhinconichthys, Leedsichthys, and Martillichthys gill
rakers (fanunculi) are composed of a stalk with fimbriations
directed toward the oral cavity (see Liston, 2013; Schumacher
et al., 2016; Gouiric-Cavalli, 2017).

The branchial acus fanunculi (needle teeth) of IAA-Pv 330
are located on a short bone (Figs. 2, 3). The external surface of
the teeth is smooth (Fig. 2D). Internally, they do not have a
single central pulp cavity but instead possess a pulp cavity div-
ided by dentine trabeculae and completed by infilling denteons
formed around each vascular canal (see Ørvig, 1951; Fig. 2B,
C). We interpret that the acus fanunculi of the gill rakers might
form a capture network when they are in contact with the acus
fanunculi of the opposing gill rakers, as is shown in Figure 3A.
We note that more information and better-preserved speci-
mens are needed to support this hypothesis because the juxta-
position of these two elements—which are not associated with
the stalk—could be simply by chance. The taxonomic assign-
ment of IAA-Pv 330 indicates a potentially new taxon, but as
yet we only have little and poorly preserved material to make
this assertion.

Paleobiogeographic Implications—Suspension-feeding
pachycormids have a bipolar or antitropical distribution, being
restricted to high latitudes (Gouiric-Cavalli and Rasia, 2016;
Fig. 4), approximately between 30–60� paleolatitude in both
hemispheres. This distribution pattern is also clear for some
Mesozoic bivalves (Crame, 1986, 1993) and for living large-
bodied suspension-feeding vertebrates such as some sharks
(e.g., Hubbs, 1952) and baleen whales (e.g., Davies, 1963; Rice,
1967). The opening of the Hispanic Corridor (Fig. 4) played a
key role, because it produced a substantial change in the pat-
terns of water circulation, with the establishment of a circum-
equatorial current and reduced seasonality in the water
circulation within the Tethys Sea (Damborenea, 2017). The
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opening of the Mozambique Corridor (¼ Trans-Gondwana or
South African Seaway), which connects the Tethys with the
Panthalassic (¼ PaleoPacific) Ocean and separates Africa from
India-Antarctica (Fig. 4), also caused significant climatic and
paleoceanographic changes, allowing the flow of polar marine
waters to the north (Damborenea, 2017).

It has been proposed that during the Tithonian–Berriasian,
the Mozambique Corridor functioned as a route for faunal
interchange (Leanza, 1995; Fern�andez, 1997; Shultz et al.,
2003; Damborenea, 2017; Prasad et al., 2017; O’Gorman
et al., 2018; Gouiric-Cavalli et al., 2018) as the counterpart
of the Hispanic Corridor (e.g., Damborenea, 2000, 2017;

FIGURE 2. IAA-Pv 330 (pars), aff. Asthenocormus gill raker with acus fanunculi (needle teeth)-like structures. A, acii located over a short bone.
B, close-up of acii. C, detail of acii, showing the pulp cavity divided by dentine trabeculae. D, detail of A (red square) showing the smooth
tooth surface.
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Gasparini et al., 2007; Gasparini, 2009; Damborenea et al.,
2013; Gouiric-Cavalli, 2013, 2017; Gouiric-Cavalli and Cione,
2015a, 2015b; Gouiric-Cavalli and Rasia, 2016; Fig. 4).
Regarding the paleobiogeographic distribution of suspension-

feeding pachycormids, their fossil record in the Southern
Hemisphere remains patchy, being represented by fragmentary

material such as gill rakers referred to Leedsichthys found in the
Oxfordian of Chile (e.g., Liston, 2010), an isolated Leedsichthys
gill raker from the Tithonian of Argentina (Gouiric-Cavalli,
2017), and fragments of fin rays in the Maastrichtian of Seymour
(¼ Marambio) Island (Cione et al., 2018). However, suspension-
feeding pachycormids are well represented in the Northern

FIGURE 3. Pachycormid gill raker
morphology. A, aff. Asthenocormus
opposing gill rakers with opposing
acii touching; B, interpretative draw-
ing of A. Scale bar¼ 4mm.

FIGURE 4. Paleobiogeographic map showing the distribution of Jurassic suspension-feeding pachycormids. Map modified from Damborenea
(2017). Key: 1, Germany; 2, England; 3, France; 4, Chile; 5, Argentina; 6, Antarctica.
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FIGURE 5. Partial ceratohyal with lichens. A, lichens that produce bioerosion over the bone. Black dotted ellipse refers to Sarcogyne privigna
apothecia. White rectangle refers to Caloplaca iomma apothecia. B, detail of A, the lichen Sarcogyne privigna invades the bone surface; arrow-
heads point to bioerosion. C, SEM photograph of a fish gill raker with apothecia. D, SEM photograph of lichen apothecia in the contact between
rock and bone; arrows indicate boring. Abbreviations: B, fish bone; ia, apothecia; R, rock matrix.
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Hemisphere (e.g., Lambers, 1992; Liston, 2008; Friedman et al.,
2010, 2013; Schumacher et al., 2016).
The discovery of a Kimmeridgian suspension-feeding pachy-

cormid in the eastern Antarctic Peninsula provides support for
the early migration/dispersal of these fish along the Mozambique
Corridor (Fig. 4). However, the direction of migration/dispersal
through both pathways (Mozambique and Hispanic corridors) is
still not known with certainty, because the Jurassic units in part
of Europe and especially in the Southern Hemisphere, have
been poorly explored (Liston, 2010; Gouiric-Cavalli, 2013, 2017;
Gouiric-Cavalli and Cione, 2015a, 2015b). This finding supports
the hypothesis that the bipolar distribution was a large-scale phe-
nomenon during the Jurassic, and that it was related to changes
in ocean circulation and the establishment of a circumequatorial
current (Damborenea, 2017).
Remarks on Ecospace (¼ Mode of Life)—The concept of

ecospace “refers to possible combinations of important eco-
logical parameters without reference to limiting conditions,
resources or competition among species” (Bambach et al.,
2007:4). This concept implies that an organism adapts to exploit
an available ecospace. The suspension-feeding ecospace is occu-
pied by large nektonic coastal and oceanic vertebrates (Cione and
Reguero, 1998) that today include baleen whales, some sharks
(whale, megamouth, and basking sharks), mobulid rays, and, puta-
tively, some seals (crabeater, leopard, and Antarctic fur seals; see
Sanderson and Wassersug, 1993; Croll et al., 2018).
In the Jurassic, a similar ecospace was exclusively occupied

by a clade of actinopterygian fishes: the suspension-feeding
Pachycormiformes (represented by Leedsichthys,
Asthenocormus, Martillichthys, and the aff. Asthenocormus
reported here). Similarly, during the Paleozoic, large placo-
derms such as Titanichthys may have occupied a suspension-
feeding ecospace (Boyle and Ryan, 2017). In the Cretaceous,
the suspension-feeding ecospace was occupied by the pachycor-
mids: Rhinconichthys, Bonnerichthys, and an indeterminate
suspension feeder (Friedman et al., 2010, 2013; Cione et al.,
2018), plus other large putative suspension-feeding vertebrates
(sharks and plesiosaurs; Cavin, 2010; Shimada et al., 2015;
O’Keefe et al., 2017; Supplementary Data, Fig. S1).
Pachycormiforms were certainly the most successful vertebrate

group exploiting the suspension-feeding ecospace in the
Mesozoic. The Mesozoic large suspension-feeding vertebrates
became extinct at the K–Pg boundary (Fig. S1). Strikingly, we
note that all large suspension-feeding taxa (both extinct and
extant) and not only mysticetes and osteichthyans, as was sug-
gested by Friedman (2012), are closely related to large pelagic
predators. Suspension-feeding pachycormids were considered
mesoplanktonic fishes that probably fed on small fishes (Liston,
2006, 2008) as well as juvenile ammonites and belemnites (Tajika
et al., 2018).
Remarks on Modern Bioerosion—Bioerosion implies “the

destruction and removal of consolidated mineral or lithic sub-
strate by direct action of organisms” (Neumann, 1966:92). The
process involves the weakening and breakdown of structures
due to the chemical and mechanical activities of biotic agents
(Glynn and Manzello, 2015). Biodeterioration (¼ biodegrad-
ation) is any change—deterioration or degradation—of any
material due to biological causes (Hueck, 1965).
Bioerosion might be misinterpreted as original bone struc-

tures (e.g., ornamentation) and is widely distributed across the
actinopterygian bones and feces from the Late Jurassic
Ameghino (¼ Nordenskj€old) Formation. The bones of aff.
Asthenocormus IAA-Pv 330 show discrete ellipsoidal to oval
borings and microborings (Fig. 5). The holes show a variable
degree of corrosion and weathering (Fig. 5). Boring measure-
ments are given in Table S1; note that the length is always
greater than the width (Fig. 5B–D). Both borings and

microborings are isolated or grouped to form a dense network
(similar to an egg box) on the surface of the bone (Fig. 5).
Also, some extremely elongated marks are associated with
some fish bones (Fig. 5D), those marks having the major axis
parallel or subparallel to the major axis of the bone.

Recent lichen activity on Cenozoic Antarctic material was previ-
ously reported by Acosta Hospitaleche et al. (2011). Crustose-type
lichens Caloplaca iomma Olech and S€ochting and Sarcogyne privi-
gna (Ach.) A. Massal were identified on bone surfaces.
Consequently, the bioerosion on IAA-Pv 330 is assumed to be the
product of recent lichen activity (Fig. 5). Note that the agent that
produces the extremely elongated marks on fish bones remains
unknown, but lichens cannot be dismissed from consideration.
Caloplaca iomma is an endemic Antarctic lichen species inhabiting
the South Orkney and South Shetland islands, as well as the
Antarctic Peninsula (Øvstedal and Lewis Smith, 2001; Fig. S2B, D,
E). Caloplaca iomma is characterized by having a sessile apothe-
cium whose morphology varies with age, being a flat disc in
younger specimens and somewhat convex in adults. The apothecia
pigmentation also varies from reddish orange to reddish brown
(Fig. 5A). Sarcogyne privigna is a cosmopolitan lichen species
(Øvstedal and Lewis Smith, 2001; Fig. S2A, C) characterized by a
sessile apothecium of black to dark red color, not pruinose
(Fig. 5A).

The biogenic process on bones of aff. Asthenocormus IAA-
Pv 330 is classified as endolithic activity produced by lichens
on subaerial surfaces (Mikul�a�s, 2001). The lichen activity
results in an increase in porosity and weakening of the bone,
producing alteration through corrosion of the material. The
biodeterioration in bones of aff. Asthenocormus IAA-Pv 330
includes a variable degree of corrosion and dissolution of the
fossil, not only at the contact between the thalli and the fossil
bone but also beyond the margins of the thalli where the car-
bonic acid may penetrate (Fig. 5B). The rounded holes of
weathering origin correspond in shape to the lichens (Fig. 5).

EDX Spectra—The EDX spectrum of the lichen surface
shows major peaks of silica, oxygen, and calcium, and minor
peaks of aluminum, carbon, phosphorus, potassium, and iron
were also observed (Fig. S3). The lichen spectrum shows that
lichens may take advantage of the high calcium and phosphorous
concentrations of the bones. The EDX spectrum from the bottom
of the marks over the actinopterygian bone (Fig. S3) shows peaks
of calcium, phosphorus, and oxygen with minor peaks of carbon,
silicium, aluminum, and iron; this spectrum is consistent with cal-
cium phosphate. The EDX spectrum of the matrix revealed high
concentration of oxygen, iron, and silicium and minor peaks of
aluminum, magnesium, sodium, and potassium (Fig. S3), which is
the composition of a typical silicate rock.

The occurrence of carbon and the high proportion of calcium
might indicate the presence of calcium oxalate attributable to
the lichen action. The high levels of calcium and phosphorus
(Fig. S3) are typical for a fossilized bone. Potassium might be
responsible for the orange and yellow coloration of lichens,
which produce pulvinic acids.

CONCLUSIONS

Based on the results provided, we conclude the following: (1)
we report the first record of a suspension-feeding pachycormid
from the late Kimmeridgian of the Antarctic Peninsula, which is
the southernmost record in the world and the oldest suspension-
feeding fish in Antarctica; (2) the Antarctic record of suspension-
feeding pachycormids provides support for an early migration/dis-
persal through the Mozambique Corridor (¼ Trans-Gondwana or
South African Seaway); (3) the direction of the migration/disper-
sal of suspension-feeding pachycormids through the Hispanic/
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Mozambique corridors remains unknown until more field work
and study of the recovered material in the Northern, and espe-
cially the Southern Hemisphere, are conducted; (4) suspension-
feeding pachycormiforms have a wider distribution than previ-
ously recognized, being present in the late Kimmeridgian of the
Antarctic Peninsula; (5) in the Mesozoic, pachycormiforms were
the most successful vertebrates exploiting the large suspension-
feeding ecospace; (6) when in opposition, acus fanunculi (needle
teeth) on the gill rakers might form an effective network for cap-
turing invertebrates and small fish; (7) the new Antarctic record
supports the hypothesis of an early bipolar or antitropical distribu-
tion for the clade of suspension-feeding pachycormids; (8) the bio-
erosion on the surface of the bones has been demonstrated to be
produced by recent epilithic lichen activity; (9) recent lichens pre-
sent in the Jurassic fish remains played the role of a biological
weathering agent producing biochemical erosion of the bone; and
(10) the lichens that produced the marks over the bone surface
correspond to at least two different extant lichen species,
Caloplaca iomma and Sarcogyne privigna.
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