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de San Luis - CONICET, Ejército de Los Andes 950, D5700HHW, San Luis,

Argentina

A.J. Ramirez-Pastor

Departamento de F́ısica, Instituto de F́ısica Aplicada (INFAP), Universidad Nacional
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Abstract. Jamming and percolation of square objects of size k × k (k2-mers)

isotropically deposited on simple cubic lattices have been studied by numerical

simulations complemented with finite-size scaling theory. The k2-mers were irreversibly

deposited into the lattice. Jamming coverage θj,k was determined for a wide range

of k (2 ≤ k ≤ 200). θj,k exhibits a decreasing behavior with increasing k, being

θj,k→∞ = 0.4285(6) the limit value for large k2-mer sizes. On the other hand, the

obtained results shows that percolation threshold, θc,k, has a strong dependence on

k. It is a decreasing function in the range 2 ≤ k ≤ 18 with a minimum around

k = 18 and, for k ≥ 18, it increases smoothly towards a saturation value. Finally, a

complete analysis of critical exponents and universality has been done, showing that

the percolation phase transition involved in the system has the same universality class

as the 3D random percolation, regardless of the size k considered.
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1. Introduction

Random sequential adsorption (RSA) is one of the simplest model used for studying of

irreversible adsorption processes [1]. An object of a given shape is placed randomly,

sequentially and irreversibly on a substrate, subject to the constraint that it does

not overlap previously deposited objects. The final state generated by irreversible

adsorption is a disordered state (known as jamming state), in which no more objects

can be deposited due to the absence of free space of appropriate size and shape.

The corresponding limiting or jamming coverage, θj ≡ θ(t = ∞) is less than that

corresponding to the close packing (θj < 1). Note that θ(t) represents the fraction of

surface covered at time t by the deposited objects.

If the concentration of the deposited objects on the substrate exceeds a critical

value, a cluster (a group of occupied sites in such a way that each site has at least one

occupied nearest neighbor site) extends from one side of the system to the other. This

particular value of concentration rate is named critical concentration or percolation

threshold θc, and determines a phase transition in the system. This transition is a

geometrical phase transition where the critical concentration separates a phase of finite

clusters from a phase where an infinite cluster is present.

The percolation theory deals with the probability of occurrence of an infinite

connectivity among the elements occupying on the lattice [2]. Thus, the jamming

coverage has an important role on the percolation threshold, and the interplay

between RSA and percolation is relevant for description of various deposition processes

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Objects with different shapes and sizes [e.g.,

linear [6, 7, 8, 9, 10, 11, 12, 13, 14] and flexible [17, 18] k-mers (particles occupying k

adjacent sites), T-shaped objects and crosses [19], disks [20], regular and star polygons

[21], etc.] have been studied, and data of these studies show that the values of θj and

θc strongly depend on the object shape and size.

In the case of square-shaped particles, which is the topic of this paper, the jamming

and percolation problems have been studied in numerous works as useful objects for a

description of both fundamental [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and

practical problems [34, 35, 36].

In Refs. [22, 23, 24], the RSA problem of k × k square tiles (k2-mers) on two-

dimensional (2D) square lattices was studied by numerical simulations. The jamming

coverage showed a decreasing behavior with increasing k, being θj,k→∞ = 0.5623(2) the

limit value for large tile sizes. A finite-size scaling analysis of the jamming transition was

carried out [24], and the corresponding spatial correlation length critical exponent νj
was measured, being νj ≈ 1. In the same work, the obtained results for the percolation

threshold revealed that θc is an increasing function of k in the range 1 ≤ k ≤ 3. For

k ≥ 4, all jammed configurations are non-percolating states, and consequently, the

percolation phase transition disappears. This finding was corroborated by theoretical

analysis based on exact calculations of all the possible configurations on finite cells.

In addition, a complete analysis of critical exponents and universality have been done
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in Ref. [24], showing that the percolation phase transition involved in the system has

the same universality class as the ordinary random percolation, regardless of the size k

considered.

In contrast to the statistic for the simple particles, the degeneracy of arrangements

of extended objects is strongly influenced by the structure and dimensionality of

the lattice. In this context, the present paper deals with jamming and percolation

aspects of k × k square plaquettes deposited on 3D simple cubic lattices. Using

extensive simulations supplemented by finite-size scaling analysis, jamming coverage and

percolation thresholds were determined for a wide range of k values. The obtained results

allow us to report the functionality of jamming coverage and percolation threshold with

the object size. In addition, the accurate determination of the critical exponents indicate

that the percolation transition of k2-mers on simple cubic lattices belongs to the 3D

random percolation universality, and that the jamming transition can be characterized

by an exponent νj = 2/3.

The paper is organized as it follows: the model is presented in Section 2. Jamming

and percolation properties are studied in Sections 3 and 4, respectively. Finally, the

conclusions are drawn in Section 5.

2. The model

Let us consider the substrate represented by a 3D simple cubic lattice of M = L×L×L

sites (an L3-lattice) with periodic boundary conditions in each direction (a torus). In

this way, all the lattice sites are equivalent and there are no edge effects in the deposition

process. The filling of the lattice with k2-mers (objects ocupping k×k×1 sites) is carried

out following the conventional RSA process [1]. It consists of three steps, namely, (i)

starting from an initially empty lattice; (ii) then, a square tile of k × k × 1 sites is

chosen at a random position and orientation and, if those sites are empty, a k2-mer is

deposited on them; otherwise, the attempt is rejected; (iii) steps (i)− (ii) are repeated

until a desired concentration θ = k2N/M is reached (N is the number of the deposited

k2-mers).

3. Jamming coverage

As mentioned in Section 1, due to the increasing probability of blocking on the lattice

by the already randomly deposited objects, the jamming coverage is less than the close-

packing one (θj < 1). Consequently, θ ranges from 0 to θj for objects occupying more

than one site, and the interplay between jamming and percolation must be considered.

For the purpose of obtaining the jamming threshold as a function of k, the

probability WL,k(θ) that an L3-lattice reaches a coverage θ has been calculated taking

into account the numerical method introduced in Ref. [15]. According to it, starting

with an initially empty L3-lattice, a deposition process of k2-mers is carried out until a

particular jamming state has been reached. n runs of such process were carried out for
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Figure 1. Curves of the jamming probability WL,k as a function of the fraction of

occupied sites θ for two values of tile size, k=4 and k=24. For clarity, three sizes are

shown in the figure for each k, as indicated.

each lattice size L. Then, the probability was calculated as: WL,k(θ) = nL(θ)/n, where

nL(θ) is the number of samples that reach a coverage θ. A set of n = 105 independent

samples were numerically prepared for several values of L/k=4, 6, 8, 10 and 20. The

ratio L/k was kept constant to avoid spurious results.

In Fig. 1, the curves of probability for the different L/k values are shown for two

typical cases, k = 4 and 24. As mentioned in the previous paragraph, the simulations

were performed for lattice sizes ranging between L/k = 4 and L/k = 20. For clarity,

three sizes are shown in the figure for each k. With independence of the size k, the

curves WL,k(θ) approach to the step function as L grows to infinity. Alternatively, for

a finite value of L, the probability WL,k(θ) varies continuously from 1 to 0. From the

inspection of Fig. 1, it can be seen that: (i) for each tile size k, the curves cross each

other in a nontrivial value W ∗

k ; (ii) those points are located at very well defined values

in the θ-axes determining the jamming threshold for each k (θj,k), (iii) θj,k decreases for

increasing values of k.

The procedure of Fig. 1 was repeated for k from 2 to 200, the results are presented

in Fig. 2 and collected in Table 1. From k ≥12 the data have been fitted by the function

θj,k=A + B/k + C/k2, as proposed in Ref.[11]; it is found that A = θj,k→∞=0.4285(6),

B=1.30(4) and C=-4.4(4). To the best of our knowledge the value θj,k=∞=0.4285(6)

has not been reported up to now.

The decreasing behavior of the jamming coverage with the size k towards an

asymptotic limit value has been already observed in numerous systems. The cases

of linear k-mers [11] or tiles [22] on square lattices, linear k-mers on triangular lattices
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Figure 2. Jamming coverage θj,k as a function of k for k2-mers on 3D simple cubic

lattices with k between 2 and 200 (open circles). The solid line corresponds to the

fitting function as discussed in the text.

[37], or k-mers on the 3D simple cubic lattice [15], are examples of this.

The value θj,k→∞=0.5623(2) for k2-mers on the 2D square lattice [22] is less than the

value θj,k→∞=0.660(2) obtained for linear k-mers in the same geometry [11]. It means

that less compact objects like linear k-mers are more effective in filling the square lattice

than k × k square tiles. In 3D systems the same trend seems to be maintained, at least

for small object sizes. As an illustrative example, in the simple cubic lattice we have

θj,k=20=0.5256 for linear k-mers [15] and θj,k=20=0.4820 for k2-mers (tiles). However,

this seem not to be valid for large values of k. Thus, θj,k→∞=0.4045(19) for k-mers

whereas θj,k→∞=0.4285(6) for k2-mers. The limiting values of θj,k were obtained by

simulations for relatively small k sizes and then extrapolated to represent very long

objects. Additional simulation research of RSA with extremely long objects should be

performed in the future to confirm or reject the prediction in this point.

In order to complete the jamming study, the critical exponent νj of the jamming

transition was obtained. For this purpose, it is useful to define the quantity W
′

L,k =

1−WL,k, which is fitted by the error function because dW
′

L,k/dθ is expected to behave

like the Gaussian distribution [7],

dW
′

L,k

dθ
=

1√
2π∆

′

L,k

exp







−1

2

[

θ − θj,k(L)

∆
′

L,k

]2






, (1)

where θj,k(L) is the concentration at which the slope of dW
′

L,k/dθ is the largest and ∆
′

L,k

is the standard deviation from θj,k(L).
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Figure 3. Log-log plot of (dW
′

L,k/dθ)max as a function of L/k for k=4. According to

Eq. (2) the slope of the line corresponds to 1/νj. Inset: Log-log plot of the standard

deviation ∆
′

L,k in Eq. (3) as a function of L/k for the same case shown in part (a).

According to Eq. (3), the slope of the line corresponds to -1/νj.

Then, νj can be calculated from the maximum of dW
′

L,k/dθ:
(

dW
′

L.k

dθ

)

max

∝ L1/νj . (2)

Figure 3 shows, in a log-log scale, (dW
′

L,k/dθ)max as a function of L/k for k=4,

where νj can be obtained from the inverse of the slope of the line that fits the data, in

this case νj=0.67(2).

An alternative way to obtain νj is from the divergence of the root mean square

deviation of the jamming observed from their average values, ∆L,k,

∆
′

L,k ∝ L−1/νj . (3)

In this case, the slope of the fitting line for ∆
′

L,k versus L/k in log-log scale

corresponds to -1/νj. The inset in Fig. 3 shows log(∆
′

L,k) as a function of log(L/k) for

the same case of the main figure. Again, the obtained value for the critical exponent,

νj=0.67(1), remains close to 2/3.

The procedure in Fig. 3 (and the corresponding inset) was repeated for different

values of k. In all cases, the value obtained for νj remains close to 2/3. To the best of

our knowledge, this value has not been reported up to now.
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k θj,k
2 0.7439(9)

3 0.6540(8)

4 0.6083(2)

6 0.5603(6)

8 0.5347(6)

10 0.5185(6)

12 0.5070(17)

14 0.4985(17)

16 0.4919(17)

18 0.4864(16)

20 0.4820(16)

24 0.4749(17)

28 0.4696(23)

40 0.4591(24)

50 0.4537(24)

75 0.4453(38)

100 0.4419(74)

150 0.435(12)

200 0.435(11)

Table 1. Numerical values of jamming coverage θj,k as a function of k. Error estimates

concerning the last digits are indicated between parentheses.

4. Percolation

4.1. Calculation method and percolation thresholds

According to the percolation theory, the central idea rests on finding the minimum

concentration θ = θc for which at least one cluster emerges connecting the opposite

sides of the system. In our case we will study: i) the percolation threshold as a function

of the size of the tiles θc,k, and ii) the universality class of the phase transition.

To achieve the two points above mentioned, the basic procedure provided by finite-

size scaling theory was used. For this reason, different probabilities of percolation were

calculated as well as the percolation order parameter and its corresponding susceptibility

for different system sizes.

Let R = RX
L,k(θ) represents the probability that a lattice L × L × L percolates at

the concentration θ by the deposition of k × k × 1 tiles [38]. According to our analysis,

X may have the following meanings:

• RR
L,k(θ): the probability of finding a rightward percolating cluster, along the x-
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direction,

• RD
L,k(θ): the probability of finding a downward percolating cluster, along the z-

direction,

• RF
L,k(θ): the probability of finding a frontward percolating cluster, along the y-

direction.

Other useful definitions for the finite-size analysis are:

• RU
L,k(θ): the probability of finding a cluster which percolates on any direction,

• RI
L,k(θ): the probability of finding a cluster which percolates in the three (mutually

perpendicular) directions,

• RA
L,k(θ)=

1
3
[RR

L,k(θ) +RD
L,k(θ) +RF

L,k(θ)]: the arithmetic average.

Through computational simulation, each of the previously mentioned quantities

were calculated. Basically, each simulation consists of the following steps: (a) the

construction of a simple cubic lattice of linear size L with a coverage θ, (b) the cluster

analysis using the Hoshen and Kopelman algorithm [39] with open boundary conditions,

and (c) the determination of the largest cluster size SL.

A total of mL independent runs of such two steps procedure were carried out for

each lattice size L. Then, the probabilities has been calculated as: RX
L,k(θ) = mX

L /mL,

where mX
L indicates the number of percolating samples.

The percolation order parameter and the corresponding susceptibility χ and reduced

fourth-order cumulant UL have been obtained from the largest cluster size [40, 41, 42].

Thus,

P =
< SL >

M
, (4)

χ =
[〈S2

L〉 − 〈SL〉2]
M

, (5)

and

UL = 1− 〈S4
L〉

3〈S2
L〉2

, (6)

where < .. > means an average over simulation runs.

In the percolation simulations, a total of mL = 105 independent samples have

been used to calculate averages. In addition, for each value of k, the finite size scaling

study was carried out by using the values L/k = 4, 6, 8, 10, 12, 15 and 24. As it can

be appreciated, this represents extensive calculations from the computational point of

view. From this analysis, the percolation threshold and the critical exponents can be

determined with reasonable accuracy.
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Figure 4. Fraction of percolating lattices RX
L,k(θ) (X = {I, U,A}, as indicated) as a

function of the concentration θ for k = 4 and different lattice sizes: L/k=12, squares;

L/k=15, circles; L/k=24 triangles up. The statistical error is smaller than the symbol

size.

Figure 5. Extrapolation of the percolation threshold for an L3-lattice θXc,k(L) (X =

{I, U,A}) towards the thermodynamic limit according to the theoretical prediction

given by Eq. (8). Circles, squares and triangles denote the values of θXc,k(L) obtained

by using the criteria I, A and U , respectively, for k =4.
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k θc,k
2 0.240770

3 0.2103(5)

4 0.1934(4)

5 0.1819(5)

6 0.1742(7)

7 0.1682(13)

8 0.1641(8)

9 0.1606(11)

10 0.1578(6)

11 0.1557(14)

12 0.1548(9)

14 0.1534(16)

20 0.1520(17)

24 0.1527(19)

32 0.1559(22)

48 0.1618(19)

64 0.1656(29)

80 0.1675(38)

100 0.170(5)

150 0.175(4)

200 0.177(5)

Table 2. Numerical values of percolation threshold θc,k as a function of k. Error

estimates concerning the last digits are indicated between parentheses.

The theory of finite-size scaling [2, 38, 40] gives us an efficient way to estimate the

percolation threshold from the maximum of the curves of RX
L,k(θ) (see Fig. 4). For this,

the different curves are expressed as a function of continuous values of θ. Then, as in

the case of the jamming probability, dRX
L,k/dθ can be approximated by the Gaussian

function. We use the term approximated because the behavior of dRX
L,k/dθ is known not

to be a Gaussian in all range of coverage [43]. However, this quantity is approximately

Gaussian near the peak, and fitting with a Gaussian function is a good approximation

for the purpose of locating its maximum. Thus,

dRX
L,k

dθ
=

1√
2π∆X

L,k

exp







−1

2

[

θ − θXc,k(L)

∆X
L,k

]2






, (7)

where θXc,k(L) is the concentration at which the slope of dRX
L,k/dθ is the largest and ∆X

L,k

is the standard deviation from θXL,k(L).
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Figure 6. The percolation threshold θc,k as a function of k for k2-mers on 3D simple

cubic lattices. The minimum is reached around k = 18. Symbols represent simulation

results and solid line corresponds to the fitting function as discussed in the text.

Once the values of θXc,k(L) were obtained for all lattice sizes, the percolation

thresholds were calculated by scaling analysis [2]. In this way, the following relationship

is got

θXc,k(L) = θXc,k(∞)− AXL−1/ν , (8)

where AX is a nonuniversal constant and ν is the critical exponent of the correlation

length which has been taken as 7/8 for the present, since, as it will be shown below, our

model belongs to the same universality class as random 3D percolation [2].

Figure 5 shows the extrapolation toward the thermodynamic limit of θXc,k(L)

(X = I, U, A and k = 4) according to Eq. (8). Then, the final values of θXc,k(∞) are given

as: θc,k ± δk, where δk = max(| θUc,k − θAc,k |, | θIc,k − θAc,k |). The values obtained in Fig. 5

were: θc,k=4(∞) = 0.1934(4). For the rest of the paper, we will denote the percolation

threshold for each size k by θc,k [for simplicity we will drop the symbol“(∞)”].

The procedure of Fig. 5 was repeated for k ranging from 2 to 200. The results are

shown in Fig. 6 and collected in Table 2. As can be seen from the figure, θc,k shows a

nonmonotonic dependence with k, decreasing for small sizes, going through a minimum

around k ≈ 18, and finally slowly increasing for k ≥ 18.

For k → ∞, the θc,k curve seems to tend toward a saturation value. In order to

calculate this limit value, the simulation data were fitted with the function proposed in

Ref. [44],

θc,k = A +
B

C +
√
k

(k ≥ 24), (9)
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Figure 7. a) Maximum of the derivative of the A percolation probability,
(

dRA
L,k/dθ

)

max

as a function of L/k (in a log-log scale) for k = 4. b) Idem for

susceptibility. c) Idem for the maximum of the order parameter derivative.

where A = 0.201(4), B = −0.42(8), C = 3.82(1.07) and the adjusted coefficient of

determination is R2 = 0.998. Thus, A = θc,k→∞ = 0.201(4) represents the percolation

threshold for infinitely large k2-mers on simple cubic lattices. This limit value has been

derived by using an extrapolation method [Eq. (9)], and more extensive simulations are

necessary for obtaining a direct confirmation of the percolation behavior of extremely

large tiles.

4.2. Critical exponents and universality

In this section, the critical exponents ν, β and γ will be calculated. Knowing ν, β and γ

is enough to determine the universality class of our system and understand the related

phenomena.

The standard theory of finite size [40] allows us for various routes to estimate the

critical exponent ν from simulation data. One of these methods is from the maximum

of the function dRX
L,k/dθ,

(

dRX
L,k

dθ

)

max

∝ L1/ν . (10)

In Fig. 7(a), log
[

(

dRX
L,k/dθ

)

max

]

has been plotted as a function of log[L] for k=4.
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Figure 8. a) Data collapse for the order parameter, corresponding to k=4. Inset:

idem for the susceptibility. b) Idem for the Binder cumulant.

According to Eq. (10), the slope of the fitting line corresponds to 1/ν. As can be

observed in all the cases, the data present a fairly linear behaviour, giving the value

ν = 0.875(5).

Obtaining ν make us able to estimate the exponents γ and β according to the theory

[2]. In the case of γ, it is obtained by scaling the maximum value of the susceptibility,

according to the scaling assumption for this quantity given by χ = Lγ/νχ(u), where

u = (θ − θc,k)L
1/ν and χ is the corresponding scaling function. At the point where χ

is maximal, u=const. and χmax ∝ Lγ/ν . The simulation data are shown in Fig. 7(b).

From a linear fit, the obtained value for the exponent is γ = 1.81(3).

On the other hand, the exponent β is calculated from the scaling behavior of the

order parameter at criticality, P = L−β/νP (u′), where u′ = |θ − θc,k|L1/ν and P is the

scaling function. At the point where dP/dθ is maximal, u′=const. and,
(

dP

dθ

)

max

= L(−β/ν+1/ν)P (u′) ∝ L(1−β)/ν . (11)

The scaling of (dP/dθ)max is shown in Fig. 7(c). From the slope of the fitting line,

the obtained value for the exponent is β = 0.42(2).

The procedure showed in Fig. 7 was repeated for different sizes k ranging

between 2 and 200. In all the cases, the values for the exponents ν, β and

γ agree very well with the known values for 3D random percolation: ν ≈
0.8774 [45], β ≈ 0.4273 [46] and γ ≈ 1.8357 [46]. See Wikipedia webpage:

https://en.wikipedia.org/wiki/Percolation−critical−exponents.

Finally, the scaling behavior can be further tested by plotting PLβ/ν versus

|θ − θc,k|L1/ν ,χL−γ/ν versus (θ − θc,k)L
1/ν and U versus (θ − θc,k)L

1/ν and looking

for data collapsing. The results are showed in Figs. 8(a) and 8(b), using the values

of θc,k obtained and the values of the critical exponents corresponding to ordinary 3D

percolation. As can be seen, the data scaled extremely well, supporting the hypothesis

that the model belongs to the universality class of the 3D random percolation.
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5. Conclusions

The behavior of jamming and percolation thresholds in RSA of k × k square objects

(k2-mers) deposited on simple cubic lattices have been studied by numerical simulations

complemented with finite-size scaling theory.

The dependence of the jamming coverage θj,k on the size k was studied for k ranging

from 2 to 200. A decreasing behavior was observed for θj,k, with a finite value of

saturation in the limit of infinitely long k2-mers: θj,k = A+B/k+C/k2 (k ≥ 12), being

A = θj,k→∞ = 0.4285(6), B=1.30(4) and C=-4.4(4). The value θj,k=∞ = 0.4285(6) is

reported for the first time in the literature.

A decreasing behavior was also found for RSA of linear k-mers [16] on simple cubic

lattices. However, some important differences between these systems can be observed:

(1) in the range of small sizes (2 ≤ k ≤ 50), the linear k-mers are more effective in

filling the 3D cubic lattice than the k× k tiles; and (2) the tendency described in point

(1) seems to become invalid for large values of k, being θj,k=∞=0.4045(19) [16] and

0.4285(6), for linear k-mers and k2-mers, respectively.

Based on scaling properties of the jamming probability WL,k(θ), the critical

exponent νj was measured for different object sizes k. In all cases, the values obtained

for νj remain close to 3/2. This value differs clearly from the value νj ≈ 1 reported by

Vandewalle et al. [7] for the case of linear k-mers on square lattices, and from other 2D

systems [24, 47].

A nonmonotonic size dependence was found for the percolation threshold θc,k, which

decreases for small particles sizes, goes through a minimum around k ≈ 18, and finally

asymptotically converges towards a definite value for large sizes k. The simulation data

were fitted with the function proposed in Ref. [44], θc,k = A + B/(C +
√
k) (k ≥ 24),

where A = θc,k→∞ = 0.201(4) represents the percolation threshold for infinitely large

k2-mers on simple cubic lattices. A similar behavior was reported recently in the case

of linear k-mers on 2D square lattices [44]. A common feature in these systems is that

in both cases (d − 1)-dimensional objects are deposited on d-dimensional substrates.

Future efforts will be made to study other systems of linear and planar objects on 2D

and 3D lattices. This will allow us to explore and discuss the obtained percolation

properties in terms of the relationship between the dimension of the depositing object

and the dimension of the substrate.

Finally, the accurate determination of critical exponents (ν, γ and β) revealed

that the model belongs to the same universality class as the 3D random percolation,

regardless of the size k considered.
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