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Jamming and percolation of three-dimensional (3D) k × k × k cubic objects (k3-mers) deposited

on simple cubic lattices have been studied by numerical simulations complemented with finite-size

scaling theory. The k3-mers were irreversibly deposited into the lattice. Jamming coverage θj,k was

determined for a wide range of k (2 ≤ k ≤ 40). θj,k exhibits a decreasing behavior with increasing

k, being θj,k=∞ = 0.4204(9) the limit value for large k3-mer sizes. In addition, a finite-size scaling

analysis of the jamming transition was carried out, and the corresponding spatial correlation length

critical exponent νj was measured, being νj ≈ 3/2. On the other hand, the obtained results for the

percolation threshold θp,k showed that θp,k is an increasing function of k in the range 2 ≤ k ≤ 16.

For k ≥ 17, all jammed configurations are non-percolating states, and consequently, the percolation

phase transition disappears. The interplay between the percolation and the jamming effects is

responsible for the existence of a maximum value of k (in this case, k = 16) from which the

percolation phase transition no longer occurs. Finally, a complete analysis of critical exponents and

universality has been done, showing that the percolation phase transition involved in the system

has the same universality class as the 3D random percolation, regardless of the size k considered.
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I. INTRODUCTION

Percolation theory and cluster concepts have been extremely useful in elucidating many

problems in physics [1–5]. In most cases the theory predicts a geometrical transition at

the percolation threshold, characterized in the percolative phase by the presence of a giant

cluster, which becomes infinite in the thermodynamic limit.

One of the applications of percolation theory is connected to the study of physical and

chemical properties of adsorbed monolayers. In this framework, deposition of extended

objects on different surfaces is of considerable interest for a wide range of applications in

biology, nanotechnology, device physics, physical chemistry, and materials science. Theo-

retically, several models have been developed to capture the basic physics of this situation,

and by far the most studied is that of random sequential adsorption.

The random sequential adsorption (RSA), introduced by Feder [6], has served as a

paradigm for modeling irreversible deposition processes. The main features of the RSA

model are [7]: (1) the objects are put on randomly chosen sites, (2) the adsorption is

irreversible and (3) at any time only one object is being adsorbed, so that the process

takes place sequentially. The final state generated by RSA is a disordered state (known

as jamming state), in which no more objects can be deposited due to the absence of

free space of appropriate size and shape. The jamming state has infinite memory of the

process and the orientational order is purely local. In addition, the limiting or jamming

coverage strongly depends on the shape and size of the depositing particles.

As it was mentioned, the percolation transition is based on calculating the probability

of occurrence of an infinite connectivity among the elements occupying on the lattice.

Thus, the jamming coverage has an important role on the percolation threshold and the

interplay between jamming and percolation has been discussed in several works [1, 7–26].



In the following, we will discuss the main results obtained on one-dimensional [1, 7, 10]

and square plaquette lattices [11–26], which is the topic of this paper.

In the case of straight rigid k-mers on one-dimensional (1D) lattices, the RSA problem

has been exactly solved and an explicit expression for θ(t) has been derived [10]. From the

equation of θ(t), the dependence on k of the jamming coverage θj,k can be obtained. Note

that θ(t) represents the fraction of lattice sites covered at time t by the deposited objects

and, consequently, θ(t = ∞) = θj,k. For k → ∞, the jamming threshold tends to Rényi’s

Parking constant for the continuous case θj,k → cR ≈ 0.7475979202 [27]. On the other

hand, the percolation problem of linear k-mers on 1D lattices is trivial: the percolating

cluster appears only for k = 1 and full coverage (θ = 1) [1, 7]. For k > 1, the jamming

coverage is less than 1 and consequently, the percolation phase transition disappears.

Several authors investigated the isotropic deposition of straight rigid k-mers on two-

dimensional (2D) square lattices [11–20]. In Ref.[11], linear k-mers with a length in the

interval k = 1, ..., 20 were randomly and isotropically deposited on a 2D square lattice.

By computer simulations, the authors found that the percolation threshold decreases with

increasing the chain length k. A similar behavior was observed by Vandewalle et al. [12]

for sizes k ranging from 1 to 10, and by Cornette et al. [13, 14] for sizes k ranging from

1 to 15.

Later papers extended the analysis to larger lattices and longer objects [15–17]. The

results obtained revealed that: (1) the jamming concentration monotonically decreases

and tends to 0.660(2) as the length of the rods increases; (2) the percolation threshold

is a nonmonotonic function of the size k: it decreases for small rod sizes, goes through a

minimum around k = 13, and finally increases for large segments; and (3) the ratio of the

two thresholds θp,k/θj,k has a more complex behavior: after initial growth, it stabilizes



between k = 3 and k = 7, and then it grows again.

Tarasevich et al. [18] confirmed that the percolation threshold initially decreases, passes

through a minimum at k = 13, and then increases with increasing k. In addition, the

authors determined that the percolation phase transition only exists for values of k be-

tween 1 and approximately 1.2× 104. For larger k, percolation cannot occur even at the

jamming concentration, which is the maximum the system can achieve. Very recently,

Kondrat et al. [19] refuted the conjecture that in the RSA processes of linear k-mers

on square lattices the percolation is impossible if the needles are sufficiently long [18].

The authors presented a strict proof that in any jammed configuration of nonoverlapping,

fixed-length, horizontal or vertical needles on a square lattice, all clusters are percolating

clusters. The theoretical result obtained in Ref. [19] was recently corroborated using

simulation techniques [20]. Based in a very efficient parallel algorithm, Slutskii et al. [20]

studied the problem of large linear k-mers (up to k = 217) on a square lattice with periodic

boundary conditions. The obtained results indicate that, in the case of linear k-mers on

square lattices, percolation always occurs before jamming.

In Ref. [21], the percolation problem corresponding to linear k-mers was extended to

three-dimensional (3D) simple cubic lattices. The k-mers were irreversibly and isotrop-

ically deposited into the lattice. Then, the percolation threshold and critical exponents

were obtained by numerical simulations and finite-size scaling theory. The results, ob-

tained for k ranging from 1 to 100, revealed that (i) the percolation threshold exhibits a

decreasing function when it is plotted as a function of the k-mer size; and (ii) the phase

transition occurring in the system belongs to the standard 3D percolation universality

class regardless of the value of k considered.

Later, the deposition kinetics of linear k-mers on cubic lattices was investigated in Ref.



[22]. The study revealed that (i) the jamming coverage exhibits a decreasing function when

it is plotted in terms of the k-mer size, being 0.4045(19) the value of the limit coverage for

large k’s; and(ii) the ratio between percolation threshold and jamming coverage shows a

non-universal behavior, monotonically decreasing to zero with increasing k. These findings

indicate that the percolation phase transition occurs for all values of k.

The RSA problem becomes more difficult to solve when the depositing particles are

compact objects, and only very moderate progress has been reported so far. In the line of

present work, M. Nakamura [23, 24] studied the problem of k × k square tiles (k2-mers)

irreversibly deposited on 2D square lattices. The author showed that the percolation

threshold is an increasing function of k in the range 1 ≤ k ≤ 3. For k ≥ 4, all jammed

configurations are non-percolating states, and consequently, the percolation phase tran-

sition disappears. This finding was corroborated by theoretical analysis based on exact

calculations of all the possible configurations on finite cells [25].

Jamming and percolation properties change substantially when the k2-mers are de-

posited on 3D simple cubic lattices. This problem was investigated in Ref. [26]. The

jamming coverage was found to decrease to a nonzero constant with k as the power law

A + B/k + C/k2 obtaining the fitting value A = θj,k→∞ = 0.4285(6). On the other

hand, a nonmonotonic size dependence was observed for the percolation threshold, which

decreases for small particles sizes, goes through a minimum around k = 18, and finally

increases for large segments. As in the case of linear k-mers deposited on 2D square

lattices, it would be expected that the percolation phase transition survives as k → ∞.

In this paper, we have studied jamming and percolation aspects of k × k × k cubic

objects (k3-mers) deposited on 3D simple cubic lattices. Using extensive simulations

supplemented by finite-size scaling analysis, jamming coverages and percolation thresholds



were determined for a wide range of k values. This study (i) completes previous work

on jamming and percolation of extended objects on D-dimensional lattices [11–26]; and

(ii) allow us to extract general conclusions about the behavior of the system and its

dependence on the relationship between the dimension of the depositing object and the

dimension of the substrate.

The paper is organized as it follows: the model is presented in Section II. Jamming

and percolation properties are studied in Sections III and IV, respectively. Finally, the

conclusions are drawn in Section V.

II. MODEL AND MONTE CARLO SIMULATION DETAILS

We consider a substrate composed by a 3D simple cubic lattice of M = L×L×L sites

with periodic boundary conditions in each direction (a torus). In this way, all the lattice

sites are equivalent and there are no edge effects in the filling process. The deposition

procedure is as follow. A set of k × k × k nearest-neighbor sites, conforming a cube of

side k (see Fig. 1), is randomly chosen; if all the selected sites are empty, a k3-mer is

deposited onto the lattice (the k3 sites are marked as occupied). Otherwise, the attempt

is rejected. When N k3-mers are deposited, the concentration is θ = k3N/M . In order

to efficiently occupy the lattice sites, we actually select at random the empty k3-tuples

from a list of empty k3-tuples, instead of from the whole lattice, updating the list in each

step. This strategy, although it is more memory consuming, significantly improves the

computational cost of the filling algorithm.



FIG. 1: Schematic diagram of the system for the case k = 2.

III. JAMMING

The calculation of the jamming concentration for different values of k on a lattice of

linear size L (a L-lattice) is carried out by using the probability WL,k(θ) that a particular

RSA process reaches the coverage θ [22]. The procedure to determine this probability

consists of simulating the following steps: (a) the setup of an initially empty cubic L-

lattice, and (b) the deposition of the objects on the lattice until reaching a jamming

condition. n runs of the steps (a)-(b) are carried out for each lattice size L and each

object size k. Then the probability WL,k(θ) = nL,k(θ)/n can be calculated, where nL,k(θ)

is the number of runs that reach the coverage θ. A set of n = 105 independent runs was

numerically obtained for several values of the lattice sizes L as well as for different values

of k. The L/k ratio is kept constant to prevent any spurious effects.

For an infinite system (L → ∞) WL,k(θ) should be a step function, being 1 for θ ≤ θj,k

and 0 for θ > θj,k, whereas for finite values of L, WL,k(θ) varies continuously between 1

and 0, with a sharp fall around θj,k. Thereby, the jamming coverage can be estimated



from the curves of WL,k versus θ plotted for several lattice sizes [22]. In the vicinity of the

limit coverage, the probabilities show a strong dependence on the system size. However,

at the jamming point, the probabilities adopt an unique value W ∗

L,k, irrespective of the

system sizes in the scaling limit. Thus, plotting WL,k(θ) for different linear sizes L yields

an intersection point W ∗

L,k, which gives an accurate estimation of the jamming coverage,

θj,k, in the infinite system. The interval width where the curves cross each other is taken

as the error in the determination of θj,k.

In Fig. 2, the probabilities WL,k(θ) are shown for values of L/k ranging from 8 to 96, as

indicated, and three typical cases: k = 2, k = 4 and k = 12. From the inspection of the

figure (and from data not shown here for a sake of clarity), it can be seen that: (a) for

each k, the curves cross each other in a unique point W ∗

L,k; (b) those points do not modify

their numerical value for the different cases studied, being W ∗

L,k ≈ 0.49; (c) those points

are located at very well defined values in the θ-axes determining the jamming threshold,

θj,k, for each k; and (d) θj,k decreases for increasing values of k.

The procedure of Fig. 2 was repeated for k ranging between 2 and 40. The results are

shown in Fig. 3 and compiled in the second column of Table I. A decreasing behavior is

observed for θj,k, with a finite value of saturation in the limit of infinitely long k3-mers.

The simulation data have been fitted to the function: θj,k = A + B/k + C/k2 (k ≥ 12),

being A = θj,k=∞=0.4204(9), B=0.44(3) and C=-0.75(30). The fitting curve is shown in

Fig. 3 (dashed line). For k ≥ 5, the inset of Fig. 3 shows a practically linear dependence

of θj,k as a function of 1/k, which allows us to corroborate the previously obtained value

θj,k→∞ = 0.4204(9).

It is interesting to compare the results in Fig. 3 with similar data resulting from the

deposition of linear k-mers (objects of k×1×1) [22] and tiles or k2-mers (objects of k×k×1)



0.44 0.46 0.48 0.644 0.648
0.0

0.2

0.4

0.6

0.8

1.0
 L/k = 8
 L/k = 12
 L/k = 16
 L/k = 32
 L/k = 48
 L/k = 64
 L/k = 96

k
k

 

 

WL,k

k

W*
L,k

0.452(5)

0.468(2) 0.645(3)

FIG. 2: Curves of WL,k as a function of the density θ for three values of k-mer size (from right to left, k = 2,

k = 8, and k = 12) and lattice sizes ranging between L/k = 8 and L/k = 96 as indicated. Horizontal dashed line

shows the W ∗

L,k point. Vertical dashed lines denote the jamming thresholds in the thermodynamic limit.

0 10 20 30 40
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.0 0.2 0.4 0.6
0.40
0.45
0.50
0.55
0.60
0.65

 

 

qj,k

k

 

 

qj,k

1/k

qj,k(¥) = 0.4204(9)

FIG. 3: Jamming coverage θj,k as a function of k. Symbols represent simulation results and dashed line corresponds

to the fitting function as discussed in the text. Inset: θj,k as a function of 1/k.

[26] on simple cubic lattices. The main similarities and differences are as follows: (1) in



TABLE I: Table I: Jamming and Percolation thresholds versus k.

k θj,k θp,k

2 0.645(4) 0.259(2)

3 0.559(1) 0.268(6)

4 0.521(1) 0.291(3)

5 0.499(2) 0.312(4)

6 0.485(2) 0.332(5)

7 0.476(2) 0.352(3)

8 0.468(3) 0.367(7)

9 0.463(3) 0.382(1)

10 0.459(4) 0.397(3)

11 0.456(3) 0.408(3)

12 0.452(5) 0.418(3)

13 0.451(5) 0.426(1)

14 0.447(5) 0.432(8)

15 0.447(5) 0.438(2)

16 0.447(5) 0.440(7)

17 0.445(4) -

18 0.442(8) -

19 0.442(8) -

20 0.441(7) -

25 0.436(5) -

30 0.434(5) -

40 0.430(5) -

the three cases, the jamming coverage was also found to be a decreasing function of k;

(2) in the range studied by simulations (2 ≤ k ≤ 40), the k3-mers are less effective in

filling the 3D cubic lattice than other less compact objects. As an illustrative example,

θj,k=20 ≈ 0.5256, 0.4820 and 0.4407, for k-mers, k2-mers and k3-mers, respectively; and

(3) the tendency described in point (2) does not seem to be valid for large values of k.



Thus, θj,k=∞=0.4045(19) [22], 0.4285(6) [26] and 0.4204(9), for k-mers, k2-mers and k3-

mers, respectively. The limiting values of θj,k were obtained by simulations for relatively

small k sizes and then extrapolated to represent very long objects. Additional simulation

research of RSA with extremely long objects should be performed in the future to confirm

or reject the prediction in point (3).
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To further deepen the study of jamming, the critical exponent νj of the jamming tran-

sition was calculated. For this purpose, the derivative dWL,k/dθ is expected to behave

like a Gaussian function around the maximum [12],

dWL,k

dθ
=

1√
2π∆L,k

exp

{

−1

2

[

θ − θj,k(L)

∆L,k

]2
}

, (1)

where θj,k(L) is the concentration at which the slope of WL,k is maximum and ∆L,k is the

standard deviation from θj,k(L). Then, by fitting the derivative according to Eq. (1) it is



possible to determine νj :

(

dWL,k

dθ

)

max

∝ L1/νj . (2)

Fig. 4 shows (dWL,k/dθ)max as a function of L/k for k = 4 in a log-log graph. νj can

be obtained from the slope of the curve (the line is a linear fit of the points). In this case,

νj = 1.490(10).

An alternative way to obtain νj is from the divergence of the jamming standard deviation

at the critical point,

∆L,k ∝ L−1/νj . (3)

The inset in Fig. 4 shows ∆L,k as a function of L/k for the same case of the main figure.

With this scheme, the resulting value of the critical exponent was νj = 1.492(10). In both

cases (main figure and inset), the critical exponent obtained from the slope of the curves

is close to 3/2. The procedure was repeated for different values of k. In all the cases, the

values obtained for νj: (1) remain close to 3/2, and (2) coincide, within the numerical

errors, with the values previously reported by us in other 3D systems [22, 26].

IV. PERCOLATION

As it was already mentioned, the main goal of percolation theory is the determination

of the minimum concentration θ = θp,k for which a cluster extends from one side of the

system to the opposite. We are interested in determining: (i) the dependence of θp,k as

a function of the size k, and (ii) the critical exponents and the universality class of the

phase transition occurring in the system.

The finite-scaling theory gives us the basis to determine the percolation threshold and

the critical exponents of a system with a reasonable accuracy. For this purpose, the



probability R = RX
L,k(θ) that an L-lattice percolates at the concentration θ of occupied

sites by cubic objects of size k × k × k can be defined [1, 28, 29]. Here, the following

criteria can be given according to the meaning of X :

• Rx
L,k(θ): the probability of finding a percolating cluster along the x-direction,

• Ry
L,k(θ): the probability of finding a percolating cluster along the y-direction,

• Rz
L,k(θ): the probability of finding a percolating cluster along the z-direction.

Other useful definitions for the finite-size analysis are:

• RU
L,k(θ): the probability of finding a cluster which percolates on any direction,

• RI
L,k(θ): the probability of finding a cluster which simultaneously percolates in the

three (x, y, z) directions,

• RA
L,k(θ)=

1
3
[Rx

L,k(θ) +Ry
L,k(θ) +Rz

L,k(θ)]: the arithmetic average.

Computational simulations were applied to determine each of the previously mentioned

quantities. Each simulation run consists of the following steps: (a) the construction of a

simple cubic lattice of linear size L and coverage θ, (b) the cluster identification using the

union-and-find algorithm [30] with open boundary conditions. In the last step, the size of

the largest cluster SL is determined, as well as the existence of a percolating island and

all the probabilities RX
L,k.

A total of mL independent runs of such two steps procedure were carried out for each

lattice size L. From these runs, a number mX
L,k of them present a percolating cluster

according to the criterion X = x, y, z, I, U, A. Then, RX
L,k(θ) = mX

L,k/mL is defined and

the procedure is repeated for different values of L, θ and k.

In addition to the different probabilities RX
L,k(θ), the percolation order parameter P and



the corresponding susceptibility χ have been measured [31, 32],

P = 〈SL〉/M, (4)

and

χ = [〈S2
L〉 − 〈SL〉2]/M, (5)

where 〈...〉 means an average over simulation runs.

In our percolation simulations, we used mL = 105. In addition, for each value of θ, the

effect of finite size was investigated by examining cubic lattices with L/k = 6, 8, 10, 12, 15

and 24. As it can be appreciated, this represents extensive calculations from the numeric

point of view (with an effort reaching almost the limits of our computational capabilities).

From there on, the finite-scaling theory can be used to determine the percolation threshold

and the critical exponents with a reasonable accuracy.

An initial way to estimate the percolation threshold [29] is from the interception of the

curves of RX
L,k(θ). To improve the accuracy, different curves are expressed as a function

of continuous values of θ. Then, as in the case of jamming probability, dRR
L,k/dθ can be

fitted by the Gaussian function [43],

dRX
L,k

dθ
=

1√
2π∆X

L,k

exp







−1

2

[

θ − θXp,k(L)

∆X
L,k

]2






, (6)

where θXp,k(L) and ∆X
L,k have the same meaning as in Eq. (1).

The probability RX
L,k(θ), which represents the percolation cumulant and whose prop-

erties are identical to those of the Binder cumulant UL in standard thermal transitions

[28, 34], obeys the same scaling relation as UL, and the intersection of the curves of RX
L,k(θ)

for different system sizes can be used to determine the critical point that characterizes

the phase transition occurring in the system [1, 14, 35–37]. This procedure is shown in

Fig. 5, where the probabilities RU
L,k(θ), R

I
L,k(θ) and RA

L,k(θ) are shown for k = 2 and



0.24 0.25 0.26 0.27 0.28
0.0

0.2

0.4

0.6

0.8

1.0

RI*

RA* 
I

A

RX
L,k

k = 2

URU*
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indicated. The different groups of curves correspond to the criteria U , A, and I , from up to down.

different lattice sizes as indicated. From a simple inspection of the figure (and from data

not shown here for the sake of clarity) it is observed that: (a) the curves, corresponding

to the various percolation criteria (U , A, I, etc.), cross each other in a unique universal

point, RX∗, which depends on the criterion X used; and (b) those points are located at

well defined values in the θ-axes determining the critical percolation threshold for each k.

As it is well-known, the transition is never sharp for finite systems. Accordingly, the

intersection point in previous figure is not an unique point and shows a slight shift with

changes of the lattice size L. As we will show next, the scaling theory offers a more

accurate route to determinate the percolation thresholds.

We will start by analyzing the correlation length, ξ. This quantity, associated with

emergence of the percolating cluster, has the scaling relation:

ξ ∝ |θ − θp,k|−ν , (7)



where ν is the critical exponent. As θ → θXp,k(L) the correlation length ξ → L, being L

the linear dimension of the system. Thus, we have

θXp,k(L) = θp,k(∞) + AXL−
1

ν , (8)

where AX is a non-universal constant and θp,k(∞) represents the percolation threshold in

the thermodynamic limit.

As it can be seen from Eq. (8), the exponent ν is of importance because it is necessary

in order to calculate the percolation threshold. The finite-size scaling theory allows to

estimate ν through the scaling relationship for RX
L,k(p):

RX
L,k(θ) = RX

k

[

(θ − θp,k)L
1

ν

]

, (9)

being RX
k (u) the scaling function and u ≡ (θ − θp,k)L

1

ν . Thus, the maximum of the

derivative of Eq. (9) leads to
(

dRX
L,k

dθ

)

max

∝ L
1

ν . (10)

In Fig. 6, this relation has been plotted as a function of L/k (in log-log scale) for k = 2.

As can be observed, the slope of the curve (1/ν) remains constant and close to 1.13. Thus,

the resulting value of the critical exponent was ν = 0.91(6).

Another alternative way to obtain ν is given by the divergence of the root mean square

deviation of the threshold observed from their average values, ∆A
L,k in Eq. (1) [1],

∆X
L,k ∝ L−1/ν . (11)

The inset of Fig. 6 shows ln
(

∆A
L,k

)

as a function of ln(L/k) (note the log-log functional

dependence) for k = 2. According to Eq. (11), the slope corresponds to −1/ν. In this

case, it results ν = 0.92(8).

The study in Fig. 6 was repeated for the I and U percolation criteria and different

values of k ranging between 2 and 16. In all cases, the results coincide, within numerical



errors, with the well-known value of the critical exponent of the ordinary 3D percolation

ν = 0.8774(13) [38].
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The values of θXp,k(L) can be obtained for different values of k and L by fitting the

corresponding dRX
L,k(θ)/dθ curves according to Eq. (6). Then, once ν was determined,

the percolation thresholds θXp,k(∞) can be calculated by using Eq. (8). This procedure is

shown in Fig. 7 for a typical case: k = 2. The figure supports the relation given by Eq.

(8): (a) all the curves (different criteria) are well correlated by a linear function, and (b)

they have a quite similar value for the ordinate in the limit L → ∞.

From the procedure shown in Fig. 7, one obtains θXp,k(∞) for the criteria I, A and U .

Combining the three estimates for each k, the final values of θp,k(∞) are obtained. The

maximum of the differences between θIp,k(∞), θAp,k(∞), and θUp,k(∞), gives the error bar
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FIG. 7: Extrapolation of θ towards the thermodynamic limit according to the theoretical prediction given by Eq.

(8) for k = 2. Circles, squares and triangles correspond to the criteria I , A and U , respectively.

for θp,k(∞). In the case of Fig. 7, the value obtained for the percolation threshold was:

θp,k=2(∞) = 0.259(2). For the rest of the paper, we will denote the percolation threshold

for each size k by θp,k [for simplicity we will drop the symbol“(∞)”].

In Fig. 8 the percolation threshold θp,k is plotted as a function of k (open squares). The

corresponding numerical values are collected in Table I (third column). The figure also

includes the jamming curve θj,k (solid squares). For 2 ≤ k ≤ 16, the percolation threshold

increases upon increasing k. For k > 16, all jammed configurations are non-percolating

states, and consequently, there is no percolating phase transition. Jamming and percola-

tion can simultaneously occur in these systems up to kmax = 16, with diminishing values

for the jamming critical coverage. For larger values of k, the jamming critical concen-

tration happens earlier than the likely percolation concentration thus suppressing this

property. This phenomenon can be better visualized in the inset of Fig. 8, where the

ratio θp,k/θj,k has been plotted as a function of k. A similar behavior has already been



observed in a system of k× k tiles on square lattices, being in this case kmax = 3 [23–25].

On the other hand, the result shown in Fig. 8 contrasts with the behavior observed in

systems of no-dimensional objects deposited on nL-dimensional lattices (with no < nL):

straight rigid k-mers on 2D square lattices [11–20]; straight rigid k-mers on 3D simple

cubic lattices [21] and k × k tiles (k2-mers) on 3D simple cubic lattices [26]. In these

systems, percolating and non-percolating phases extend to infinity in the parameter space

k and, consequently, the model presents percolation transition in all ranges of k-mer size.
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FIG. 8: The thresholds θj,k (black squares) and θp,k (hollow squares) as a function of k. Inset: ratio θp,k/θj,k as

a function of k. The dashed line represent the best fit of the numerical values as indicated in the text.

The values previously calculated for the critical exponent ν (see Fig. 6) clearly indicate

that the percolation phase transition belongs to the the universality class of 3D random

percolation. In order to reinforce or discard this hypothesis, the critical exponents β and

γ can be calculated from the scaling behavior of P and χ [1] as follows:

P = L−β/νP
[

|θ − θp,k|L1/ν
]

, (12)



and

χ = Lγ/νχ
[

(θ − θp,k)L
1/ν
]

, (13)

where P and χ are scaling functions for the respective quantities.

Then, given θp,k and ν = XX , β and γ were obtained by plotting PLβ/ν versus |θ −

θp,k|L1/ν and χL−γ/ν versus (θ− θp,k)L
1/ν and looking for data collapsing [1]. As is shown

in Fig. 9, the data scaled extremely well using β = 0.41 and γ = 1.82 [1]. Figure 9 also

includes the data collapse of RA
L,k(θ) versus (θ − θp,k)L

1/ν .
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FIG. 9: Data collapse of the order parameter, PLβ/ν versus |θ−θp,k|L
1/ν (main figure), the susceptibility χL−γ/ν

versus (θ − θp,k)L1/ν (upper inset), and the fraction of percolation samples RA
L,k(θ) versus (θ − θp,k)L1/ν (lower

inset), for k = 2. The plots were made using the percolation exponents ν = 0.8774, β = 0.41 and γ = 1.82.

The results obtained in Fig. 9 support the hypothesis that the model studied here

belongs to the universality class of 3D random percolation [1, 38] (see Wikipedia web-



page: https://en.wikipedia.org/wiki/Percolation−critical−exponents). Identical results

were found for different values of k in the range 2 ≤ k ≤ 16 (not shown here for space

reasons), showing that the universality does not depend on the k3-mer size. This kind of

behavior, which is expected for systems without long-range correlations, has been observed

in previous studies of percolation of extended objects. Thus, Cornette et al [14] found

that straight rigid k-mers and tortuous k-mers isotropically deposited on two-dimensional

square lattices are in the same universality class as the 2D standard percolation. The

same result was obtained for percolation of aligned rigid rods [41] and percolation of rigid

rods under equilibrium conditions [40] on 2D square lattices. In the case of 3D systems,

Garćıa et al [22] arrived at the same conclusion studying the RSA process of rods. The

authors reported that even though the intersection points of the curves of RX
L,k(θ) for

different objects sizes exhibit nonuniversal critical behavior, the percolation transition

occurring in the system belongs to the standard 3D random percolation universality class

regardless of the value of k considered.

V. CONCLUSIONS

Jamming and percolation properties in RSA of k×k×k cubic objects (k3-mers) deposited

on simple cubic lattices have been studied by numerical simulations complemented with

finite-size scaling theory.

The dependence of the jamming coverage θj,k on the size k was studied for k ranging

from 2 to 40. A decreasing behavior was observed for θj,k, with a finite value of satu-

ration in the limit of infinitely long k3-mers: θj,k = A + B/k + C/k2 (k ≥ 12), being

A = θj,k=∞=0.4204(9), B=0.44(3) and C=-0.75(30). A similar decreasing behavior was

found for RSA of linear k-mers [22] and k × k tiles [26] on simple cubic lattices. How-



ever, some important differences between these systems were observed: (1) in the range

studied by simulations (2 ≤ k ≤ 40), the k3-mers are less effective in filling the 3D cubic

lattice than other less compact objects (such as linear k-mers and k × k tiles); and (2)

the tendency described in point (1) seems to become invalid for large values of k, and

θj,k=∞=0.4045(19) [22], 0.4285(6) [26] and 0.4204(9), for k-mers, k2-mers and k3-mers,

respectively. Conclusion (2) is based on extrapolating simulation results obtained for

relatively small k sizes. Accordingly, more simulations are necessary in order to obtain

direct confirmation of these predictions.

To conclude with the analysis of jamming properties, the critical exponent νj was mea-

sured for different values of the size k. In all cases, the values obtained for νj (1) remain

close to 3/2, (2) coincide, within numerical errors, with the same value of the critical ex-

ponent obtained by us for other three dimensional systems [22, 26], and (3) differs clearly

from the value νj ≈ 1 reported by Vandewalle et al. [12] for the case of linear k-mers on

square lattices, and from other 2D systems [25, 42].

Once the limiting parameters θj,k were determined, the percolation properties of the

system were studied. The numerical calculations showed that the percolation threshold is

an increasing function of k in the range 2 ≤ k ≤ 16. For k ≥ 17, all jammed configurations

are non-percolating states, and consequently, the percolation phase transition disappears.

The interplay between the percolation and the jamming effects is responsible for the

existence of a maximum value of k (in this case, k = 16) from which the percolation

phase transition no longer occurs. A similar behavior was observed in the case of k × k

square tiles on 2D square lattices, where the percolation phase transition disappears for

k ≥ 4 [23–25].

Finally, and in order to test the universality of the problem, the phase transition involved



on it has been studied by using finite-size scaling theory. The accurate determination of

critical exponents (ν, γ and β) revealed that the model belongs to the same universality

class as the 3D random percolation, regardless of the size k considered. In addition, the

corresponding curves collapse according to the predictions of the scaling theory.

The results obtained in the present study, along with the data reported by us and others

previously [1, 7, 18–21, 23–26], allow us to state the following classification, according to

the relationship between the dimension of the depositing object and the dimension of the

substrate:

• D-dimensional lattice and D-dimensional depositing object: The percolation thresh-

old is an increasing function of k in the range 2 ≤ k ≤ kmax. For k > kmax, all

jammed configurations are non-percolating states, and consequently, the percolation

phase transition disappears. Thus, (1) kmax = 1 for straight rigid k-mers on 1D

lattices [1, 7]; (2) kmax = 3 for k × k square tiles (k2-mers) on 2D square lattices

[23–25]; and (3) kmax = 16 for k × k × k cubic objects (k3-mers) deposited on 3D

simple cubic lattices (this work).

• D-dimensional lattice and (D − 1)-dimensional depositing object: The percolation

threshold is a nonmonotonic function of the size k: it decreases for small particle

sizes, goes through a minimum around k = kmin, and finally tends to a constant

value for large k’s. In other words, the percolation phase transition occurs for all

values of k. Thus, kmin = 13 for straight rigid k-mers on 2D square lattices [18] and

kmin = 18 for k2-mers on 3D simple cubic lattices [26]. The tendency to a constant

value for large objects has been established only for straight rigid k-mers on square

lattices. In this line, Kondrat et al. [19] presented a strict proof that in any jammed

configuration, all clusters are percolating clusters. Later, the results obtained in Ref.



[19] were corroborated using simulation techniques [20]. In the case of k2-mers on

3D simple cubic lattices, direct simulation of the RSA for such large objects is a

very-time-consuming task and, therefore, it is still an open problem.

• D-dimensional lattice and (D − 2)-dimensional depositing object: This case corre-

sponds to straight rigid k-mers on 3D simple cubic lattices. The percolation threshold

shows a monotonic decrease with the size k and remains below the curve of jamming

coverage versus k. Consequently, percolating and non-percolating phases extend to

infinity in the space of the parameter k and the model presents percolation transition

in all ranges of said value [21].
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(2012).
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[17] G. Kondrat and A. Pȩkalski, Phys. Rev. E 63, 051108 (2001).

[18] Y. Y. Tarasevich, N. I. Lebovka, and V. V. Laptev, Phys. Rev. E 86, 061116 (2012).

[19] G. Kondrat, Z. Koza, and P. Brzeski, Phys. Rev. E 96, 022154 (2017).

[20] M. G. Slutskii, L. Y. Barash, and Y. Y. Tarasevich, Phys. Rev. E 98, 062130 (2018).
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