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SUMMARY

The response of a digital Zero Average Dynamics (ZAD)-controlled buck converter under the variation of its
intrinsic parameters as well as the pulse-width modulation signal is studied in detail. The multiparameter
analysis presented here leads to a complete knowledge of the different dynamical scenarios exhibited by
the system. Numerical results indicate that the success of the ZAD-strategy is highly dependent on the
parameter and pulse-width modulation (PWM) combinations. Experiments are included to validate the
performance inside the so-called optimum region. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Basically, a dc-dc buck converter is an electronic circuit that transforms its input voltage into a lower
one by means of a transistor, acting as a switch, and an RLC low-pass filter. The switching actions are
administrated by a pulse-width modulation (PWM) block. Because the output also needs to be
regulated, this kind of circuits always includes a feedback loop [1,2].

The output voltage of a buck converter is proportional to the so-called duty cycle, which is defined
by the relation between the turn-on and turn-off intervals assigned to the switch. Ideally, the output is
independent of the sequence in which they arrived during a period. Some of the modulation schemes
traditionally used in the practice [3] are the following: the trailing-edge PWM (TE PWM), where the
turn-on interval always occurs at the beginning of the period; the leading-edge PWM (LE PWM),
where the turn-off interval always occurs at the beginning of the period; and the symmetric double-
edge PWM (DE PWM), where the turn-off (or turn-on) interval is distributed into two equal parts at
the beginning and the end of the switching cycle.

Because of the development of more accessible and versatile microcontrollers and processor units,
the digital implementation of the modulation and control of dc-dc converters has became a common
alternative. Among other advantages, this approach adds flexibility to the following: the PWM
block, making possible to implement different modulation signals; the data acquisition, permitting to
select the sampling instants and rates. Nowadays, it is common to find, for example, that the
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commutations of the switch are displaced with respect to the measurement instants [4,5], avoiding
basically that the noise originated by the operation of the transistor propagates to the feedback loop.
Furthermore, new double-edge modulations have been proposed trying to improve steady-state and
transient performances of buck converters [6].

Traditional discrete-time models have demonstrated to be very useful for describing the appearance
of different dynamical scenarios (e.g. period-doubling bifurcations, Neimark–Sacker bifurcations,
discontinuity-induced bifurcations and even chaos) related to analog, and even digital,
implementations [7–14]. However, they are not prepared to consider all the current sampling and
modulations variations. Several contributions have shown that the dynamical response of different
converters can change because of delays in the digital feedback loop [15,16]. A particular case takes
place when a buck converter is controlled by a nonlinear law known as Zero Average Dynamics
(ZAD) strategy. Results show that the closed-loop system changes radically its characteristics
implementing a DE PWM instead of a TE PWM. Although contributions always associate the
former with this kind of control, neither of them try to explain why the DE PWM seems to be the
most appropriate modulation [17–22].

Recently, new small-signal discrete-time models for dealing with different kinds of delays in the
digital loop and/or sampling instants at any time during a switching period have been proposed in
[23,24]. A small-signal z-domain model is also derived in [25] but with the purpose of quantifying
the dynamic of a converter for different modulation signals. All these contributions have in common
that the proposed models are inappropriate for carrying out a complete study of the influence of
digital PWMs over the appearance of nonlinear phenomena.

A discrete-time model that can reproduce the nonlinear dynamics of a buck converter under different
PWM schemes is considered in this paper. By means of the variation of a new parameter, it is possible
to represent any arbitrary location of the switching instants. State-variable equations are derived by
fixing the sampling instants at the beginning of the period. The aim is to describe how the
performance of the converter controlled by a digital version of the ZAD-strategy is improved/
degraded depending on the parameters and the implemented modulation signal. The closed-loop
system is analyzed in detail via numerical simulations.

Results presented here extend and enhance the preliminary contribution [26] where the study is
made for a specific output voltage reference. The analysis not only contemplates the variation of that
parameter for all its possible range but also considers deviations in the switching period and the
time constant of the circuit. An optimum operation region, which clearly includes the DE PWM
modulation, is defined. Experimental measurements corroborate the findings.

This paper is organized as follows. The generalized discrete-time model of the buck converter and
the respective ZAD control expressions are presented in Sections 2 and 3, respectively. Changes
presented in the behavior of the system according to parameter and PWM combinations are
described in Section 4. Robustness of the system is analyzed in Section 5, and experimental results
are included in Section 6. Finally, conclusions are given in Section 7.
2. GENERALIZED DISCRETE-TIME MODEL OF THE DC-DC BUCK CONVERTER

The circuit diagram of a well-known dc-dc buck converter is shown in Figure 1(a), where E is the
input voltage to be reduced, S and D are the switch and the diode used for generating a square
signal of frequency f, and inductance L, capacitor C and load resistance R are the components of
the low-pass filter necessary to obtain the new dc level (which actually is the average value of
the square signal).

Ideally, the controller maintains the output voltage at the desired vref value calculating the duty cycle
dk (0≤ dk≤ 1) that has to be assigned to the switch at each fixed period kT. Because it is considered a
digital implementation, dk will be obtained according to state values at the sampling instants (at the
beginning of the period).

The PWM block generates the modulation signal u that governs switch S. A form of representing u,
which is valid for most PWM schemes used in the practice, is proposed in Figure 1(b). According to
the figure, variable u can be expressed as
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:470–488
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Figure 1. (a) Voltage controlled buck converter; (b) Generalized pulse-width modulation signal.
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u ¼
0 if kT≤t < tON ;

1 if tON≤t < tOFF;

0 if tOFF≤t < k þ 1ð ÞT ;

8><
>:

where u = 1 (u = 0) implies that S is closed (open) and tON (tOFF) is the instant where S is turned on
(off). As it can be inferred, tOFF� tON = dkT. For compactness, instants tON and tOFF are specified as

tON ¼ kT þ 1� αð Þ 1� dkð ÞT=2;
tOFF ¼ kT þ 1� αð Þ 1� dkð ÞT=2þ dkT :

with α (� 1≤ α≤ 1) as a parameter that results more representative of the PWM scheme. Table I
illustrates the correspondence between some α values and the classical PWM.

As it has been widely demonstrated in the literature, discrete-time models results are appropriate to
carry out a detailed analysis of the dynamic of dc-dc converters [7–9]. Defining the normalized

variables x1 ¼ iLE�1
ffiffiffiffiffiffiffiffiffi
L=C

p
, x2 = v0/E, τ ¼ t=

ffiffiffiffiffiffi
LC

p
and parameters γ ¼ R�1

ffiffiffiffiffiffiffiffiffi
L=C

p
, x2ref= vref /E and

Tn ¼ T=
ffiffiffiffiffiffi
LC

p
, the state-space representation of the buck converter is given by

_x ¼ Axþ Bu (1)

where x is the state vector x = [x1,x2]
T,

A ¼ 0 �1

1 �γ

� �
and B ¼ 1

0

� �
:

Then, taking into account the ODEs general solution [27], that is,

x τð Þ ¼ eA τ�τ0ð Þx τ0ð Þ þ ∫ττ0 e
A τ�ξð ÞBudξ; (2)
Table I. Relation between the α values and the classical PWM schemes.

α tON tOFF PWM scheme

1 kT kT+ dkT TE PWM
�1 kT + (1� dk)T (k+ 1)T LE PWM
0 kT + (1� dk)T/2 kT+ (1� dk)T/2 + dkT DE PWM
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it is possible to calculate the state variables at instant (k+ 1)Tn as a function of the states at the previous
period kTn. In fact, considering the initial condition xk= x(kTn) and solving (2) during one period
[Figure 1(b)], it results1

xkþ1 ¼ eATxk þ ψ dkð Þ; (3)

where

ψ dkð Þ ¼ e�A 1�αð Þ 1�dkð ÞT2eAT I � e�AdkT
� �

A�1B:

In contrast to the classical mappings, the definition of α permits to formulate a more complete
nonlinear discrete-time model that reproduces the dynamics of the buck converter according to the
variations of its intrinsic parameters as well as the adopted modulation signal.
3. DIGITAL ZAD CONTROL LAW

The duty cycle dk is calculated here taking into account the ZAD control law [17,18]. This nonlinear
feedback can be considered as a modified version of sliding mode control. Given a dynamical
system _x ¼ f xð Þ and a switching surface s(x) = 0, sliding-mode control consists on making the
trajectories evolve on s(x) = 0. This approach implies the operation of the converter at variable
switching frequencies, leading to undesirable chattering phenomena. In the ZAD-strategy, s(x) = 0 is
fulfilled only in average over each period, that is ET(s(x)) = 0 with

ET s xð Þð Þ ¼ 1
T
∫

kþ1ð ÞT
kT s x tð Þð Þdt; (4)

making it possible to operate at a fixed switching frequency.
Considering the surface s xð Þ ¼ x2 � x2ref

� �þ ksx
:
2 with ks as the time constant associated to its first

order dynamics, the calculation of (4) leads to the treatment of a transcendental equation in each
switching period. Because it is usually time-consuming to solve such expression in a digital
implementation, a piecewise-linear approximation of the error surface is adopted [18,19]. For the
generalized modulation signal of Figure 1(b), the alternative function is given by

ŝ xð Þ ¼
s0 þ t � kTð Þ_s1 if kT≤t < tON

s0 þ tON � kTð Þ_s1 þ t � tONð Þ_s2 if tON≤t < tOFF

s0 þ tON � kTð Þ_s1 þ tOFF � tONð Þ_s2 þ t � tOFFð Þ_s1 if tOFF≤t < k þ 1ð ÞT

8><
>:

where s0 = s(xk), _s1 ¼ _s1(xk) is the derivative of s(x) calculated at t = kT with u= 0,

_s 1 ¼ 1� ksγð Þ x1;k � γx2;k
� �� ksx2;k;

and _s2 ¼ _s2(xk) is the same derivative evaluated at t = kT but considering u= 1,

_s 2 ¼ 1� ksγð Þ x1;k � γx2;k
� �� ks x2;k � 1

� � ¼ _s1 þ ks:

Thus, solving (4), it results the algebraic equation

s0T þ 1
2
_s1T

2 þ 1
2

1þ αð ÞksdkT2 � 1
2
ksα dkTð Þ2 ¼ 0; (5)
1For simplicity, Tn is rewritten as T.
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which makes it possible to obtain explicit expressions of duty cycle dk as a function of the state values
at the beginning of each period. Table II summarizes them according to the different PWM schemes.
The respective deductions can be found in the APPENDIX.
4. NUMERICAL ANALYSIS OF THE CLOSED-LOOP SYSTEM

Different aspects to take into account in the implementation of the ZAD-strategy for controlling a buck
converter are described here. They derive from the numerical analysis of stability, regulation, and
nonlinear dynamics exhibited by the system when the control gain, the voltage reference, and the PWM
scheme are varied. Most results are obtained by using the continuation toolbox MATCONT (Belgium)
[28]. Table III resumes the nominal values of the experimental prototype used as a reference, the
corresponding normalized quantities and the desired specifications.

4.1. Stability and regulation

To make the system operate according to specifications, it is essential to choose an appropriate value
for the ZAD control gain. In general, the steady-state error (ess) has a tendency to decrease as ks is
diminished [19]. However, the gain cannot be reduced as much as desired because of stability and
transients issues. As it will be shown here, the admissible ks values are conditioned not only by the
rest of the parameters but also by the adopted PWM scheme.

A family of curves illustrating the stability limits of the converter according to the (α,ks)
combination and considering different x2ref values are shown in Figure 2. In all cases, the system is
stable for ks values above the curve. Crossing the curve, the controlled system becomes unstable as
one eigenvalue of its Jacobian leaves the unit circle through �1.

Contrary to expectations, the ks limits (named in the following as ksmin) could be considered
practically independent from parameter α only for reference levels belonging to a very small
neighborhood around x2ref= 6/12 = 0.5. Figure 3(a) shows the obtained steady-state output voltage
for some fixed ks values. Although ess becomes greater as the gain moves from ksmin, it never
exceeds the specified value. As ksmin is relatively small, the regulation of the converter is naturally
satisfactory. Unfortunately, the transient response of the system presents the opposite behavior
because it becomes worse as ks is closer to ksmin [Figure 3(b)–(c)].
Table II. Control law expressions according to the different modulations.

State condition α= 0 α≠ 0

0≤� 2s0þ_s1T
ksT

≤1 dk ¼ �2s0þ_s1T
ksT

dk ¼ 1þα
2α �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksT 1þαð Þ2þ4α 2s0þ_s1Tð Þ

p
2α

ffiffiffiffiffi
ksT

p

�2s0þ_s1T
ksT

< 0 dk= 0 dk= 0

�2s0þ_s1T
ksT

> 1 dk= 1 dk= 1

Table III. Characteristics of the system under study.

Parameter Value Normalized parameter Value

Inductance 238μHy γ 0.7116
Capacitance 18.8μF T 0.2990
Nominal resistance 5Ohm x2ref 0.1 to 0.9
Input voltage 12V
Output voltagea 1.2 to 10.8V Specifications
Switching frequency 50KHz Voltage steady-state error < 2%
Clock frequencyb 75MHz Transient response << 1 ms

aThe range defined as possible output dc levels derives from practical duty cycle limits.
bAs a reference, it is considered the clock frequency of the processor Texas Instruments DSP TMS320F2812.
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Figure 2. Stability curves of the ZAD-controlled buck converter: (a) 0.1≤ x2ref≤ 0.5; (b) 0.5≤ x2ref≤ 0.9.
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Figure 3. Response of the converter as a function of α for x2ref= 0.5 and different ks values. (a) Output
voltage and steady-state error; (b) and (c) Evolution of dk implementing the ZAD control with a TE

PWM (α= 1) and ks= 3 and 1.55, respectively.
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Now, as x2ref moves away from 0.5, the performance of the ZAD-controlled buck converter
becomes sensitive to modulation signal. For clarity, it will be differentiated into five cases:

(A) x2ref< 0.5 and α ∈ [�1, 0)
(B) x2ref< 0.5 and α ∈ (0, + 1]
(C) x2ref> 0.5 and α ∈ [�1, 0)
(D) x2ref> 0.5 and α ∈ (0, + 1]
(E) 0.1≤ x2ref≤ 0.9 and α around zero.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:470–488
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The respective behaviors are discussed in the following cases.

4.1.1. Cases A and D. These two cases have in common that ksmin depends strongly on the pair (α,x2ref),
growing even excessively as x2ref approaches to 0.1 or 0.9 [Figure 2(a) with α ∈ [�1, 0) and Figure 2(b)
with α ∈ (0, + 1], respectively]. This situation affects the regulation of the system because the admissible
ks gains can result significatively greater than zero. Thus, for example, the output voltage of the
converter obtained by chosen TE PWM and LE PWM schemes and considering a ks gain, which
assures stability for all references, is shown in Figure 4(a). In all cases, the ess is superior to the
maximum expected, achieving illogical levels such as 50%, 100%, and even more [Figure 4(b)].

The response could be improved only if each x2ref is analyzed separately. Figure 5 illustrates how ess
can be reduced for x2ref= 5/12 and 7/12, fixing gains near their own stability limits. However, because
the admissible ks values are still greater, the regulation is not so good as desired.

4.1.2. Cases B and C. For both cases, ksmin values present significatively minor variations with respect
to α and x2ref; moreover, their magnitudes are relatively small. As it can be observed in the blow-up of
Figure 2(a) and (b), ksmin curves are always below the stability limit corresponding to x2ref= 0.5.

Figure 6 shows the response of the converter obtained by considering TE PWM and LE PWM
schemes and a ks gain, which assures stability for all references. In contrast to the scenario of
Figure 4, the ess keeps below the maximum expected for most reference levels [Figure 6(b)].
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Figure 5. Output voltage regulation as a function of α for different ks values. (a) x2ref = 5/12; (b) x2ref= 7/12.
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Figure 4. Response of the system as a function of x2ref for ks= 100. Modulation signals correspond to a LE
PWM for x2ref< 0.5 and a TE PWM for x2ref> 0.5. (a) Output voltage; (b) the respective steady-state error.
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Figure 6. Response of the system as a function of x2ref for ks= 3. Modulation signals correspond to a TE
PWM for x2ref< 0.5 and a LE PWM for x2ref> 0.5. (a) Output voltage; (b) the respective steady-state error.
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Similarly to the previous cases, differences between the actual output voltage and the desired level
can be ameliorated even more if the converter will operate at a fixed x2ref. As it is illustrated in Figure 7
for x2ref= 5/12 and 7/12, regulation can be improved by using different α values and diminishing the
control gain.

Conditions established in cases B and C make it possible to find combinations of ks gains plus PWM
schemes leading to a closed-loop response according to specifications for a determined set of reference
levels: x2ref< 0.5 for case B and x2ref> 0.5 for case C. Unfortunately, there not exist a pair (α, ks),
which results appropriate for all x2ref range. This is a limitation for those applications where variable
output voltages are required.

4.1.3. Case E (Optimum region). Combining Figure 2(a) and (b), it can be noticed that there exist a
zone around α= 0 in which (α, ks) pairs could result in a satisfactory implementation of the ZAD-
strategy for all possible reference values. As depicted in Figure 8, the so-called optimum region can
be defined as that delimited by the stability curves corresponding to the maximum and minimum
x2ref levels (x2ref= 0.1 and 0.9). Except for a very small part of them (see blow-up), the rest of the
curves is located below the defined region. Indeed, that zone of intersections will be hardly used in
practical implementations because it is not convenient to choose control gains so close to the limits.

Figure 9(a) shows the steady-state response of the converter obtained by considering modulation
schemes around the DE PWM (α = 0) and a ks gain, which assures regulation according to
specifications for all reference levels. As it can be observed in Figure 9(b) and (c) for x2ref= 5/12
and 7/12, respectively, transients are also in the order of the desired value. To obtain faster
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Figure 7. Output voltage regulation as a function of α and different ks values. (a) x2ref = 5/12; (b) x2ref= 7/12.
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responses, it is necessary to increase ks, deteriorating the ess. It will be always a trade-off between
regulation and transient response.

In some sense, Case E explains why the DE PWM is naturally associated to the ZAD-strategy in
almost all the related contributions previously presented in the literature [18–21]. Moreover, results
are in consonance with those given in [22], where it was formalized that, for arbitrary T and γ
values, the stability limit of a ZAD-controlled buck converter with a DE PWM practically keeps
unchanged as the reference level is varied.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2015; 43:470–488
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4.2. Nonlinear dynamics

All the stability curves previously presented (Figure 2) actually correspond to the birth of period-doubling
(PD) bifurcations. Analyzing the normal form coefficient σ also provided by the continuation
toolbox MATCONT, it is found that the PD bifurcations can be subcritical (σ< 0) or supercritical
(σ> 0) depending on parameter values. Moreover, it occurs that σ=0 meaning that the PD bifurcation
can also be degenerated [29]. In the first case, an unstable period-two orbit appears when the
equilibrium point is stable. This new attractor acts reducing the domain of attraction of the desired
operation point. In the second one, a stable period-two orbit appears when the equilibrium point is
unstable. This orbit manifests as a over-modulation of the states of frequency fs /2 but only if the
parameter combination crosses the stability limit. Dynamic around the degeneracy is more complicated
because there could exist multiple period-two orbits. In all cases, orbits are destroyed by a corner
collision (CC) bifurcation, which occurs when the duty cycle of the switch reaches its bounds (ideally,
dk=0 and dk=1).

Focusing on the optimum operation region (Figure 8), the ZAD-controlled buck converter could
manifest these nonlinear behaviors if the reference level is equal to its maximum or minimum value,
and the pair (α,ks) is near the corresponding stability limit. As it is indicated in Figure 10, PD
bifurcations are subcritical (PD�) for the segment of the curve above the degeneracy (located at
ksmin = 5.736739 and α =� 0.086138). The rest of the curve corresponds to supercritical PD
bifurcations (PD+). Figure 11 illustrates how these two kinds of nonlinear phenomena develop as
the control gain is decreased for arbitrary α values. The adopted reference levels and PWM schemes
are the following: x2ref= 0.1, α =� 0.095 for Figure 11(a) and x2ref = 0.9, α = 0.095 for Figure 11(b).
In both examples, bifurcation branches grow abruptly originating a fast saturation (corner collision)
of the duty cycle. This is a common characteristic of ZAD-controlled converters, as it is pointed out
in [19,20,22].

In the neighborhood of the degeneracy, PD� and CC bifurcations interact with a saddle-node
(SN) bifurcation curve. The SN curve is originated by the two-codimension point σ= 0, and it
indicates the birth of a pair of period-two orbits [29]. In this case, the inner one is unstable,
while the outer one is stable. The point σ= 0 plus the intersections of the CC curve with the
PD� and SN ones form a triangular zone. A very detailed description of the complete scenario
developed in its locality is given in [21]. Basically, it occurs that, for parameter values inside the
triangle, the stable equilibrium point coexists with a stable period-two oscillation. This phenomenon
of existence of feasible orbits (as it is called in [21]) is illustrated in Figure 12(a) for
α=� 0.08614.

From a practical viewpoint, this complex zone is extremely small. Qualitative changes take place
when parameters are perturbed in their forth and even sixth decimal place. So, it results almost
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Figure 10. Description of the nonlinear phenomena associated with the optimum region.
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Figure 11. Examples of PD bifurcations for different parameter values: (a) Subcritical PD bifurcation for
x2ref = 0.1 and α=� 0.095; and (b) Supercritical PD bifurcation for x2ref= 0.9 and α = 0.095.
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Figure 12. Multiple orbits near the degeneracy: (a) Existence of a feasible period-two oscillation for
α=� 0.08614; (b) Existence of a virtual period-two oscillation for α =� 0.08615.
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impossible to observe multiple attractors in a real implementation. Figure 12(b) shows how
diminishing the previous α value in 1 × 10� 5 (α =� 0.08615), the SN bifurcation occurs now after
the saturation (dk= 0), indicating that the system is already outside the triangle. According to [21],
the stable period-two oscillation becomes a virtual orbit.

Finally, it was analytically formalized in [22] that PD bifurcations are always supercritical when the
ZAD-strategy is implemented by using a DE PWM. As it is clearly shown here, the scenario can
become more complex with only changing the PWM scheme slightly. The expected dynamic is the
same as that described in [21] for the transcendental version of the control law.
5. ROBUSTNESS

The optimum region defined previously for the appropriate operation of the ZAD-controlled buck
converter can suffer modifications because of variations of its intrinsic parameters as well as
unmodeled electrical characteristics of the switch and diode used in the practice. The possible
effects of both aspects are discussed below.
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5.1. Intrinsic parameters

The stability limits given by x2ref= 0.1 and x2ref= 0.9 change if parameters T or γ deviate from their
nominal values. As it is shown in Figure 13, limit curves move to greater ks magnitudes if γ is
decreased [Figure 13(a)]. This can provoke that fixed ks and α pair locates near the stability limit
(deteriorating transient responses) or even crosses it for a new γ value. Thus, for example,
considering that the buck converter operates with the same parameter values established in Figure 9
but the load resistance is increased to 10Ω (γ= 0.3558), the steady-state error keeps under
specifications; however, transients become worse (Figure 14).

The other phenomenon observable in Figure 13 is the contraction of the region: the smaller the
parameters, the narrower the region. The effect of this variation is related to the practical
implementation of the PWM signal. As it is known, a digital PWM has always associated a
determined resolution, which depends on the relation between the switching frequency and the
internal clock frequency of the processor unit. In this case (Table III), each period T= 20μs is
formed by fclock/fs = 1500 cycles of the internal clock so that the respective resolution is PWMR =T/
1500 = 0.0133μs. Now, if it is decided to operate the buck converter by using a DE PWM scheme,
switch S should turn on exactly at (1� dk)T/2 after the beginning of the period. However, instant
tON will actually occur when the processor counts for a number of cycles defined by the integer part
of (1� dk)/2 × 1500. The maximum error between the ideal tON and the implemented one is
precisely given by PWMR.
(a) (b)

500 100
0.4117

0.4167

0.4217

k

dk

500 1000.5783

0.5833

0.5883

k

dk

Figure 14. Evolution of dk implementing the ZAD control with ks= 5, R= 10Ω, and α= 0. (a) x2ref= 5/12;
(b) x2ref = 7/12.
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Figure 13. Changes of the optimum region as parameters deviate from their nominal quantities (a) Limit
curves for different γ values; (b) Limit curves for different T values.
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In some sense, the real modulation signal sent to switch S can actually be interpreted as a new PWM
defined by α values different from zero. The deviation with respect to the original DE PWM has a
resolution of Δα=PWMR/[(1� dmax)T/2] = 0.0133μs/1μs= 0.0133. So, this means that the gain of
the ZAD control should be chosen to guaranty stability not only for α = 0 (DE PWM) but also for
the α interval necessary to deal with the quantization variations given by the practical
implementation of the DE PWM.

The optimum region corresponding to nominal T and γ values (Figure 9) results sufficiently wide to
operate without inconvenience with quantization errors in the order of several times the minimal
interval α ∈ [�0.0133, + 0.0133]. However, as T and γ are reduced, operation conditions can become
critical for ks gains commonly used. Thus, for example, it should be at least ks> 4.6 for R= 10Ω
(γ = 0.3558) and ks> 10.5 for R= 15Ω (γ= 0.2372) to assure stability in the range
α ∈ [�0.0133, + 0.0133]. As it has been mentioned, the ks increase degrades necessarily the
regulation. Furthermore, because PWMR becomes worse as T is diminished, Δα could be even
greater. In fact, for T= 0.1495 (fs= 100KHz), the minimal α interval increases twice.

It is worth mentioning that degeneracies mentioned in the previous section move to greater ks values
if parameters γ or T are decreased. This implies that the nonlinear scenario described earlier is
developed for (α,ks) combinations, which are rarely used. Thus, for example, considering the γ
values of Figure 13(a), point σ= 0 occurs for ks> 20 so that PD bifurcations are supercritical along
all the curves depicted there.
5.2. Unmodeled dynamics of the switches

Nonlinear discrete-time models used to analyze the dynamics of dc-dc converters are derived by
considering that switch S and diode D are ideal [7–9]. In practical implementations, these components
introduce unmodeled dynamics into the system that could cause modifications in the expected
performance. Most of the classical control laws are able to compensate differences. The digital version
of the ZAD strategy, being essentially a static nonlinear law, can present some limitations to deal with
perturbations.

To analyze the effects of physical switch and diode, the circuit was simulated by using the
SimPower toolbox of Matlab. The electrical characteristics of the components were fixed according
to the experimental prototype used as a reference. The specified values are the on resistance
(RonS= 0.038Ω, RonD= 0.032Ω), the output capacitance (CoutS = 430pF, CoutD = 310pF), and the diode
forward voltage (VSD= 0.5 V).

In general, it is observed that the optimum region occurs for quite greater ks magnitudes and
regulation percentages become relatively worse. However, these variations do not produce
substantial changes in the responses for control gains commonly chosen. Temporal evolutions of the
system obtained by considering ideal and real components are compared in Figure 15. In the
simulations, α= 0 (DE PWM), ks = 5, and the voltage reference takes the values x2ref= 5/12
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Figure 15. Evolution of dk for ks= 5, α= 0 and considering real (solid line) and ideal (dotted line) components.
(a) x2ref= 5/12 (vo(0) = 4.70247; iL(0) = 0.93091); (b) x2ref= 7/12 (vo(0) = 6.6273; iL(0) = 1.3264).
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[Figure 15(a)] and x2ref= 7/12 [Figure 15(b)]. In both cases, the unmodeled characteristics of the switch
and the diode cause a tolerable degradation of the regulation and transients of the closed-loop system.
6. EXPERIMENTAL VALIDATION OF THE OPTIMUM REGION

The ZAD-strategy was tested in the standard laboratory prototype shown in Figure 16, which consists
of a buck converter circuit, a kit ezdspTMF2812 of Spectrum Digital and an interface stage. The
nominal values of input voltage, inductance, capacitor, and load resistance are those given in
Table III; switch S and diode D are implemented by means of the integrated circuit IRF7901D1
containing a dual MOSFET plus a Schottky diode. Driver TPS2834 builds the necessary signals to
command the transistors. Voltage and current signals are conditioned and sensed by using an
operational amplifier LMC6484 and an instrumentation amplifier INA110.

To simplify the operations, the control law was programmed by using an IQMath library, which
emulates floating point arithmetic on a fixed point processor unit. The format Q25 was chosen,
which implies a precision of 30 × 10� 9. The time involved in the calculations was always less than
2μs (corresponding to the specified minimum duty cycle). The compare unit registers of the DSP
Event Manager were set appropriately to reload the calculated dk immediately, avoiding undesired
delays in the feedback loop.

Figures 17 and 18 present the response of the experimental system when the voltage reference vref is
varied from a specified value to 5 and 7V, respectively. To validate the performance inside the
optimum region, the DE PWM modulation and the control gain usually considered in the numerical
simulations (ks = 5) were chosen. The oscilloscope waveforms in Figure 17(a) and 18(a) correspond
to the changes in the dc level of the output voltage (channel A) and to the input voltage (channel
B). The first 100 samples of the output signal, stored in the DSP memory after the reference
variation, are shown in Figure 17(b) and 18(b).

As it can be observed, there exists a reasonable agreement between measured and simulated curves.
In all cases, simulations were obtained by considering the electrical characteristics of the switch and the
diode (the values are detailed in Section 5.B). Steady-state error and transients exceed the specificated
values lightly. Nevertheless, from a qualitative point of view, responses pursue the predicted results
given in Section 4.
Figure 16. Standard laboratory prototype consisting of a buck converter, a kit ezdspTMF2812, and an
interface stage.
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Figure 18. Experimental evolution of the ZAD control considering the DE PWM modulation, ks= 5 and a
desired output level of vref= 7V. (a) Oscilloscope output voltage waveforms; (b) Comparison between the

experimental (solid line) and numerical(dotted line) results.
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Finally, it was also verified that steady-state error can be improved by diminishing the control gain
value. Thus, for example, Figure 19 depicts how the error corresponding to vref= 7V is diminished
considerably by fixing ks = 3.
7. CONCLUSIONS

A generalized discrete-time model was used to analyze the performance of a ZAD-controlled buck
converter under the variation of its intrinsic parameters as well as the pulse-width modulation signal.
A detailed multiparameter study shows that the selected PWM can restrict the success of the
nonlinear control law.

For implementations where the reference level is fixed, the best option is to choose traditional TE
PWM or LE PWM. However, neither of both can be adopted deliberately. The first one is only
appropriate for voltage references below middle range while the second one for references above
middle range. For systems where variable reference levels are expected, the ZAD-strategy has to be
necessarily associated to those PWM schemes determined by the optimum operation region. Among
the possible signals, the DE PWM is a convenient alternative for these kinds of applications. Results
also justify why the ZAD control is always used with this modulation.

Besides, the ZAD-strategy is a modified version of sliding mode control; it does not preserve all the
presuppose characteristics. Numerical simulations show that the closed-loop system losses robustness
under parameter perturbations or unmodeled dynamics of the switching components. In particular, the
optimum region reduces as time constant γ or the switching period T is decreased. For a fixed control
gain, the system can become unstable if the resulting α interval is comparable to the quantization noise
of the digital PWM.

The nonlinear scenario inside the optimum region was also studied. It is displayed that dynamics can
become complex due to the interaction of degenerate PD and CC bifurcations. However, the related
phenomena are essentially impossible to detect in the applications because they imply parameter
variations in the order of the forth or even sixth decimal place.

Experimental results were included to corroborate the expected performance of the system for
different output voltages when the DE PWM is implemented. A reasonable agreement between
measured curves and numerical findings was observed.
APPENDIX

A. The DE PWM case

As it can be inferred from (5), an operation of the buck converter with a DE PWM leads to a simplified
ZAD control law. As α = 0, (5) reduces to a first order polynomial on dk, and the unique solution is
given by the linear combination of the states

dk ¼ � 2s0 þ _s1T

ksT
:

Finally, because dk has to belong to the interval [0,1], it will be set

dk ¼ 0 if � 2s0 þ _s1T

ksT
< 0;

dk ¼ 1 if � 2s0 þ _s1T

ksT
> 1:
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B. The general case

There are two possible solutions of (5) for α≠ 0. One of them always leads to inadmissible duty cycle
values. The other one is defined as

dk ¼ 1þ α
2α

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksT 1þ αð Þ2 þ 4α 2s0 þ _s1Tð Þ

q
2α

ffiffiffiffiffiffiffi
ksT

p : (6)

The applicability of this control law is restricted to the verification of condition

ksT 1þ αð Þ2 þ 4α 2s0 þ _s1Tð Þ > 0: (7)

Two situations can be discriminated according to the α values.

(i) Interval 0< α≤ 1. In this case, restriction (7) is equivalent to

� 2s0 þ _s1T

ksT
≤

1þ αð Þ2
4α

: (8)

Now, as the dk values has to belong to [0,1], it is also necessary to verify that

�α≤1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αð Þ2 þ 4α

2s0 þ _s1T

ksT

r
≤α:

Making some routine operations, this inequality reduces to

0≤� 2s0 þ _s1T

ksT
≤1; (9)

which is included into (8).

(ii) Interval � 1≤ α< 0. Expression (7) can be rewritten as

1þ αð Þ2
4α

≤� 2s0 þ _s1T

ksT
:

Then, to obtain dk values inside the interval [0,1], it is also necessary to verify that

α≤1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αð Þ2 þ 4α

2s0 þ _s1T

ksT

r
≤� α;

which results again in (9).
To summarize, the ZAD control law (7) will be valid for any α≠ 0 whenever condition (9) is verified. If

not, the obtained dkwill result in a real number belonging to (�∞, 0)∪ (1, +∞) or in a complex number. In
the second case, the real part of dk, given by (1+α)/2α, will be again greater than 1 for 0< α≤ 1 or less than
0 for � 1≤α< 0. Therefore, it is possible to unify conditions and directly assume that

dk ¼ 0 if � 2s0 þ _s1T

ksT
< 0;

dk ¼ 1 if � 2s0 þ _s1T

ksT
> 1:
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