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ABSTRACT. Let K ⊂Rn be a convex body with barycenter at the origin. We show there is

a simplex S ⊂ K having also barycenter at the origin such that
(

vol(S)
vol(K )

)1/n ≥ cp
n

, where

c > 0 is an absolute constant. This is achieved using stochastic geometric techniques.
Precisely, if K is in isotropic position, we present a method to find centered simplices
verifying the above bound that works with extremely high probability.

By duality, given a convex body K ⊂ Rn we show there is a simplex S enclosing K
with the same barycenter such that(

vol(S)

vol(K )

)1/n
≤ d

p
n,

for some absolute constant d > 0. Up to the constant, the estimate cannot be lessened.

1. INTRODUCTION

Approximating a geometric body by a much simpler one results a very common tech-
nique in convex geometry and convex analysis, with many applications in discrete ge-
ometry and discrete/continuous optimization. For example, the use of the John/Löwner
ellipsoid (maximum/minimum volume ellipsoid respectively), is one of the most stan-
dard tools in these areas [Mat02, Gru07, GPT01, Las92, Las98, Pel83]. Polytopes, next
to ellipsoids, are the most elementary convex sets, chief among them is the simplex.
Extremal convex sets for volume ratios of the Euclidean ball are exactly the simplices
[Bal91, Bar98].

Throughout this article, simplices are n-simplices in Rn exclusively, i.e. those poly-
topes formed by the convex hull of (n+1) affine independent points in Rn (the vertices).
A convex body in Rn is a compact convex set with non-empty interior. For a bounded
subset A ⊂Rn , we denote by vol(A) the volume (or Lebesgue measure) of A.

Given a convex body K ⊂Rn , we define

S(K ) := min

(
vol(S)

vol(K )

)1/n

,

where the minimum is taken over all simplices S in Rn containing K . An old problem in
convex geometry is the following:

Problem 1.1. How large can S(K ) be?

For the Euclidean plane, i.e. n = 2, this problem was completely solved by Gross
[Gro18] (and generalized in different ways by W. Kuperberg [Kup83]): every convex body
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K ⊂R2 can be inscribed in a triangle of area at most 2vol(K ). This ratio corresponds (ex-
clusively) to the case that K is a parallelogram. The measure of the tetrahedron (not
necessarily regular) of least volume circumscribed around a convex body K ⊂ R3 is un-
known. If K ⊂ R3 is a parallelepiped of volume one, then the minimal volume tetrahe-
dron containing it has volume 9/2. It is an open question whether this is the worst pos-
sible fit for the general case. To our knowledge, there are not even conjectured bounds
for greater dimensions (n ≥ 4).

Asymptotic results on this problem were given in the seventies by Chakerian [Cha73,
Corollary 5]. The same estimate was recently rediscovered in 2014 by Kanazawa [Kan14,
Theorem 1] using different arguments. In particular, both authors showed that

(1) S(K ) ≤ n
n−1

n ≈ n.

Note that when n = 2 this is just Gross’ bound.
It is possible to improve the previous bound applying a general inequality for volume

ratios due to Giannopoulos and Hartzoulaki [GH02]. As a consequence of their results
we have

(2) S(K ) ≤ c
p

n log(n),

where c > 0 is an absolute constant. Up to our knowledge, this was the best known
bound; see also the bound given in the recent work of Paouris and Pivovarov [PP17,
Corollary 5.4] on this problem.

One might be interested in requiring additional properties to the simplex. For exam-
ple, that it shares the same barycenter as the given convex body. This induces a strong
version of the aforementioned problem. Given a convex body K ⊂Rn , we define

S◦(K ) := min

(
vol(S)

vol(K )

)1/n

,

where the minimum is taken over all simplices S containing K and having the same
barycenter. Recall that the barycenter (or center of mass) of a convex body K is given by

(3) bar(K ) := 1

vol(K )

∫
K

xd x.

Problem 1.2. How large can S◦(K ) be?

Our main result is the following asymptotic estimate on this problem.

Theorem 1.3. Let K ⊂ Rn be a convex body. There is a simplex S enclosing K with the
same barycenter such that

(4)

(
vol(S)

vol(K )

)1/n

≤ d
p

n,

for some absolute constant d > 0.

In fact for a centrally symmetric convex body K we prove the following bound:

(5) S◦(K ) ≤ d
p

n

LK ◦
,

for some absolute constant d > 0. Here LK ◦ stands for the isotropic constant of the
polar body K ◦ (see definitions below). If K is an arbitrary body (not necessarily centrally
symmetric), we have

(6) S◦(K ) ≤ d
p

n

LD(K )◦
,
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where D(K ) stands for the difference body K − K . Note that Equation (5) is a direct
consequence of Equation (6) (if K is centrally symmetric then the difference body D(K )
is just 2 ·K ).

The estimate (4) above, up to the absolute constant d > 0, cannot be improved. In-
deed, we show in Example 2.7 that if K = B n

2 , the Euclidean unit ball, then the regular
simplex circumscribing it (see Figure 2) is a minimal volume simplex that contains K ;
and therefore

(7) S(K ) = S◦(K ) ≥ d̃
p

n,

for some positive constant d̃ > 0.
By duality, Problem 1.2 is related with finding simplices of large volume inside a con-

vex body with the same barycenter. The search of simplices of large volume contained
in a convex body has an extensive and interesting history in geometry. For instance,
the study of the maximum area of triangles in planar convex bodies was undertaken
by Blaschke [Bla17] in the early 20th century. Sas [Sas39] and Macbeath [Mac51] also
considered the problem of approximating a given convex body by inscribed polytopes.
Mckinney [McK74] studied certain properties of those simplices of maximum volume
inside a centrally symmetric convex body. The survey [HKL96] also deals with simplices
of large volume in cubes.

Given a K ⊂Rn be a convex body with barycenter at the origin, we focus on finding a
simplex S ⊂Rn of large volume having also barycenter at the origin. Our contribution is
the following.

Theorem 1.4. Let K ⊂ Rn be a convex body with barycenter at the origin. There is a
simplex S ⊂ K with barycenter at the origin such that

(8)

(
vol(S)

vol(K )

)1/n

≥ cp
n

,

where c > 0 is an absolute constant.

Recall that the Mahler product of a given convex set K ⊂Rn is defined as

(9) M(K ) := vol(K )vol(K ◦),

where K ◦ stands for the polar set of K , i.e.

(10) K ◦ = {x ∈Rn : 〈x, y〉 ≤ 1 for all y ∈ K }.

One of the reasons we restrict ourselves in searching for simplices having barycenter at
origin is because we know the exact value of their Mahler product (see Lemma 2.6).

Our approach to obtain Theorem 1.3 is based on a very simple idea. Loosely speak-
ing, it is not difficult to see that the problem can be reduced to the case in which K is
centrally symmetric (and therefore K ◦ has barycenter at the origin). Note that, by The-
orem 1.4, there is a simplex T ⊂ K ◦ of large volume having also barycenter at the origin.
By duality, we have that K is enclosed by the simplex T ◦ (with barycenter at the origin),
which we show that has small volume. To do this, we make use of its Mahler product
(since T is centered) and the reverse Santaló inequality (also known as the Bourgain-
Milman inequality, [AAGM15, Theorem 8.2.2]) for the body K .

Stochastic geometry studies randomly generated geometric objects. We use tech-
niques from this area to prove Theorem 1.4. Indeed, this theorem is a consequence of a
more general result of probabilistic nature (see Theorem 1.5 below).
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Before we go into more detail we recall some basic definitions and set some notation.
We denote the family of all simplices inRn with barycenter at the origin by S n

0 . We write
Sn−1 for the Euclidean sphere in Rn and denote by 〈·, ·〉 the standard scalar product in
Rn .

A convex body is said to be in isotropic position (or simply, is isotropic) if it has vol-
ume one and satisfies the following two conditions:

•
∫

K
x d x = 0 (barycenter at 0),

•
∫

K
〈x,θ〉2 d x = L2

K ∀θ ∈ Sn−1,

where LK is a constant independent of θ, which is called the isotropic constant of K .
It is not hard to see that for every convex body K in Rn with center of mass at the

origin, there exists A ∈GL(n) such that A(K ) is isotropic [AAGM15, Proposition 10.1.3].
Moreover, this isotropic image is unique up to orthogonal transformations; consequently,
the isotropic constant LK results an invariant of the linear class of K . In some sense, the
isotropic constant LK measures the spread of a convex body K .

If the convex body K is in isotropic position, the following theorem gives a proba-
bilistic method to find simplices inside K (having barycenter at the origin) with volume
large enough. We believe this result is interesting in its own right.

Theorem 1.5. There exists a function fn :Rn ×·· ·×Rn︸ ︷︷ ︸
n

→S n
0 such that for every isotropic

convex body K ⊂ Rn and X1, . . . , Xn independent random vectors uniformly distributed
on K , then with probability greater than 1− e−n we have that fn(X1, . . . , Xn) is a simplex
with barycenter at the origin contained in K such that

(11) vol( fn(X1, . . . , Xn)) ≥ cnLn
K

nn/2
,

where c > 0 is an absolute constant.

Note that the volume ratio is invariant under linear transformations i.e.,

(12)

(
vol(S)

vol(K )

)1/n

=
(

vol(A(S))

vol(A(K ))

)1/n

for every A ∈GL(n). Thus, we have the following result:
For every convex body K ⊂ Rn with barycenter at the origin there is a simplex S ⊂ K

having also barycenter at the origin such that

(13)

(
vol(S)

vol(K )

)1/n

≥ cLKp
n

,

where c > 0 is an absolute constant.
Observe that, since the isotropic constant LK of any convex body is bounded by be-

low by and absolute constant [AAGM15, Proposition 10.1.8.], then Theorem 1.4 follows
from the previous inequality. We emphasize that it is unknown whether the isotropic
constant is bounded by above by an absolute constant. The best known general upper

bound is LK ≤ cn
1
4 , which was given by Klartag [Kla06] and improves the earlier estimate

LK ≤ cn
1
4 logn due to Bourgain [Bou91].

Estimates (11) and (13) should also be contrasted with a classic result of Macbeath
[Mac51] (see also [PA11, Theorem 2.10.]), which asserts that any convex body K ⊂ Rn
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contains a convex polytope of d vertices, whose volume is at least as large as the maxi-
mal volume of a polytope of d vertices inscribed in a Euclidean ball (of the same volume
as K ). In particular, if d = n +1 it is not difficult to see that we can find a simplex S ⊂ K
such that

(14)

(
vol(S)

vol(K )

)1/n

≥ 1p
n

,

where c > 0 is an absolute constant. The same can be deduced using the well-known
Dvoretzky theorem. The inequalities given in (11), (13) and (14) resemble, at first glance,
the asymptotic growth given by Milman and Pajor in [MP89, Proposition 5.6.] (con-
nected with the n-dimensional generalization of the classical Sylvester problem, see
[BGVV14] and the references therein). On the other hand, Equations (11) and (13) can
also be linked with the bounds given when applying the Blaschke-Groemer inequality
[SW08, Theorem 8.6.3] (or the Busemann random simplex inequality, see [Gar95, The-
orem 9.2.6] or [SW08, Theorem 8.6.1]), which state that the expected volume of a ran-
domly generated simplex inside a given convex body K of fixed volume is minimized
when K is an ellipsoid. Anyway, either by the results of Milman and Pajor [MP89, Propo-
sition 5.6 ] or by the Blaschke-Groemer inequality [SW08, Theorem 8.6.3], for every con-
vex body K ⊂Rn one gets

(15) EXi∈K [vol(conv(X1, . . . , Xn+1))] ≥ cnvol(K )n

nn/2
,

where c > 0 is an absolute constant.
Our contribution, Theorem 1.5, consists in giving with extremely high probability,

simplices with the same barycenter (a key property for our purposes) whose volumes

satisfy the same lower bound: of order vol(K )n

nn/2 . The main idea to get this is to show
that we can find with extremely high probability randomly generated simplices whose
barycenters are close to the origin (Proposition 2.1) and with large volume (see Propo-
sition 2.4; this should also be compared with Equation (15) above). Then we make a
suitable rescale to make the centroids match, with the care to keep staying within the
original body. All this is inspired, in a sense, on some arguments presented on the re-
cent paper of Naszódi [Nas16], which solves a conjecture of Bárány, Katchalski and Pach
regarding quantitative Helly type results (see also the proof of [Bra17, Theorem 3.1.]).

The article is organized as follows. In Section 2 we give a proof of Theorem 1.5. Fi-
nally, in Section 2.1 we prove Theorem 1.3, and exhibit that the corresponding asymp-
totic estimate is sharp. We refer the reader to the books [AAGM15] and [BGVV14] for the
general theory of asymptotic geometric analysis and the theory of isotropic convex bod-
ies. In Section 3 we have included an alternative proof of Theorem 1.3 based on some
enlightening comments given by the anonymous referee.

2. A PROBABILISTIC APPROACH

The probabilistic method is a standard method for proving the existence of a spec-
ified kind of mathematical object. The philosophy is to show that if one randomly
chooses objects from a specified class, the probability that the result is of the prescribed
type is positive. In this section we use this method to give a proof Theorem 1.5. For this
we need two propositions that essentially state that, with very high probability, certain
random simplices have “good properties”.
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Before we state them, we remind some basic properties on simplices and convex
bodies. We denote by S(v0, . . . , vn) the convex hull of the points v0, . . . , vn ∈ Rn or, in
other words, the simplex with vertices v0, . . . , vn . It is easy to see that the barycen-
ter/centroid of a simplex S(v0, . . . , vn) is given by the geometric mean of the vertices,

(16) bar(S(v0, . . . , vn)) = 1

(n +1)

n∑
i=0

vi .

Suppose K ⊂ Rn is an isotropic convex body and we randomly choose X1, . . . , Xn in
K . The following statement asserts that typically the barycenter of the random simplex
S(0, X1, . . . , Xn) has “small” norm.

Proposition 2.1. There is an absolute constant c1 > 0 such that for every isotropic convex
body K ⊂Rn and {Xi }n

i=1 independent random vectors uniformly distributed in K then

(17) P {‖bar(T )‖ ≤ c1LK } > 1− 1

2
e−n ,

where T is the random simplex S(0, X1, . . . , Xn).

Our arguments to prove this proposition are based on the proofs of [AG08, Theorem
3.1.] and [KK09, Theorem 1.1.]. We need to state two lemmas. For elementary back-
ground on Orlicz spaces we refer the reader to [AAGM15, Section 3.6.2.].

The first fact we need, Lemma 2.2 below, asserts a “good behavior” of the marginals
〈·,θ〉, for any direction θ ∈ Sn−1.

Lemma 2.2. There is an absolute constant C > 0 such that for every isotropic convex body
K ⊂Rn and every θ ∈ Sn−1 we have

(18) ‖〈·,θ〉‖Lψ1
≤C LK .

The previous statement is known in the area and is a direct consequence of [AAGM15,
Lemma 3.5.5.] and [AAGM15, Theorem 3.5.11].

We also need a classical inequality due to Bernstein about sums of independent ran-
dom variables (see, for example [AAGM15, Theorem 3.5.16]).

Theorem 2.3 (Bernstein inequality). Let {Yi }n
i=1 be a sequence of random variables with

mean 0 on some probability space. Assume that Yi belong to Lψ1 and that ‖Yi‖Lψ1
≤ M

for all i = 1, . . . ,n. Let σ2 = 1
n

∑n
i=1 ‖Yi‖2

Lψ1
. Then, for all t > 0,

(19) P

{∣∣∣∣∣ n∑
i=1

Yi

∣∣∣∣∣> tn

}
≤ e−D n min{ t2

σ2 , t
M },

for some absolute constant D > 0.

We are now ready to give a proof of Proposition 2.1.

Proof of Proposition 2.1. Let {Xi }n
i=1 be independent random vectors uniformly distributed

on K and let θ be fixed direction in Sn−1.
By combining Lemma 2.2 and Theorem 2.3 for the random variables Y j := 〈X j ,θ〉 we

have, for all t >C LK ,

P

{∣∣∣∣∣〈 n∑
i=1

Xi ,θ〉
∣∣∣∣∣> tn

}
≤ e

−n t D
C LK .
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Let N be a 1
2 -net on the sphere of cardinality less than or equal to 5n (see e.g.,

[AAGM15, Lemma 5.2.5.]). Then

P

{∣∣∣∣∣〈 n∑
i=1

Xi ,θ〉
∣∣∣∣∣> tn for some θ ∈N

}
≤ e

−n( t D
C LK

−log(5))
,

and hence

P

{∣∣∣∣∣〈 n∑
i=1

Xi ,θ〉
∣∣∣∣∣≤ tn for every θ ∈N

}
≥ 1−e

−n( t D
C LK

−log(5))
.

Every vector ϑ ∈ Sn−1 can be written in the form ϑ = ∑
j=1δ jθ j , with θ j ∈ N and

0 ≤ δ j ≤ 21− j (see for example the proof of [AAGM15, Proposition 5.2.8.]).
Observe that⋂

θ∈N

{∣∣∣∣∣〈 n∑
i=1

Xi ,θ〉
∣∣∣∣∣≤ tn

}
⊂

{∥∥∥∥∥ n∑
i=1

Xi

∥∥∥∥∥≤ 2tn

}
=

{
max
ϑ∈Sn−1

∣∣∣∣∣〈 n∑
i=1

Xi ,ϑ〉
∣∣∣∣∣≤ 2tn

}
.

Indeed, let ϑ be an arbitrary unit vector and suppose that |〈∑n
i=1 Xi ,θ〉| ≤ tn for every

θ ∈N , then ∣∣∣∣∣〈 n∑
i=1

Xi ,ϑ〉
∣∣∣∣∣=

∣∣∣∣∣〈 n∑
i=1

vi ,
∞∑

j=1
δ jθ j 〉

∣∣∣∣∣≤ ∞∑
j=1

δ j

∣∣∣∣∣〈 n∑
i=1

Xi ,θ j 〉
∣∣∣∣∣≤ 2tn.

Thus, for every t >C LK we have

P

{∥∥∥∥∥ n∑
i=1

Xi

∥∥∥∥∥≤ 2tn

}
≥ 1−e

−n( t D
C LK

−log(5))
.

The result now follows by setting t := c1(n+1)LK
2n , for c1 > 0 sufficiently large. �

The second proposition we need asserts that the simplex S(0, X1, . . . , Xn) typically has
“large volume”.

Proposition 2.4. There is an absolute constant c2 > 0 such that for every isotropic convex
body K ⊂Rn and {Xi }n

i=1 independent random vectors uniformly distributed in K then

(20) P

{
vol (S(0, X1 . . . , Xn)) ≥ cn

2 Ln
K

n
n
2

}
> 1− 1

2
e−n .

A proof of it can be found essentially in the work of Pivovarov [Piv10, Proposition 1].
We include the details for completeness.

Lemma 2.5. [Piv10, Lemma 2] Let K ⊂ Rn an isotropic convex body and X be a random
vector uniformly distributed on K . Let E ⊂ Rn be a k-dimensional subspace and PE the
orthogonal projection onto E. Then the random variable

Y := |PE (X )|
LK

p
k

satisfies

E |Y |− 1
2 ≤C ′,

where C ′ > 0 is an absolute constant.
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Proof of Proposition 2.4. Let A :Rn →Rn be the linear transformation mapping the canon-
ical basis {ei }n

i=1 to {Xi }n
i=1. We have

(21) vol(S(0, X1, . . . , Xn)) = |det(A)|
n!

.

Set Vk := span{X1, . . . , Xk } and Yk = |PVK
⊥ Xk |

LK
p

n−k+1
. Note that by Lemma 2.5 if X1, . . . , Xk−1

are fixed we have E[|Yk |−
1
2 ] ≤C ′.

Using the fact that

(22) |det(A)| = ‖X1‖‖PV1
⊥‖ . . .‖PVN−1

⊥‖
and applying Fubbini theorem iteratively we obtain

(23) E[
n∏
i

Y
− 1

2
k ] ≤ (C ′)n .

Let α> 0 be a constant to be determined. Then by Markov inequality and Equation (23)
we have

P(|det(A)| <αnLn
K

p
n!) =P(

n∏
i

Yk <αn)

=P(
n∏
i

Y
− n

2
k >α− n

2 )

≤ E[
n∏
i

Y
− 1

2
k ]α

n
2 .

Setting α= (eC ′)−2 we obtain

P(vol(S(0, X1, . . . , Xn)) < αnLn
Kp

n!
) ≤ 1

2
e−n .

The result follows by applying Stirling formula. �

Based on the arguments given in the recent paper of Naszódi [Nas16] and with Propo-
sitions 2.1 and 2.4 at hand, we can now give a proof of Theorem 1.5.

Proof of Theorem 1.5. Let K ⊂ Rn be an isotropic convex body and X1, . . . , Xn be inde-
pendent random vectors uniformly distributed on K . Denote by T the simplex S(0, X1, . . . , Xn)
and by u its barycenter; i.e., u = 1

n+1

∑n
i=1 Xi . By Proposition 2.1 there is an absolute con-

stant c1 > 0 such that

(24) P {‖u‖ ≤ c1LK } > 1− 1

2
e−n .

On the other hand, by Proposition 2.4, we know that there is an absolute constant
c2 > 0 such that

(25) P

{
vol(T ) ≥ cn

2 Ln
K

n
n
2

}
> 1− 1

2
e−n .

By a well-known result of Kannan, Lovász and Simonovits [KLS95, Theorem 4.1.] we
have that

(26)

√
n +2

n
LK B n

2 ⊂ K
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K

bar(T )

w

T

S =ϕ(T )

0

FIGURE 1. Construction involved in the proof of Theorem 1.5.

(note that for the authors the definition of an isotropic convex body is different, that is
why the constant LK in the theorem is missing). Therefore, the vector w :=− 1

c1
u belongs

to K .
It is easy to check that if we apply the homothetic transformation with center w and

ratio

λ= ‖w‖
‖w −u‖ = ‖w‖

‖w‖+‖u‖ = 1

1+ c1
> 0

to the simplex T , we obtain another simplex S with barycenter at the origin (see the
Figure 1) such that

(27) vol(S) ≥λnvol(T ) ≥λn · cn
2 Ln

K

n
n
2

.

Denote by X̄ := 1
n+1

∑n
i=1 Xi . Therefore, the function fn :Rn ×·· ·×Rn︸ ︷︷ ︸

n

→S n
0 we are look-

ing for can be defined by

fn(X1, . . . , Xn) :=ϕ(S(0, X1, . . . , Xn))

= 1

1+ c1
S

(−X̄ , X1 − X̄ , . . . , Xn − X̄
)

.

This concludes the proof. �

2.1. Deduction of Theorem 1.3 and its correct asymptotic behavior. In this section we
show how to deduce our main result, Theorem 1.3 from Theorem 1.4. We also show that
the volume ratio, up to the absolute constants, is sharp.

We start with a well known lemma.
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Lemma 2.6. For any simplex S ⊂Rn with barycenter at the origin, we have

(28) M(S) = (n +1)(n+1)

(n!)2 .

Unfortunately, we could not find and exact reference of the previous lemma. We in-
clude a sketch of its proof: the Mahler product of a simplex is invariant under linear
transformations, then it is possible to compute it using a particular example (all sim-
plices belong to the same equivalence class). In particular, let {ei }n

i=1 be the canon-
ical basis and consider the simplex S := S(e1,e2, . . . ,en ,−∑n

i=1 ei ), then its volume is
(n + 1)/n!. On the other hand, its polar S◦ is the simplex S(v0, v1, . . . , vn) where v0 =∑n

i=1 ei and v j = v0 − (n +1)e j for 1 ≤ j ≤ n, whose volume is (n +1)n/n!.
We can now give a proof of Theorem 1.3.

Proof of Theorem 1.3 and Equation (6). Let K ⊂Rn be an arbitrary convex set with barycen-
ter at the origin. By the Rogers-Shephard inequality [AAGM15, Theorem 1.5.2] the cen-
trally symmetric so-called difference body D(K ) = K −K contains K and fulfills

(29)

(
vol(D(K ))

vol(K )

)1/n

≤ 4.

By Equation (13) applied to the body D(K )◦ there is a simplex with barycenter at the
origin T ⊂ D(K )◦ such that

(30)

(
vol(D(K )◦)

vol(T )

)1/n

≤ c

p
n

LD(K )◦
,

where c > 0 is an absolute constant.
Consider S the simplex T ◦. It is not difficult to see that S has also barycenter at the

origin and obviously S ⊃ D(K ). Now,

(31)
vol(S)

vol(D(K ))
= vol(S)vol(T )

vol(D(K ))vol(D(K )◦)
· vol(D(K )◦)

vol(T )
.

By Lemma 2.6, the Bourgain-Milman inequality [AAGM15, Theorem 8.2.2.] and Stir-
ling formula we have

(32)

(
vol(S)vol(T )

vol(D(K ))vol(D(K )◦)

)1/n

≤ c

for an absolute constant c > 0.
The result now follows immediately form Equations (30), (31), (32) and the fact that

D(K ) ⊃ K and hence S ⊃ K . �

As we can see in the following example, the asymptotic behavior of the volume ratio
given in Theorem 1.3 cannot be improved.

Example 2.7 (The minimal volume simplex for the Euclidean ball). Let K := B n
2 , the Eu-

clidean ball, and S ⊃ B n
2 the regular simplex circumscribing K . As we can infer from the

proof of [AAGM15, Theorem 2.4.8. (ii)] K = B n
2 is the maximal volume ellipsoid inside S

or, in other words, S is in John position.
Let us see that S is the minimal volume simplex containing K . If not, then there is a

simplex T ⊂ Rn enclosing the ball with vol(T ) < vol(S). Consider the linear transforma-
tion A ∈GL(n) such that A(S) = T ; then, |det(A)| < 1. Therefore A−1(B n

2 ) is an ellipsoid
with volume greater that vol(B n

2 ) inside S, which is a contradiction.
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FIGURE 2. The simplex of minimal volume enclosing the Euclidean
ball is the regular simplex circumscribing it.

If we compute the volumes (for the simplex it is easier to do it working in Rn+1 on the
hyperplane

∑
i xi = 1) we have:

V ol (S) = (n +1)
n+1

2 n
n
2

n!
,(33)

V ol (K ) = π
n
2

Γ( n
2 +1)

.(34)

Using Stirling formula we therefore get

(35)

(
V ol (S)

V ol (K )

) 1
n ≈ d̃

p
n,

for an absolute constant d̃ > 0.

3. THE CASE OF THE CUBE AND A NON-PROBABILISTIC PROOF OF THEOREM 1.3

As mentioned, for n = 2 the cube has the largest volume ratio (respect to the simplex
of minimal volume containing it); for n = 3 the same is conjectured. One should expect
that a similar phenomenon occurs in high dimensions but, as we can see in the follow-
ing example, the volume ratio of the cube is uniformly bounded. Moreover, we show
that the simplex can be taken with the same barycenter as the cube.

Example 3.1. Let K be the cube [− 1
2 , 1

2 ]n ⊂ Rn . There is a centered simplex S such that
K ⊂ S and

(36)

(
V ol (S)

V ol (K )

) 1
n ≤ c,

for an absolute constant c > 0.

Proof. Denote by 1 the vector in Rn defined as
∑n

j=1 e j . Consider the simplex

S := S

(
−n

2
1,ne1 − 1

2
1,ne2 − 1

2
1, . . . ,nen − 1

2
1

)
.

It is easy to see that bar(S) = bar(K ) = 0. Observe also that the cube [− 1
2 , 1

2 ]n is
included in the simplex T := S

(− 1
21,ne1 − 1

21,ne2 − 1
21, . . . ,nen − 1

21
)
. Indeed, all the

points that lie in the cube have coordinates greater than or equal to − 1
2 and their sum

is less than or equal to n
2 . It remains to see that the point − 1

21 belongs to S, but − 1
21 is
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exactly t (−n
2 )1+ (1− t ) 1

21 for t = 2
n+1 . An easy computation proves that the volume of S

is exactly nn (n+1)
2n! . �

− 3
21

− 1
21

1
21

FIGURE 3. The simplex S
(− 3

21,3e1 − 1
21,3e2 − 1

21,3e3 − 1
21

)
enclosing

the cube [− 1
2 , 1

2 ]3 ⊂R3 as in Example 3.1.

We end the article giving a non-probabilistic proof of Theorem 1.3. This relies on the
Rogers-Shephard inequality, the Dvoretzky-Rogers theorem and previous estimate for
the cube.

Proof of Theorem 1.3. Again, by the the Rogers-Shephard inequality [AAGM15, Theo-
rem 1.5.2] (see (29)) we can suppose, without loss of generality that K is centrally sym-
metric. Using a well-known result of Dvoretzky and Rogers [DR50, Theorem 5A] (see
also [PS91]) there is a centrally symmetric parallelepiped P ⊃ K such that

(37)

(
vol(P )

vol(K )

)1/n

≤ c
p

n,

for some absolute constant c > 0. The result now follows combining Equation (37) and
the bound given in Example 3.1 for the simplex containing the parallelepiped P (with,
of course, (12)). �

Comparing the result obtained with this technique with (5) and (6), one should note
that the isotropic constant is missing (maybe in case the isotropic constant conjecture
[AAGM15, Conjecture 10.1.7] is false, (5) or (6) could give better estimates for certain
bodies).

3.1. Acknowledgement. The authors are grateful to the anonymous referee for the clever
insight regarding Problem 1.1 which gave origin to the previous section.
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