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Abstract. In this work we analyze a nonlinear eigenvalue problem for the p-

Laplacian operator with zero Dirichlet boundary conditions. We assume that

the problem has a potential which depends on the eigenvalue parameter, and
we show that, for n big enough, there exists a real eigenvalue λn, and they

corresponding eigenfunctions have exactly n nodal domains.
We characterize the asymptotic behavior of these eigenvalues, obtaining

two terms in the asymptotic expansion of λn in powers of n.

Finally, we study the inverse nodal problem in the case of energy depen-
dent potentials, showing that some subset of the zeros of the corresponding

eigenfunctions is enough to determine the main term of the potential.

1. Introduction

In this work we consider the following problem

(1.1) −(|u′|p−2u′)′ = [λ+ g(x, λ)] |u|p−2u, x ∈ (0, 1)

with zero Dirichlet boundary conditions

(1.2) u(0) = u(1) = 0,

where 1 < p < ∞, λ is a real parameter, and g : [0, 1] × [0,+∞) → R satisfies the
following conditions:

H1) g is a continuous function in [0, 1]×R, and it is locally Lipschitz continuous
on the variable λ except perhaps at λ = 0.

H2) There exists C > 0, α ∈ (0, 1) such that |g(x, λ)| ≤ C(λα+1) for any λ ∈ R
and x ∈ [0, 1].

We are interested in the existence of eigenvalues, and these hypotheses are enough
to show the existence of an increasing sequence. However, in order to study the
asymptotic behavior of the eigenvalues and the inverse nodal problem, we impose
an additional condition,

H3) There exists a continuous function h(x) such that g(x, λ)/λα → h(x) as
λ→∞, uniformly in x.

This kind of problems belong to the class of nonlinear eigenvalue problems, where
the coefficients of the differential equations depend on the eigenvalue parameter.
There exists several particular cases of interest, like the quadratic eigenvalue prob-
lems, see [32, 34]; or the energy dependent potentials, see [1, 10, 13].
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When p = 2, the eigenvalue problem (1.1)-(1.2) is very important in both clas-
sical and quantum mechanics. For example, such problems arise in solving Klein-
Gordon equations which describe the motion of massless particles such as photons,
they are also used for modelling vibrations of mechanical systems in viscous me-
dia, or in hydrodynamic stability problems, see [5]. In particular, generalized one
dimensional Schrödinger equations with quadratic operator pencils,

(1.3) −u′′ =
(
λ2 − 2λh(x)− q(x)

)
u

where studied in several papers, see [1, 2, 3, 10, 22, 28, 35, 36], among other works.
The existence of a discrete set of eigenvalues in the linear case is a difficult

problem, and it was solved first by Friedman and Shinbrot [11] using functional
analytic techniques for linear compact symmetric operators which can be applied
to the inverses of the differential operators. In the one-dimensional case, the work
of Greenberg and Babuska [12] uses the shooting method as a way to obtain the
eigenvalues; however, this need some monotonicity assumptions on the coefficients.
Again in the linear one-dimensional case corresponding to equation (1.3), the dis-
creteness of the spectrum and the existence of a double sequence of real eigenvalues
going to ±∞ can be found in [14, 15], where additional conditions are imposed on
the coefficients, namely,

G1) h ∈ H1(0, 1).

G2) q ∈ L2(0, 1) satisfies
∫ 1

0
|u′|2 + q(x)|u|2dx > 0 for u ∈ H2(0, 1), u 6= 0.

Without these conditions, a finite number of complex eigenvalues can appear, see
also the work of Browne and Watson [2], where this question is discussed in detail.

Let us remark that this double sequence depend on the particular problem con-
sidered. In some cases, equation (1.3) appears as

−u′′ =
(
λ− 2

√
λh(x)− q(x)

)
u,

and only positive values of λ are allowed as eigenvalues. We prefer to work here with
this type of problem, since the other case can be handled in much the same way.
Let us remark that some pathologies can occur, like the existence of complex eigen-
values, or the existence of two values of λ with the same associated eigenfunctions.
We will discuss these questions briefly at the end of Section §2.

The existence of eigenvalues for the p-Laplacian is subtle, since the tools used
for p = 2 are not available in the quasilinear case. Also, a general nonlinearity like
g(x, λ) forbids the use of the Prüfer transform based on the generalized trigono-
metric functions (as in [7, 8, 12]) without additional conditions of monotonicity
on g. Nevertheless, we can show that, for sufficiently big n, we have at least one
eigenvalue λn, and the corresponding eigenfunctions have exactly n + 1 zeros in
[0, 1]. Our first results in this direction are the following theorems:

Theorem 1.1. Let g be a function satisfying (H1)−(H2). Then there exists n0 ≥ 1
such that, if n ≥ n0, there exists an eigenvalue λn of problem (1.1)-(1.2) such that
the associated eigenfunction un has exactly n+ 1 zeros in [0, 1].

Let us observe that this theorem does not preclude the existence of more than
two eigenvalues with same number of zeros. The following corollary is a direct
consequence of the previous theorem and the Sturmian comparison theorem (see
Theorem 2.2 in Section §2).
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Corollary 1.1. Let g be a function satisfying (H1)− (H2), and let us assume that
g(x, λ) is monotonic in λ. Then there exists n0 ≥ 1 such that, if n ≥ n0, there
exists an eigenvalue λn of problem (1.1)-(1.2) such that the associated eigenfunction
un has exactly n+1 zeros in [0, 1], and there are no other eigenvalues in (λn0

,+∞)
such that the associated eigenfunction has n+ 1 zeros in [0, 1].

Also, we can compute the asymptotic expansion of λn. We obtain two terms,
with a different error term depending on the relationship between α and p′, the
Sobolev conjugate exponent of p satisfying

1

p
+

1

p′
= 1.

Theorem 1.2. Let us consider the problem (1.1)-(1.2), and suppose that g satisfies
conditions H1), H2), and H3). Then, if αp′ < 1,

(1.4) λn = npπpp −
1

p
(πpn)1+αp−p

∫ 1

0

h(x)dx+O(n2pα−2p+1)).

and, if αp′ ≥ 1,

(1.5) λn = npπpp −
1

p
(πpn)1+αp−p

∫ 1

0

h(x)dx+ o(n1+αp−p).

Here, πp is the first nontrivial zero of the generalized p-sine function, see Section
§2 for the corresponding definition.

Let us remark that Theorem 1.2 improves the results obtained for the quadratic
eigenvalue problem and p = 2 in [2], since an additional term is obtained. Also, less
regularity is assumed on g than the one imposed by hypothesis G1) in [14]. On the
other hand, assuming more regularity on the function h as in G1), more terms in
the asymptotic expansion of λn were obtained in [14, 15]. Our proofs are based on
simple arguments, depending on the classical comparison and oscillation theorems,
combined with a fixed point argument.

Our next result shows that, for the quadratic eigenvalue problem, some infinite
subset of the zeros of {un}n≥n0

is enough to determine the function accompanying
the higher order power of λ in the potential, which enable us to determine h in
H3). We postpone the definition of a dense twin subset to Section §5.

Theorem 1.3. Let us consider the problem (1.1)-(1.2), and suppose that g satisfies
conditions H1), H2), and H3). Let {λn}n≥n0

be the sequence of eigenvalues given
by Theorem 1.1. Then, given the zeros of the corresponding eigenfunctions, we can
determine univocally the function h. Moreover, it is enough to consider a dense
twin subset of the zeros, and

(1.6)
h(x) = limn→∞ λ−αn

[
πp
p

(xn
j −xn

j−1)p − λn
]

= limn→∞ πp−pαp n−pα
[

1
(xn

j −xn
j−1)p − n

p
]
.

In particular, for the quadratic eigenvalue problem, we have the following corol-
lary, which includes the order of convergence:

Corollary 1.2. Let us consider the problem

−(|u′|p−2u′)′ = [λ+ λαh(x) + q(x)] |u|p−2u, x ∈ (0, 1)
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with zero Dirichlet boundary conditions u(0) = u(1) = 0. Then we can recover h
given a dense twin subset of the zeros of eigenfunctions. Moreover, if h is Lipschitz
continuous with constant K, we have∣∣∣∣∣h(x)− λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]∣∣∣∣∣ ≤ Kδn
and ∣∣∣∣∣h(x)− πp−pαp n−pα

[
1

(xnj − xnj−1)p
− np

]∣∣∣∣∣ ≤ Kδn +O(n1−p),

where δn = max{|x− xnj−1|, |x− xnj |}.

Let us remark that the constant in the term O(n1−p) depends only on the L∞

norm of h (in order to bound the integral of h), and in this case also the constant
K can be estimated explicitly.

The spectral inverse problems for energy dependent potentials started with the
works of Jaulent and Jean [19, 20, 21], and was studied later in [3, 18, 27, 37, 36].

Let us mention some previous works in the inverse nodal problem, and let us
compare briefly the differences with our proof of Theorem 1.3. First, let us recall
that there are two different inverse problems for the equation

−u′′ = λr(x)u+ q(x)u,

one is to determine the weight r, and the other one is to determine the potential q.
For quadratic eigenvalue problems,

−u′′ = λ2u+ λh(x)u+ q(x)u,

both h and q are terms of the potential, and were determined in the linear case
p = 2 by Buterin and Shieh, see [3], and by Yang in [36] in terms of a dense subset
of nodes and the integrals of h and q. Their proofs are based on precise estimates
on the location of zeros of eigenfunctions obtained from the regularized traces of
the pencil of operators and the corresponding Weyl function. Let us remark that
only q was determined before for the p-Laplacian operator, see the works of Goktas,
Gulsen, Yilmaz, and Koyunbakan [13, 22, 23, 38].

The determination of q followed the ideas introduced originally by McLaughlin
in [26], which were quickly extended in [6, 16, 17, 24] among several other works.
Their proofs need a detailed knowledge of the lengths of the nodal domains in terms
of the eigenvalues, which depends on a better estimate on the eigenvalues than the
one given by the estimate (1.4).

This method works well also in the determination of the weight r, and different
approaches were proposed in [31], based in the problem of moments combined with
integration rules on the zeros of the eigenfunctions; in [25], where the authors used
the WKB method; and recently in [29, 30], based on the convergence of a sequence
of measures concentrated on the zeros of the eigenfunctions.

Here, we are mainly interested on the characterization of h. The previous meth-
ods need much more information on the eigenvalues than the one available here,
and the last one cannot be used in this problem since the sequence of measures
converge to the Lebesgue measure, and therefore the information on h and q is lost.
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So, we introduce a different approach here, of more elemental character. Com-
pared with previous works in the linear case (i.e., [3, 36]), we are using more in-
formation about the nodes, since they assume only that a dense subset of zeros is
given, and also it is enough to know them on more than half the interval. On the
other hand, we are not assuming that the integral of q and h are given, and only
the case α = 1/2 was studied in these works.

1.1. Organization of the paper. The paper is structured as follows: in Section
§2 we introduce some notation and previous results. In Section §3 we prove Theorem
1.1, and in Section §4 we prove Theorem 1.2. Section §5 is devoted to the nodal
inverse problem.

2. Preliminaries

In this section we will recall some necessary definitions and results about solu-
tions to the problem (1.1)-(1.2).

2.1. The one dimensional p-Laplacian problem. Let us start with the constant
coefficient problem

−
(
|u′|(p−2)u′

)′
= (p− 1)|u|(p−2)u,

and let Sp(x) be the unique solution of the initial boundary value problem satisfying
u(0) = 0, u′(0) = 1. This function is known as the generalized sine function, and
for p = 2 become sinx, see [7, 8]. The first zero of Sp(x) is

πp = 2

∫ 1

0

dt
p
√

1− tp
,

and enables us to characterize the eigenvalues and eigenfunctions of the problem

−
(
|u′|(p−2)u′

)′
= (p− 1)Λ|u|(p−2)u

with zero Dirichlet boundary conditions u(0) = u(1) = 0 (see [8]). There exists a
sequence of eigenvalues {λn}n≥1, such that

Λ1 < Λ2 < · · · < Λn < . . .→∞,

where Λn = npπpp , and the corresponding eigenfunction is un(x) = Sp(nπpx). Let
us note that un has n + 1 zeros in [0, 1], or nodal points, which define n nodal
domains, i. e., the interval between two consecutive zeros.

Using the shooting method and the Prufer transform, it is possible to extend this
result to the nonconstant coefficient case, obtaining also estimates on the eigenval-
ues. An alternative procedure is the variational method, we have again a sequence
of discrete eigenvalues, and the eigenfunction associated to Λn has n+ 1 zeros or n
nodal domains.

We recall the following results on the existence of eigenvalues together with the
fundamental theorems of comparison and oscillation for Sturm-Liouville problems,
which hold for linear and quasilinear problems, and will be needed later:

Theorem 2.1. Let us assume that g(x, λ) = g(x) does not depend on λ. Then all
the eigenvalues Λ of the problem

−
(
|u′|(p−2)u′

)′
= (Λ + g(x))|u|(p−2)u
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with zero Dirichlet boundary conditions are given by an unbounded increasing se-
quence {Λn}n≥1, and their asymptotic behavior as n→∞ is given by

Λ1/p
n = nπp + o(n).

Any eigenfunction associated to Λn has exactly n+ 1 nodal points in [0, 1], and the
zeros of the eigenfunctions interlace, excluding the ones at 0 and 1.

Moreover, by considering the Sobolev space W 1,p
0 (0, 1), we can obtain the eigen-

values by using a minimax characterization,

(2.1) Λn = inf
Cn∈Cn

sup
{u∈Cn:‖u‖Lp=1}

∫ 1

0

|u′|pdx+

∫ 1

0

g(x)|u|pdx,

where Ck is the class of compact symmetric (C = −C) subsets of W 1,p
0 (0, 1) of

(Krasnoselskii) genus greater or equal than n.

Theorem 2.2. Given two equations

−
(
|u′|(p−2)u′

)′
= g1(x)|u|(p−2)u

−
(
|u′|(p−2)u′

)′
= g2(x)|u|(p−2)u

such that g1(x) < g2(x) on [0, 1], then between every two nodal points of any non
trivial solution of the first equation there is at least one node of every solution of
the second equation.

For a proof of these results, and related ones, we refer the interested reader to
[4, 7, 8, 9, 10, 33]. Let us remark that there are similar results for Neumann and
mixed boundary conditions.

2.2. Quadratic eigenvalue problems. As mentioned in the introduction, chang-
ing the spectral parameter

√
λ→ Λ gives a potential of the form

Λ2 − 2h(x)Λ− q(x),

and we can expect the existence of two sequences of eigenvalues going to ±∞. Of
course, in the original variable we only consider the positive values of Λ, or we need
to introduce complex eigenvalues; we prefer this because the situation is harder for
arbitrary powers λα.

The following simple example shows the problems involved and the necessity of
hypothesis G2) in [14, 15].

Example 2.1. Let us consider the equation (1.3) in (0, 1), with constant coefficients
h and q,

−u′′ = (λ− 2b
√
λ− a)u,

where a and b are real numbers.
By considering λ2 + 2bλ + a = n2π2, we get that this equation has two real

solutions if and only if a ≤ b2 + n2π2. However, we can have two different positive
values for λn, both with the same associated eigenfunction. For example, for b = 2π,
and a = −4π2, we have

−u′′ = (λ− 4π
√
λ+ 4π2)u,

and uλ(x) = sin(πx) is the associated eigenfunction to
√
λ = π and also to

√
λ = 3π.
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3. Existence of eigenvalues

In this section we prove Theorem 1.1 and Corollary 1.1. The proof of Theorem
1.1 is structured in three parts: first we derive an estimate for n0 and we define, for
n ≥ n0, some intervals In; then, we introduce an operator T : In → R which gives
the n-th. eigenvalue of an auxiliary problem with g(x, λ) replaced by g(x, µ), and
we prove its continuity; finally, we show that there exists a fixed point T (µn) = µn,
which is the eigenvalue λn.

Of course, we cannot prove that there exists a unique fixed point µn for each
n. However, it is easy to see that this can be done by imposing a monotonicity
condition on g as a function of λ as in Corollary 1.1, and its proof follows directly
from the Sturmian Comparison Theorem 2.2.

Proof of Theorem 1.1.

(1) A priori bounds on λn and n0.

Let us recall hypothesis H2),

λ− C(λα + 1) ≤ λ+ g ≤ λ+ C(λα + 1),

and hence, since α < 1, there exists a minimum positive integer n0 such that, for
n ≥ n0, we have

C([2πpp(n+ 1)p]α + 1)

πpp(n− 1)p/2
<

1

2
.

Now, for any n ≥ n0 we define In = [πpp(n− 1)p/2, 2πpp(n+ 1)p]. For λ ∈ In we
have

|g(x, λ)|
λ

≤C(λα + 1)

λ

≤
C([πpp(n+ 1)p]α + 1)

πpp(n− 1)p

<
1

2
.

In other words, whenever λ ∈ In,

(3.1) |g(x, λ)| < λ

2
.

(2) An auxiliary eigenvalue problem.

Now, for each n ≥ n0, and the intervals In introduced above, let us define
Tn : In → R, where Tn(µ) is the n-th eigenvalue of the problem

−(|v′|p−2v′)′ = [λ+ g(x, µ)] |v|p−2v, x ∈ (0, 1)

with zero Dirichlet boundary conditions. Let us recall that the associated eigen-
function has exactly n + 1 zeros on In. We show now that Tn is a continuous
function.

Let ε be an arbitrary positive number. Given any pair of values µ1, µ2 ∈ In,
since g is locally Lipschitz, there exists a fixed constant Kn such that

|g(x, µ1)− g(x, µ2)| ≤ Kn|µ1 − µ2|.

Thus, there exists δ > 0 such that, if |µ1−µ2| ≤ δ, we get |g(x, µ1)− g(x, µ2)| < ε.
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We will use now the variational characterization of the eigenvalues given by

equation (2.1). There exists a compact symmetric set C
(1)
n such that

λn(µ1) ≤ sup
{u∈C(1)

n :‖u‖Lp=1}

∫ 1

0

|u′|pdx+

∫ 1

0

g(x)|u|pdx ≤ λn(µ1) + ε.

Therefore, for any function u ∈ C(1)
n , and µ2 satisfying |µ1 − µ2| ≤ δ, we have

λn(µ2) = inf
Cn

sup
{u∈Cn:‖u‖Lp=1}

(∫ 1

0

|u′|pdx+

∫ 1

0

g(x, µ2)|u|pdx
)

≤ sup
{u∈C(1)

n :‖u‖Lp=1}

(∫ 1

0

|u′|pdx+

∫ 1

0

g(x, µ1)]|u|pdx

+

∫ 1

0

[g(x, µ2)− g(x, µ1)]|u|pdx
)

≤λn(µ1) + ε+ sup
{u∈C(1)

n :‖u‖Lp=1}

(∫ 1

0

|g(x, µ2)− g(x, µ1)||u|pdx
)

≤λn(µ1) + ε+ ε‖u‖pLp

=λn(µ1) + 2ε.

Interchanging the role of µ1 and µ2, taking an auxiliary set C
(2)
n , we get λn(µ1) ≤

λn(µ2) + 2ε, and thus

|λn(µ1)− λn(µ2)| ≤ 2ε.

Hence, the operator Tn : In → R is continuous.

(3) The fixed point argument.

Let us show that Tn(µn) = µn for some µn ∈ In. To this end, since Tn is a
continuous function, it is enough to show that:

i.- Tn(πpp(n− 1)p/2) ≥ πpp(n− 1)p/2,
ii.- Tn(2πpp(n+ 1)p) ≤ 2πpp(n+ 1)p.

Let us observe that both inequalities implies Tn : In → In, and then the classical
Bolzano’s theorem or the Brower Fixed Point Theorem implies the existence of a
fixed point.

Let us prove i.−. Let us suppose that

λn(πpp(n− 1)p/2) = Tn(πpp(n− 1)p/2) < πpp(n− 1)p/2.

Then, from inequality (3.1),

λn(πpp(n− 1)p/2) + g(x, πpp(n− 1)p/2) = Tn(πpp(n− 1)p/2) + g(x, πpp(n− 1)p/2)

≤ πpp(n− 1)p/2 + πpp(n− 1)p/4

< πpp(n− 1)p,

contradicting the Sturmian Comparison Theorem 2.2, since the corresponding eigen-
function has n+ 1 zeros, and the solution to

−(|w′|p−2w′)′ = πpp(n− 1)p|w|p−2w, x ∈ (0, 1)
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satisfying w(0) = w(1) = 0 has exactly n zeros.

In much the same way we prove ii.−, let us suppose that

λn(2πpp(n+ 1)p) = Tn(2πpp(n+ 1)p) > 2πpp(n+ 1)p,

and using again inequality (3.1),

λn(2πpp(n+ 1)p) + g(x, 2πpp(n+ 1)p) = Tn(2πpp(n+ 1)p) + g(x, 2πpp(n+ 1)p)

> 2πpp(n+ 1)p − 2πpp(n+ 1)p/2

= πpp(n+ 1)p,

contradicting the Sturmian Comparison Theorem 2.2, since the solution to

−(|w′|p−2w′)′ = πpp(n+ 1)p|w|p−2w, x ∈ (0, 1)

satisfying w(0) = w(1) = 0 has exactly n+ 2 zeros.

We have obtained a sequence of eigenvalues {λn}n≥n0
, and their associated eigen-

functions {un}n≥n0 . It is clear that the eigenfunction un has n + 1 zeros in [0, 1],
since it is the associated eigenfunction to the n-th eigenvalue of the auxiliary Sturm
Liouville problem with Dirichlet boundary conditions. Hence, they are all different.

The proof is finished. �

Remark 3.1. Let us observe that the argument cannot be strengthened to show
that there are no other eigenvalues. However, this can be proved by imposing some
monotonicity condition in order to ensure that Tn(µ) is an increasing function, as
stated in Corollary 1.1.

Proof of Corollary 1.1. Let n0 as in the proof of Theorem 1.1. For each n ≥ n0 we
have an eigenvalue λn ∈ In, and the corresponding eigenfunction has exactly n+ 1
zeros in [0, 1].

Let us suppose that Λ ∈ (λn0
,+∞), Λ 6= λn is another eigenvalue, and let uΛ be

its associated eigenfunction. There exists some n such that λn < Λ < λn+1, and
the monotonicity condition on g implies that

λn + g(x, λn) < Λ + g(x,Λ) < λn+1 + g(x, λn+1).

Therefore, the Sturmian Comparison Theorem 2.2 implies uΛ has more than n+ 1
zeros, and simultaneously, less than n+ 2, which is impossible.

Hence, Λ must coincide with one of the eigenvalues λn. However, there exists
a unique solution to the initial boundary value problem given by equation (1.1)
satisfying u(0) = 0, u′(0) = 1, so uΛ is an appropriate multiple of un.

The proof is finished. �

4. Asymptotic behavior of eigenvalues.

Let us observe that the existence of an eigenvalue λn ∈ In proved in the previous
section implies that λn = O(np). In order to prove Theorem 1.2, we need the
following previous results.

Lemma 4.1. Let {λn}n≥n0
be the sequence of eigenvalues of problem (1.1)-(1.2)

obtained in Theorem 1.1, where g satisfies H1) and H2). Then

λn = npπpp + o(np).
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Proof. Let us take ε > 0. Let us write equation (1.1) as

−(|u′|p−2u′)′ = λ

[
1 +

g(x, λ)

λ

]
|u|p−2u.

Using condition H1) we get

1− C[λα−1 − λ−1] ≤ 1 +
g(x, λ)

λ
≤ 1 + C[λα−1 − λ−1],

and hence 1− ε ≤ 1 + g(x,λ)
λ ≤ 1 + ε if λ is big enough.

By using the Sturmian Comparison Theorem 2.2,

(1− ε)πppnp ≤ λn ≤ (1 + ε)πppn
p,

and the Lemma is proved. �

Lemma 4.2. Let {un}n≥n0 be the eigenfunctions associated to {λn}n≥n0 , the eigen-
values of problem (1.1)-(1.2) obtained in Theorem 1.1, where g satisfies H1) and
H2). Let 0 = x0 < x1 < · · · < xn = 1 be the zeros of un. Then, for 1 ≤ j ≤ n,
there exists some yj ∈ [xj−1, xj ] such that

λn + g(yj , λn) =
πpp

(xj − xj−1)p
.

Proof. By re-scaling the interval, we know that πpp/(xj−xj−1)p is the first eigenvalue
of the p-Laplacian operator in [xj−1, xj ]. Now, the Sturmian Comparison Theorem
2.2 implies

πpp
(xj − xj−1)p

≥ min
y∈[xj−1,xj ]

λn + g(y, λn),

πpp
(xj − xj−1)p

≤ max
y∈[xj−1,xj ]

λn + g(y, λn),

and the result follows by using the continuity of g and Bolzano’s Theorem. �

We are ready to prove Theorem 1.2

Proof of Theorem 1.2. Applying Lemma 4.2 in the nodal domains of un, and the
Taylor’s expansion (1 + z)1/p = 1 + z/p+O(z2) for z ≈ 0, we get

πp
xj − xj−1

=λ1/p
n

(
1 +

g(yj , λn)

λn

)1/p

=λ1/p
n

(
1 +

g(yj , λn)

pλn
+O(λ2α−2

n )

)
=λ1/p

n +
g(yj , λn)

pλ
(p−1)/p
n

+O(λ2α−2+1/p
n ).
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Now, by multiplying both sides by (xj −xj−1) and summing from 1 to n, we get

nπp =

n∑
j=1

πp

=

n∑
j=1

(
λ1/p
n (xj − xj−1) +

g(yj , λn)

pλ
(p−1)/p
n

(xj − xj−1)

)
+O(λ2α−2+1/p

n )

=λ1/p
n +

1

pλ
(p−1)/p
n

n∑
j=1

g(yj , λn)(xj − xj−1) +O(λ2α−2+1/p
n ),

Let us observe that the term O(λ
2α−2+1/p
n ) in each interval can be bounded

independently of j by the same constant depending only on C given by condition
H1), so after multiplying by (xj−xj−1) and summing up, we recover the same term
since the total lengths of the intervals is equal to one.

Now, using that

lim
n→∞

λ−αn

n∑
j=1

g(yj , λn)(xj − xj−1) = lim
n→∞

n∑
j=1

h(yj)(xj − xj−1) =

∫ 1

0

h(x)dx,

we get

nπp = λn +
1

pλ
(p−1)/p−α
n

∫ 1

0

h(x)dx+ o(λα−(p−1)/p
n ) +O(λ2α−2+1/p

n ),

where the o(.) term comes from the error between the integral and the corresponding
Riemann’ sum, and the error between g(x, λ)λ−α and h(x).

Let us compare the exponent on the error terms. Since α < 1, we have that

α− (p− 1)/p > 2α− 2 + 1/p.

This implies that the error term is o(λ
α−(p−1)/p
n ) when αp′ ≥ 1, since the exponent

is positive, and it is O(λ
2α−2+1/p
n ) in the other case.

Finally, by replacing λn = πppn
p+o(np) from Lemma 4.1, the proof is finished. �

5. Nodal inverse problem

In order to study the nodal inverse problem we introduce the following defini-
tions:

Definition 5.1. Let us call Xg the set of zeros of the eigenfunctions of problem
(1.1)-(1.2), that is,

Xg = {xnj : 0 ≤ j ≤ n, n ≥ n0}.

Definition 5.2. A dense twin subset of zeros TXg is a subset of Xg satisfying that,
for any x ∈ [0, 1], there exists a sequence of pair of consecutive zeros in TXg, that
is, {(xnj−1, x

n
j )}n≥n0

⊂ TXg, such that xnj−1, xnj → x as n→∞.

Remark 5.1. Let us note that the existence of this kind of sets is given by Lemma
4.2, since λn = O(np) implies that the distance between consecutive zeros must
vanish.
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Proof of Theorem 1.3. Let us fix x ∈ [0, 1], and some ε > 0 sufficiently small. Let
us consider the corresponding sequence of zeros {(xnj−1, x

n
j )}n≥n0

in the dense twin
subset.

Proceeding as in the proof of Theorem 1.2, by applying Lemma 4.2 in the nodal
domains of un, we get

λpn + g(ynj , λn) =
πpp

(xnj − xnj−1)p
.

for some ynj ∈ (xnj−1, x
n
j ). Let us observe that ynj → x when n→∞ as well.

Using H3), there exists n1 such that, if n ≥ n1, we have

|g(λ, x)− λαh(x)| < ελα

for any x ∈ [0, 1]. Hence,∣∣∣∣∣λpn + λαnh(ynj )−
πpp

(xnj − xnj−1)p

∣∣∣∣∣ < ελαn,

which implies that ∣∣∣∣∣h(ynj )− λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]∣∣∣∣∣ < ε.

Since h is continuous (and hence, uniformly continuous in [0, 1]) there exists n2

such that

|h(x)− h(ynj )| < ε

for any n ≥ n2. Finally, adding the terms ±h(x) and using the triangular inequality,
we obtain ∣∣∣∣∣h(x)− λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]∣∣∣∣∣ < 2ε

for any n ≥ max{n1, n2}.
This proves the first characterization of h involving both the zeros and the eigen-

values. Next, we show that the eigenvalues can be replaced by their asymptotic
expansion.

Using Theorem 1.2, we know that λn = (πpn)p + O(ns), with s = 1 + αp −
p < p. Therefore, ns−p → 0 with n, and we can perform a Taylor expansion for
(1 +O(ns−p))α obtaining

λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]
=

[
πp
p

(xn
j −xn

j−1)p − (πpn)p
]

+O(ns)

[(πpn)p +O(ns)]α

=

[
πp
p

(xn
j −xn

j−1)p − (πpn)p
]

+O(ns)

(πpn)pα[1 +O(ns−p)]α

=

[
πp
p

(xn
j −xn

j−1)p − (πpn)p
]

+O(ns)

(πpn)pα +O(ns−p+pα)



ENERGY DEPENDENT POTENTIAL 13

We can write the term in the right hand side as
[

πp
p

(xn
j −xn

j−1)p − (πpn)p
]

+O(ns)

(πpn)pα

( (πpn)pα

(πpn)pα +O(ns−p+pα)

)
,

which is
[

πp
p

(xn
j −xn

j−1)p − (πpn)p
]

(πpn)pα
+O(ns−pα)

(1− O(ns−p+pα)

(πpn)pα +O(ns−p+pα)

)
,

or, equivalently,
[

πp
p

(xn
j −xn

j−1)p − (πpn)p
]

(πpn)pα
+O(ns−pα)

(1−O(ns−p)
)
.

By observing that the expression converges to h(x), and ns−p < ns−pα, we get

h(x) = lim
n→∞

(
(πpn)−pα

[
πpp

(xnj − xnj−1)p
− (πpn)p

]
+O(ns−pα)

)
,

and the theorem is proved. �

The proof of Corollary 1.2 is a direct consequence of the previous computation,
and only the order of convergence needs to be proved.

Proof of Corollary 1.2. Starting as before from

λn + λαnh(ynj ) =
πpp

(xnj − xnj−1)p
,

where ynj ∈ (xnj−1, x
n
j ), we have

h(x) =h(x)− h(ynj ) + λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]

≤λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]
+K|x− ynj |

≤λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]
+Kδn.

From the previous proof we know that

λ−αn

[
πpp

(xnj − xnj−1)p
− λn

]
=

 πp
p

(xn
j −xn

j−1)p − (πpn)p

(πpn)−pα

+O(ns−pα).

Since s− pα = (1 + pα − p)− pα = 1− p, we get an error term O(n1−p), and the
proof is finished. �
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