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Abstract. We study finite element approximations of the nonhomoge-
neous Dirichlet problem for the fractional Laplacian. Our approach is
based on weak imposition of the Dirichlet condition and incorporating
a nonlocal analogous of the normal derivative as a Lagrange multiplier
in the formulation of the problem. In order to obtain convergence or-
ders for our scheme, regularity estimates are developed, both for the
solution and its nonlocal derivative. The method we propose requires
that, as meshes are refined, the discrete problems be solved in a family
of domains of growing diameter.

1. Introduction and preliminaries

Anomalous diffusion refers to phenomena arising whenever the associated
underlying stochastic process is not given by Brownian motion. One striking
example of a nonlocal operator is the fractional Laplacian of order s (0 <
s < 1), which we will denote by (−∆)s.

If the domain under consideration is the whole space Rn, then (−∆)s is
a pseudodifferential operator with symbol |ξ|2s. Indeed, for a function u in
the Schwartz class S, let

(−∆)su = F−1
(
|ξ|2sFu

)
, (1.1)

where F denotes the Fourier transform. The fractional Laplacian can equiv-
alently be defined by means of the identity [19]

(−∆)su(x) = C(n, s) P.V.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.2)

where the normalization constant

C(n, s) =
22ssΓ(s+ n

2 )

πn/2Γ(1− s)
(1.3)

is taken in order to be consistent with definition (1.1).
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In the theory of stochastic processes, this operator appears as the infini-
tesimal generator of a stable Lévy process [8]. Indeed, it is possible to obtain
a fractional heat equation as a limit of a random walk with long jumps [30].

There are two different approaches to the definition of the fractional
Laplacian on an open bounded set Ω. On the one hand, to analyze pow-
ers of the Laplacian in a spectral sense: given a function u, to consider
its spectral decomposition in terms of the eigenfunctions of the Laplacian
with homogeneous Dirichlet boundary condition, and to take the operator
that acts by raising to the power s the corresponding eigenvalues. Namely,
if {ψk, λk}k∈N ⊂ H1

0 (Ω) × R+ denotes the set of normalized eigenfunctions
and eigenvalues, then this operator is defined as

(−∆)sS u(x) =
∞∑
k=1

λsk(u, ψk)L2(Ω)ψk(x), x ∈ Ω.

On the other hand, there is the possibility to keep the motivation coming
from the stochastic process leading to the definition of (−∆)s in Rn. This
option leads to two different types of operators: one in which the stochastic
process is restricted to Ω and one in which particles are allowed to jump
anywhere in the space. The first of these two is the infinitesimal generator
of a censored stable Lévy process [10], we refer to it as regional fractional
Laplacian and it is given by

(−∆)sΩu(x) = C(n, s,Ω) P.V.

ˆ
Ω

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Ω. (1.4)

The second of the two operators motivated by Lévy processes leads to
considering the integral formulation (1.2). Observe that, unlike the afore-
mentioned fractional Laplacians, the definition of this operator does not
depend on the domain Ω. In this work we deal with this operator, which
we denote by (−∆)s and simply call it the fractional Laplacian. The pos-
sibility of having arbitrarily long jumps in the random walk explains why,
when considering a fractional Laplace equation on a bounded domain Ω,
boundary conditions should be prescribed on Ωc = Rn \ Ω.

For an account of numerical methods for the fractional Laplacians men-
tioned above, we refer the reader to the recent survey [11]. Specific to the
numerical treatment of (1.2), we mention algorithms based on finite ele-
ments [1, 2, 4, 5, 18], finite differences [26], Dunford-Taylor representation
formulas [12], Nyström [3] and Monte Carlo [27] methods.

Given s ∈ (0, 1), in this work we study finite element approximations to
problem {

(−∆)su = f in Ω,
u = g in Ωc,

(1.5)

where the functions f and g are data belonging to suitable spaces. Anal-
ysis of the homogeneous counterpart of (1.5) was carried out in [2], where
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a numerical method was developed, theoretical error bounds were estab-
lished and numerical results in agreement with the theoretical predictions
were obtained. Solvability of a class of nonhomogeneous Dirichlet problems
for nonlocal operators –involving not necessarily symmetric or continuous
kernels– was studied in [22].

An important result for dealing with (1.5) is the following integration by
parts formula for the fractional Laplacian [20]: for u, v smooth enough, it
holds

C(n, s)

2

¨
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy

=

ˆ
Ω
v(x)(−∆)su(x) dx+

ˆ
Ωc
v(x)Nsu(x) dx,

(1.6)

where Nsu is the nonlocal normal derivative of u, given by

Nsu = C(n, s)

ˆ
Ω

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Ωc,

and Q = (Ω×Rn)∪ (Rn×Ω). Along this paper we always work with a fixed
value of s. Nonetheless, it is instructive to mention that Nsu recovers in the
limit s→ 1 the notion of the classical normal derivative (cf. Remark 3.5).

The aim of this work is to build finite element approximations for both, the
solution u of (1.5) as well as for its nonlocal derivative Nsu. In this regard,
we discuss briefly a standard direct approach in which the Dirichlet condition
g is strongly imposed. As it turns out, this simple and optimally convergent
method for the variable u, does not provide a computable approximation
of Nsu. In order to overcome this limitation a mixed formulation of the
problem –in which Nsu plays the role of a Lagrange multiplier– is introduced
and numerically approximated. By means of this approach, which is the
main object of this paper, numerical approximations for both u and Nsu
are delivered and optimal order of convergence is proved for them. In this
way, our method inaugurates the variational setting for the treatment of non-
homogeneous essential boundary conditions of fractional operators. This is
a promising scenario in which one might consider more general problems,
including coupled systems involving fractional and integer-order operators.

Throughout this paper, C denotes a positive constant which may be dif-
ferent in various places.

1.1. Sobolev spaces. Given an open set Ω ⊂ Rn and s ∈ (0, 1), the frac-
tional Sobolev space Hs(Ω) is defined by

Hs(Ω) =
{
v ∈ L2(Ω): |v|Hs(Ω) <∞

}
,

where | · |Hs(Ω) is the Aronszajn-Slobodeckij seminorm

|v|2Hs(Ω) =

¨
Ω2

|v(x)− v(y)|2

|x− y|n+2s
dx dy.
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Naturally, Hs(Ω) is a Hilbert space furnished with the norm ‖ · ‖2Hs(Ω) =

‖ · ‖2L2(Ω) + | · |2Hs(Ω). We denote 〈·, ·〉Hs(Ω) the bilinear form

〈u, v〉Hs(Ω) =

¨
Ω2

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy, u, v ∈ Hs(Ω).

Sobolev spaces of order greater than one are defined as follows. If s > 1
is not an integer, the decomposition s = m+σ, where m ∈ N and σ ∈ (0, 1),
allows to define Hs(Ω) by setting

Hs(Ω) =
{
v ∈ Hm(Ω): |Dαv|Hσ(Ω) <∞ for all α s.t. |α| = m

}
.

A space of interest in our analysis consists of the set

H̃s(Ω) = {v ∈ Hs(Rn) : supp v ⊂ Ω},
endowed with the norm

‖v‖
H̃s(Ω)

= ‖ṽ‖Hs(Rn),

where ṽ is the extension of v by zero outside Ω. For simplicity of notation,

whenever we refer to a function in H̃s(Ω), we assume that it is extended by
zero onto Ωc.

Let s > 0. By using L2(Ω) as a pivot space, we have that the duality

pairing between Hs(Ω) and its dual H̃−s(Ω) = (Hs(Ω))′ coincides with the

L2(Ω) inner product. Moreover, we denote the dual of H̃s(Ω) by H−s(Ω).

Remark 1.1 (Duality pairs). In order to keep the notation as clear as pos-
sible, along the following sections we write

´
Ω µv for µ ∈ H ′ and v ∈ H.

However, if the duality needs to be stressed we use 〈µ, v〉 instead.

We state some important theoretical results regarding the space H̃s(Ω)
(see e.g., [2, Proposition 2.4]).

Proposition 1.2 (Poincaré inequality). Given a domain Ω and s > 0, there

exists a constant C such that, for all v ∈ H̃s(Ω),

‖v‖L2(Ω) ≤ C|v|Hs(Rn). (1.7)

Remark 1.3. Analogously to integer order Sobolev spaces, an immediate
consequence of the Poincaré inequality is that the Hs-seminorm is equivalent

to the full Hs-norm over H̃s(Ω). Observe that, given v ∈ H̃s(Ω), its Hs-
seminorm is given by

|v|2Hs(Rn) = |v|2Hs(Ω) + 2

ˆ
Ω
|v(x)|2

ˆ
Ωc

1

|x− y|n+2s
dy dx.

Definition 1.4. Given a (not necessarily bounded) set Ω with Lipschitz
continuous boundary and s ∈ (0, 1), we denote by ωsΩ : Ω → (0,∞) the
function given by

ωsΩ(x) =

ˆ
Ωc

1

|x− y|n+2s
dy. (1.8)
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Denoting δ(x) = d(x, ∂Ω), the following bounds hold

0 <
C

δ(x)2s
≤ ωsΩ(x) ≤ σn−1

2s δ(x)2s
∀x ∈ Ω,

where σn−1 is the measure of the n−1 dimensional sphere and C > 0 depends
on Ω. For the lower bound above we refer to [24, formula (1.3.2.12)], whereas
the upper bound is easily deduced by integration in polar coordinates.

Proposition 1.5 (Hardy inequalities, see [21, 24]). Let Ω be a bounded
Lipschitz domain, then there exists c = c(Ω, n, s) > 0 such thatˆ

Ω

|v(x)|2

δ(x)2s
dx ≤ c‖v‖2Hs(Ω) ∀ v ∈ H

s(Ω) if 0 < s < 1/2,

ˆ
Ω

|v(x)|2

δ(x)2s
dx ≤ c|v|2Hs(Ω) ∀ v ∈ H̃

s(Ω) if 1/2 < s < 1.

(1.9)

Corollary 1.6. If 0 < s < 1/2, then there exists a constant c = c(Ω, n, s) >
0 such that

‖v‖Hs(Rn) ≤ c‖v‖Hs(Ω) ∀v ∈ H̃s(Ω).

On the other hand, if 1/2 < s < 1 there exists a constant c = c(Ω, n, s) > 0
such that

‖v‖Hs(Rn) ≤ c|v|Hs(Ω) ∀v ∈ H̃s(Ω).

Remark 1.7. When s = 1/2, since Hardy’s inequality fails, it is not possible

to bound theH1/2(Rn)-seminorm in terms of theH1/2(Ω)-norm for functions
supported in Ω. However, for the purposes we pursue in this work, it suffices
to notice that the estimate

‖v‖H1/2(Rn) ≤ C|v|H1/2+ε(Ω)

holds for all v ∈ H̃1/2+ε(Ω), where ε > 0 is fixed.

An important tool for our work is the extension operator given by the
following (see [19, Theorem 5.4] and [33]).

Lemma 1.8. Given σ ≥ 0 and Ω a (not necessarily bounded) Lipschitz
domain, there exists a continuous extension operator E : Hσ(Ω)→ Hσ(Rn).
Namely, there is a constant C(n, σ,Ω) such that, for all u ∈ Hσ(Ω),

‖Eu‖Hσ(Rn) ≤ C‖u‖Hσ(Ω).

Remark 1.9. During the next sections we need Lemma 1.8 for Ωc, although
we prefer to state it in the more natural fashion, that is, in terms of Ω itself.

1.2. Fractional Laplacian and regularity of the Dirichlet homoge-
nous problem. The operator (−∆)s may be defined either by (1.1) or
(1.2). The latter is useful to cope with problems involving the operator in
a variational framework, and therefore to perform finite element analysis
of such problems. On the other hand, definition (1.1) allows to study the
operator from the viewpoint of pseudodifferential calculus. The equivalence
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between these two definitions can be found, for example, in [19]. Using the
definition (1.1), it is easy to prove the following.

Proposition 1.10. For any s ∈ R, the operator (−∆)s is of order 2s, that
is, (−∆)s : H`(Rn)→ H`−2s(Rn) is continuous for any ` ∈ R.

From the previous proposition, it might be expected that, given a bounded

smooth domain Ω, if u ∈ H̃s(Ω) satisfies (−∆)su = f for some f ∈ H`(Ω),
then u ∈ H`+2s(Ω). However, this is not the case. Regularity of solutions
of problems involving the fractional Laplacian over bounded domains is a
delicate issue. Indeed, consider for instance the homogeneous problem{

(−∆)su = f in Ω,
u = 0 in Ωc.

(1.10)

In [25], regularity results for (1.10) are stated in terms of Hörmander µ−spaces.
These mix the features of supported and restricted Sobolev spaces by means
of combining certain pseudodifferential operators with zero-extensions and
restriction operators. We refer to that work for a definition and further de-
tails. In terms of standard Sobolev spaces, the results therein may be stated
as follows (see also [31]).

Proposition 1.11. Let f ∈ Hr(Ω) for r ≥ −s and u ∈ H̃s(Ω) be the solu-
tion of the Dirichlet problem (1.10). Then, the following regularity estimate
holds

|u|Hs+α(Rn) ≤ C(n, α)‖f‖Hr(Ω).

Here, α = s+r if s+r < 1
2 and α = 1

2−ε if s+r ≥ 1
2 , with ε > 0 arbitrarily

small.

Remark 1.12. We emphasize that assuming further Sobolev regularity for
the right hand side function f does not imply that the solution u will be
any smoother than what is given by the previous proposition.

2. Statement of the problem

Throughout the remaining sections of this work we are going to denote
by V the space V = Hs(Rn), furnished with its usual norm. The domain
Ω is assumed to be bounded and smooth and therefore (due to the latter
condition) it is an extension domain for functions in Hs(Ω) (and of course
for functions in Hs(Ωc)). This fact is used in some parts of the presentation
without further comments.

Multiplying the first equation in (1.5) by a suitable test function v and
applying (1.6), we obtain

C(n, s)

2

¨
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy −

ˆ
Ωc
v(x)Nsu(x) dx

=

ˆ
Ω
f(x)v(x) dx.

(2.1)
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In order to write a weak formulation for our problem we assume f ∈ H̃−s(Ω),
g ∈ Hs(Ωc) and introduce the bilinear and linear forms a : V × V → R,
F : V → R,

a(u, v) =
C(n, s)

2

¨
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy,

F (u) =

ˆ
Ω
f(x)u(x) dx,

which are needed in the sequel.

Remark 2.1. The form a satisfies the identity

a(u, v) =
C(n, s)

2

(
〈u, v〉Hs(Rn) − 〈u, v〉Hs(Ωc)

)
∀u, v ∈ V.

This, in turn, implies the continuity of a in V , that is

|a(u, v)| ≤ C(n, s)|u|Hs(Rn)|v|Hs(Rn),

and the fact that over the set H̃s(Ω), a(v, v) coincides with C(n,s)
2 |v|2Hs(Rn).

2.1. Direct formulation. Our first approach is based on the strong im-
position of the Dirichlet condition. From (2.1) we obtain at once the weak
formulation: find u ∈ Vg such that

a(u, v) = F (v) ∀v ∈ H̃s(Ω), (2.2)

where Vg = {w ∈ V : w = g in Ωc}.
The treatment for this formulation is standard. Since Ωc is an extension

domain we may find gE ∈ Vg, gE := E(g), such that ‖gE‖V ≤ C‖g‖Hs(Ωc),
with C depending on Ω. Using that a(u, v) is continuous and coercive in

H̃s(Ω) (see Remark 2.1), existence and uniqueness of a solution u0 ∈ H̃s(Ω)
of the problem

a(u0, v) = F (v)− a(gE , v) ∀v ∈ H̃s(Ω),

is guaranteed, thanks to the continuity of the right hand side. Considering
u := u0 + gE we deduce the following.

Proposition 2.2. Problem (2.2) admits a unique solution u ∈ Vg, and there
exists C > 0 such that the bound

‖u‖V ≤ C
(
‖f‖

H̃−s(Ω)
+ ‖g‖Hs(Ωc)

)
is satisfied.

2.2. Mixed formulation. The idea behind this formulation dates back to
Babuška’s seminal paper [7]. We define the set Λ = (Hs(Ωc))′ = H̃−s(Ωc),
furnished with its usual norm, and introduce the bilinear and linear forms
b : V × Λ→ R, G : Λ→ R,

b(u, µ) =

ˆ
Ωc
u(x)µ(x) dx,
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and

G(λ) =

ˆ
Ωc
g(x)λ(x) dx,

which are obviously continuous.

The mixed formulation of (1.5) reads: find (u, λ) ∈ V × Λ such that

a(u, v)− b(v, λ) = F (v) ∀v ∈ V,
b(u, µ) = G(µ) ∀µ ∈ Λ.

(2.3)

Remark 2.3. As can be seen from the above considerations, the Lagrange
multiplier λ, which is associated to the restriction u = g in Ωc, coincides with
the nonlocal derivative Nsu in that set. In order to simplify the notation,
in the following we will refer to it as λ.

Notice that the kernel of the bilinear form b agrees with H̃s(Ω), that is,

K = {v ∈ V : b(v, µ) = 0 ∀µ ∈ Λ} = H̃s(Ω). (2.4)

Recalling Remarks 1.3 and 2.1, it follows that

‖v‖2V ≤ C|v|2Hs(Rn) = Ca(v, v) ∀v ∈ K. (2.5)

We are now in a position to prove the inf-sup condition for the form b.

Lemma 2.4. For all µ ∈ Λ, it holds that

sup
u∈V

b(u, µ)

‖u‖V
≥ 1

C
‖µ‖Λ, (2.6)

where C > 0 is the constant from Lemma 1.8.

Proof. Let µ ∈ Λ. Recalling that Λ = (Hs(Ωc))′ and taking into account
the extension operator given by Lemma 1.8, we have

‖µ‖Λ = sup
v∈Hs(Ωc)

b(v, µ)

‖v‖Hs(Ωc)
≤ C sup

v∈Hs(Ωc)

b(Ev, µ)

‖Ev‖V
≤ C sup

u∈V

b(u, µ)

‖u‖V
.

�

Due to the ellipticity of a on the kernel of b (2.5) and the inf-sup condition
(2.6), we deduce the well-posedness of the continuous problem by means of
the Babuška-Brezzi theory [9].

Proposition 2.5. Problem (2.3) admits a unique solution (u, λ) ∈ V × Λ,
and there exists C > 0 such that the bound

‖u‖V + ‖λ‖Λ ≤ C
(
‖f‖

H̃−s(Ω)
+ ‖g‖Hs(Ωc)

)
is satisfied.

Remark 2.6. Considering test functions v ∈ K, the first equation of (2.3)
implies that u solves (2.2), while the second equation of (2.3) enforces the
condition u ∈ Vg.
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3. Regularity of solutions

Since the maximum gain of regularity for solutions of the homogeneous
problem is “almost” half a derivative, from this point on we assume f ∈
H1/2−s(Ω). Moreover, we require the Dirichlet condition g to belong to

Hs+1/2(Ωc).

As described in §2.1, we consider an extension gE ∈ Hs+1/2(Rn) and
consider the homogeneous problem (1.10) with right hand side function equal
to f − (−∆)sgE : {

(−∆)su0 = f − (−∆)sgE in Ω,
u0 = 0 in Ωc.

Due to Proposition 1.10, it follows that (−∆)sgE ∈ H1/2−s(Rn), with

‖(−∆)sgE‖H1/2−s(Rn) ≤ C‖g
E‖Hs+1/2(Rn) ≤ C‖g‖Hs+1/2(Ωc),

so that the right hand side function f − (−∆)sgE belongs to H1/2−s(Ω).
Applying Proposition 1.11 (see also [25, 31]), we obtain that the solution

u0 ∈ H̃s+1/2−ε(Ω) for ε > 0, with

‖u0‖Hs+1/2−ε(Rn) ≤ C(ε)
(
‖f‖H1/2−s(Ω) + ‖(−∆)sgE‖H1/2−s(Ω)

)
.

Moreover, as the solution of (1.5) is given by u = u0 + gE , we deduce that

u ∈ Hs+1/2−ε(Rn), and

‖u‖Hs+1/2−ε(Rn) ≤ C(ε)
(
‖f‖H1/2−s(Ω) + ‖g‖Hs+1/2(Ωc)

)
. (3.1)

We have proved the regularity of solutions of (1.5).

Theorem 3.1. Let f ∈ H1/2−s(Ω) and let g ∈ Hs+1/2(Ωc). Let u ∈ Hs(Rn)

be the solution of (1.5). Then, for all ε > 0, u ∈ Hs+1/2−ε(Rn) and there
exists C= C(ε) > 0 such that

‖u‖Hs+1/2−ε(Rn) ≤ C
(
‖f‖H1/2−s(Ω) + ‖g‖Hs+1/2(Ωc)

)
.

Regularity of the nonlocal normal derivative of the solution is deduced
under an additional compatibility hypothesis on the Dirichlet condition.
Namely, we assume that (−∆)sΩcg ∈ H1/2−s(Ωc), where (−∆)sΩc denotes the
regional fractional Laplacian operator (1.4) in Ωc.

Theorem 3.2. Assume the hypotheses of Theorem 3.1, and in addition let g
be such that (−∆)sΩcg ∈ H1/2−s(Ωc). Then, for all ε > 0, u ∈ Hs+1/2−ε(Rn),

and its nonlocal normal derivative λ ∈ H−s+1/2−ε(Ωc). Moreover, there
exists C= C(ε) > 0 such that

‖u‖Hs+1/2−ε(Rn) + ‖λ‖H−s+1/2−ε(Ωc) ≤ C Σf,g,

where

Σf,g = ‖f‖H1/2−s(Ω) + ‖g‖Hs+1/2(Ωc) + ‖(−∆)sΩcg‖H1/2−s(Ωc). (3.2)
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Proof. We only need to prove that λ ∈ H−s+1/2−ε(Ωc). Let v ∈ H̃s−1/2+ε(Ωc).
Since λ = (−∆)su− (−∆)sΩcg in Ωc, we write∣∣∣∣ˆ

Ωc
λv

∣∣∣∣ ≤ (‖(−∆)su‖H−s+1/2−ε(Ωc) + ‖(−∆)sΩcg‖H−s+1/2−ε(Ωc)

)
‖v‖

H̃s−1/2+ε(Ωc)
.

Using Proposition 1.10, we deduce∣∣∣∣ˆ
Ωc
λv

∣∣∣∣ ≤ C (‖u‖Hs+1/2−ε(Rn) + ‖(−∆)sΩcg‖H−s+1/2−ε(Ωc)

)
‖v‖

H̃s−1/2+ε(Ωc)

and taking supremum in v we conclude that λ ∈ H−s+1/2−ε(Ωc), with

‖λ‖H−s+1/2−ε(Ωc) ≤ C Σf,g,

where we have used (3.1) in the last inequality and the notation (3.2). �

Remark 3.3. In view of Proposition 1.10, it might seem true that for ev-
ery ` ∈ R and g ∈ H`(Ωc) it holds that (−∆)sΩcg ∈ H`−2s(Ωc), which in

turn would imply that the hypothesis (−∆)sΩcg ∈ H1/2−s(Ωc) is superflu-
ous. However, we have not been able neither to prove nor to disprove this
claim. As an illustration on what type of additional hypotheses are utilized
to ensure this type of behavior of the restricted fractional Laplacian, we
refer the reader to [32, Lemma 5.6].

Naturally, the homogeneous case g ≡ 0 satisfies the assumptions of The-
orem 3.2.

Corollary 3.4. Let Ω be a smooth domain and f ∈ H1/2−s(Ω). Let u ∈
H̃s(Ω) be the solution of (1.10) and λ be its nonlocal normal derivative.

Then, for all ε > 0, it holds that λ ∈ H−s+1/2−ε(Ωc) and

‖λ‖H−s+1/2−ε(Ωc) ≤ C(n, s,Ω, ε)‖f‖H1/2−s(Ω).

Remark 3.5. We illustrate the sharpness of the regularity estimate for the
nonlocal derivative from Theorem 3.2 (or from Corollary 3.4) with the fol-
lowing simple example. Let Ω = (−1, 1) and consider the problem{

(−∆)su = 1 in (−1, 1),
u = 0 in R \ (−1, 1),

whose solution is given by u(x) = c(s)(1− x2)s+ for some constant c(s) > 0
(see, for example, [23]). We focus on the behavior of Nsu near the boundary
of Ω; for instance, let x ∈ (1, 2). Basic manipulations allow to derive the
bound

|Nsu(x)| > C(s)

(x− 1)s
.

Next, given α ∈ (0, 1), observe that (x − 1)α ∈ H`(1, 2) if and only if

` < α+ 1/2. Thus, by duality, we conclude that Nsu /∈ H1/2−s(1, 2).

The reduced regularity of the nonlocal normal derivative near the bound-
ary does not happen as an exception but is what should be expected in
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general. Indeed, following [3], let f : (−1, 1) → R be a function such that
its coefficients fj (in the expansion with respect to the basis of the so-called

Gegenbauer polynomials
{
C

(s+1/2)
j

}
) satisfy either

∞∑
j=0

fj j!

Γ(2s+ j + 1)
C

(s+1/2)
j (−1) 6= 0 or

∞∑
j=0

fj j!

Γ(2s+ j + 1)
C

(s+1/2)
j (1) 6= 0.

Then, the solution to (1.10) is given by u(x) = (1 − x2)s+φ(x), where φ is
a smooth function that does not vanish as |x| → 1 (cf. [3, Theorem 3.14]).
Therefore, the same argument as above applies: the nonlocal derivative of
the solution of the homogeneous Dirichlet problem belongs to H−s+1/2−ε(R\
(−1, 1)), and the ε > 0 cannot be removed.

We remark that in the limit s → 1 the nonlocal normal derivatives con-
centrate mass towards the boundary of the domain, so that [20]

lim
s→1

ˆ
Ωc
Nsu v =

ˆ
∂Ω

∂u

∂n
v ∀u, v ∈ C2

0 (Rn).

This estimate also illustrates the singular behavior ofNsu near the boundary
of Ω.

4. Finite Element approximations

In this section we begin the study of finite element approximations to
problem (2.3). Here we assume the Dirichlet datum g to have bounded sup-
port. This assumption allows to simplify the error analysis of the numerical
method we propose in this work, but it is not necessary. In the next section,
estimates for data not satisfying such hypothesis are deduced.

4.1. Finite element spaces. Given H > 1 big enough, we denote by ΩH

a domain containing Ω and such that

cH ≤ min
x∈∂Ω, y∈∂ΩH

d(x, y) ≤ max
x∈∂Ω, y∈∂ΩH

d(x, y) ≤ CH, (4.1)

where c, C are constants independent of H. We set conforming simplicial
meshes on Ω and ΩH \ Ω, in such a way that the resulting partition of
ΩH remains admissible. Moreover, to simplify our analysis, we assume the
family of meshes to be globally quasi-uniform.

Remark 4.1. The parameter H depends on the mesh size h in such a way
that as h goes to 0, H tends to infinity. The purpose of ΩH is twofold: in
first place, to provide a domain in which to implement the finite element
approximations. In second place, the behavior of solutions may be controlled
in the complement of ΩH . Assuming g to have bounded support implies that,
for h small enough, the domain ΩH contains the support of the Dirichlet
datum g. Moreover, since there is no reason to expect λ to be compactly
supported, taking H depending adequately on h ensures that the decay of
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the nonlocal derivative in Ωc
H is of the same order as the approximation

error of u and λ within ΩH .

We consider nodal basis functions

ϕ1, . . . , ϕNint , ϕNint+1, . . . , ϕNint+Next ,

where the first Nint nodes belong to the interior of Ω and the last Next to
ΩH \ Ω. The discrete spaces we consider consist of continuous, piecewise
linear functions:

Vh = span {ϕ1, . . . , ϕNint+Next},
Kh = span {ϕ1, . . . , ϕNint},
Λh = span {ϕNint+1, . . . , ϕNint+Next}.

The spaces Vh and Λh are endowed with the ‖ · ‖V and ‖ · ‖Λ norms,
respectively. We set the discrete functions to vanish on ∂ΩH , so that

Vh ⊂ H̃3/2−ε(ΩH).

4.2. The mixed formulation with a Lagrangian multiplier. The dis-
crete problem reads: find (uh, λh) ∈ Vh × Λh such that

a(uh, vh)− b(vh, λh) = F (vh) ∀vh ∈ Vh,
b(uh, µh) = G(µh) ∀µh ∈ Λh.

(4.2)

Notice that the space Kh coincides with the kernel of the restriction of b
to Λh and consists of piecewise linear functions over the triangulation of Ω
that vanish on ∂Ω

To verify the well-posedness of the discrete problem (4.2), we need to
show that the bilinear form a is coercive on Kh and that the discrete inf-sup
condition for the bilinear form b holds.

Lemma 4.2. There exists a constant C > 0, independent of h and H, such
that for all vh ∈ Kh,

a(vh, vh) ≥ C‖vh‖2V . (4.3)

Proof. Observe that Kh is a subspace of the continuous kernel K given by
(2.4). The lemma follows by the coercivity of a on K. �

In order to prove the discrete inf-sup condition, we utilize a projection

over the discrete space. Since Vh ⊂ H̃3/2−ε(ΩH) for all ε > 0, it is possible

to define the L2-projection of functions in the dual space of H̃3/2−ε(ΩH).
Namely, we consider Ph : H−σ(ΩH) → Vh for 0 ≤ σ ≤ 1, the operator
characterized by ˆ

ΩH

(w − Phw) vh = 0 ∀vh ∈ Vh.

The following property will be useful in the sequel.
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Lemma 4.3. Let 0 < σ < 1, and assume the family of meshes to be quasi-
uniform. Then, there exists a constant C, independent of h and H, such
that

‖Phw‖Hσ(ΩH) ≤ C‖w‖Hσ(ΩH)

for all w ∈ Hσ(ΩH).

Proof. The proof follows by interpolation. On the one hand, the L2-stability
estimate

‖Phw‖L2(ΩH) ≤ ‖w‖L2(ΩH)

is obvious. On the other hand, the H1 bound

‖Phw‖H1(ΩH) ≤ C‖w‖H1(ΩH) (4.4)

is a consequence of a global inverse inequality (see, for example [6]). Because
Ph commutes with dilations, a scaling argument allows to show that C can
be taken independent of H. Indeed, we can assume –after a translation, if
needed– that ΩH is a ball BR of radius R ≥ 1 centered at the origin. Denote
by P̂h the L2-projections over meshes in B1. Then, for every ŵ ∈ H1(B1)
and every quasi-uniform mesh it holds that

‖P̂hŵ‖H1(B1) ≤ C1‖ŵ‖H1(B1),

where C1 is a fixed constant. Next, define T : B1 → BR by T (x̂) = Rx̂,
and, for each w ∈ H1(BR), the function w ◦ T = ŵ ∈ H1(B1). Every quasi-
uniform mesh T on BR with mesh size h is in correspondence with a quasi-
uniform mesh on B1 with mesh size h

R through the obvious identification

T = T (T̂ ). For these meshes we have the identity P̂hw = P̂ h
R
ŵ and hence,

changing variables,

‖∇Phw‖L2(BR) = R
n
2
−1‖∇P̂ h

R
ŵ‖L2(B1) ≤ C1R

n
2
−1
(
‖∇ŵ‖L2(B1) + ‖ŵ‖L2(B1)

)
.

Therefore,

‖∇Phw‖L2(BR) ≤ C1

(
‖∇w‖L2(BR) +

1

R
‖w‖L2(BR)

)
,

and then

‖∇Phw‖L2(BR) ≤ 2C1‖w‖H1(BR).

Since bounds for ‖Phw‖L2(BR) are immediate, (4.4) follows. �

Remark 4.4. The global quasi-uniformity hypothesis could actually be weak-
ened and substituted by the ones from [13, 14, 17]. In these works, meshes
are required to be just locally quasi-uniform, but some extra control on the
change in measures of neighboring elements is needed as well.

Stability estimates in negative-order norms are obtained by duality.
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Lemma 4.5. Let 0 ≤ σ ≤ 1, and assume the family of meshes to be quasi-
uniform. Then, there is a constant C, independent of h and H, such that

‖Phw‖H̃−σ(ΩH)
≤ C‖w‖

H̃−σ(ΩH)

for all w ∈ H̃−σ(ΩH).

Proof. Consider v ∈ Hσ(ΩH). We haveˆ
ΩH

Phw v =

ˆ
ΩH

PhwPhv =

ˆ
ΩH

wPhv ≤ ‖w‖H̃−σ(ΩH)
‖Phv‖Hσ(ΩH).

The proof follows by the Hσ-stability of Ph. �

Remark 4.6. For simplicity, the previous lemma was stated for functions
defined in ΩH , but clearly it is also valid over ΩH \ Ω:

‖Phw‖H̃−σ(ΩH\Ω)
≤ C‖w‖

H̃−σ(ΩH\Ω)
∀w ∈ H̃−σ(ΩH \ Ω). (4.5)

For the sake of completeness, since the scaling argument does not carry
over straightforwardly, we sketch a proof of the stability estimate

‖Phw‖Hσ(ΩH\Ω) ≤ C‖w‖Hσ(ΩH\Ω).

As in the proof of Lemma 4.3, it suffices to show

‖Phw‖H1(ΩH\Ω) ≤ C‖w‖H1(ΩH\Ω) (4.6)

with a fixed C, and then conclude by interpolation with the L2 estimate.

Consider a smooth truncation function 0 ≤ ψ ≤ 1, such that ψ = 1 in
Ω1 := {x ∈ Rn : d(x,Ω) < 1}. Assume the support of ψ is contained in a
fixed open ball Br with radius r. Thus, for H large enough (namely, for h
small enough), Br ⊂ ΩH . Given w ∈ H1(ΩH\Ω), we write w = wψ+w(1−ψ)
and therefore we just need to bound

‖Ph(wψ)‖H1(ΩH\Ω) and ‖Ph[w(1− ψ)]‖H1(ΩH\Ω).

Because r is fixed, if h is small enough the former norm coincides with the
norm over Br \Ω, since Br is open and contains the support of ψ. Moreover,
since ψ is smooth, we bound

‖Ph(wψ)‖H1(ΩH\Ω) = ‖Ph(wψ)‖H1(Br\Ω) ≤ C(r,Ω)‖wψ‖H1(Br\Ω)

≤ C(r,Ω, ψ)‖w‖H1(ΩH\Ω).

On the other hand, considering a zero-extension within Ω and using (4.4)
and the smoothness of ψ we deduce

‖Ph[w(1− ψ)]‖H1(ΩH\Ω) = ‖Ph[w(1− ψ)]‖H1(ΩH) ≤ C‖w(1− ψ)‖H1(ΩH)

≤ C‖w(1− ψ)‖H1(ΩH\Ω) ≤ C‖w‖H1(ΩH\Ω),

with a final constant C depending only on r and ψ. From these estimates,
(4.6) follows immediately, and in consequence, we obtain the bound (4.5).



FE FOR THE NONHOMOGENEOUS FRACTIONAL DIRICHLET PROBLEM 15

Proposition 4.7. Let s 6= 1
2 . Then, there exists a constant C, independent

of h and H, such that the following discrete inf-sup condition holds:

sup
vh∈Vh

b(vh, µh)

‖vh‖V
≥ C‖µh‖Λ ∀µh ∈ Λh. (4.7)

Proof. In first place, let E be the extension operator given by Lemma 1.8
(replacing Ω with Ωc there) and Ph the L2-projection considered in this
section. For simplicity of notation, we write, for v ∈ Hs(Ωc), Ph(Ev) =

Ph

(
(Ev)

∣∣
ΩH

)
. Taking into account the fact that Ph(Ev) ∈ H̃s(ΩH) and

the continuity of these operators, it is clear that

‖Ph(Ev)‖V = ‖Ph(Ev)‖
H̃s(ΩH)

≤ C‖v‖Hs(Ωc) ∀v ∈ Hs(Ωc),

which in turn allows us to use Ph(Ev) as a Fortin operator.

Indeed, let µh ∈ Λh, v ∈ Hs(Ωc) and write

sup
vh∈Vh

b(vh, µh)

‖vh‖V
≥ b(Ph(Ev), µh)

‖Ph(Ev)‖V
≥ C b(v, µh)

‖v‖Hs(Ωc)
.

Using the fact that v is arbitrary together with (2.6), we deduce (4.7). �

Remark 4.8. The previous proposition is the basis for the stability of the
mixed numerical method we propose in this paper. The proof works only for
s 6= 1

2 and thus from this point on we asume that to be the case. However,
we remark that the experimental orders of convergence we have obtained for
s = 1

2 agree with those expected by the theory by taking the limit s → 1
2 ,

supporting the fact that this drawback is a mere limitation of our proof.

Due to the standard theory of finite element approximations of saddle
point problems [9], we deduce the following estimate.

Proposition 4.9. Let (u, λ) ∈ V ×Λ and (uh, λh) ∈ Vh ×Λh be the respec-
tive solutions of problems (2.3) and (4.2). Then there exists a constant C,
independent of h and H, such that

‖u− uh‖V + ‖λ− λh‖Λ ≤ C
(

inf
vh∈Vh

‖u− vh‖V + inf
µh∈Λh

‖λ− µh‖Λ
)
. (4.8)

In order to obtain convergence order estimates for the finite element ap-
proximations under consideration, it remains to estimate the infima on the
right hand side of (4.8). Within ΩH , this is achieved by means of a quasi-
interpolation operator [16, 29]. We denote such an operator by Πh; depend-
ing on whether discrete functions are required to have zero trace or not,
Πh could be either the Clément or the Scott-Zhang operator. For these
operators, it holds that (see, for example, [15])

‖v −Πhv‖Ht(Ω) ≤ Chσ−t‖v‖Hσ(Ω) ∀v ∈ Hσ(Ω), 0 ≤ t ≤ σ ≤ 2. (4.9)

Since this estimate is applied later to ΩH \Ω it is important to stress that
the constant can be taken independent of the diameter of Ω. This is indeed
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the case due to the fact that (4.9) is obtained by summing local estimates
on stars (see e.g., [2, 15]).

Lemma 4.10. Given v ∈ L2(ΩH \Ω) and 0 ≤ σ ≤ 1, the following estimate
holds:

‖v − Phv‖H̃−σ(ΩH\Ω)
≤ Chσ‖v‖L2(ΩH\Ω). (4.10)

The constant C is independent of h and H.

Proof. Let v ∈ L2(ΩH \ Ω). Given ϕ ∈ Hσ(ΩH \ Ω), considering the quasi-
interpolation operator Πh and taking into account that (v − Phv) ⊥ Vh,´

ΩH\Ω(v − Phv)ϕ

‖ϕ‖Hσ(ΩH\Ω)
=

´
ΩH\Ω(v − Phv)(ϕ−Πhϕ)

‖ϕ‖Hσ(ΩH\Ω)
≤

≤ ‖v − Phv‖L2(ΩH\Ω)

‖ϕ−Πhϕ‖L2(ΩH\Ω)

‖ϕ‖Hσ(ΩH\Ω)
.

Combining well-known approximation properties of Πh with the trivial es-
timate ‖v − Phv‖L2(ΩH\Ω) ≤ ‖v‖L2(ΩH\Ω), we conclude the proof. �

For the following we need to define restrictions in negative order spaces.
Let σ ∈ (0, 1) and choose a fixed cutoff function η ∈ C∞(Ωc) such that

0 ≤ η ≤ 1, supp(η) ⊂ ΩH \ Ω, η(x) = 1 in ΩH−1 \ Ω. (4.11)

Define the operator Tη : Hσ(ΩH \Ω)→ Hσ(Ωc) that multiplies by η any
extension to Ωc of functions in Hσ(ΩH \ Ω), that is, Tη(ψ) := ηψ. We have
‖Tη(ψ)‖Hσ(Ωc) ≤ C‖ψ‖Hσ(ΩH\Ω), with a constant that does not depend on
H (use interpolation from the obvious cases σ = 0 and σ = 1).

Then, Tη can be extended to negative-order spaces, Tη : H̃−σ(Ωc) →
H̃−σ(ΩH \ Ω). Consider an element µ ∈ H̃−σ(Ωc), and define Tη by means
of

〈Tη(µ), ψ〉 = 〈µ, ηψ〉.
The continuity ‖Tη(µ)‖

H̃−σ(ΩH\Ω)
≤ C‖µ‖

H̃−σ(Ωc)
, follows easily from the

continuity in positive spaces. Notice that similar considerations hold for

T1−η : H̃−σ(Ωc) → H̃−σ(Ωc
H−1). A localization estimate for negative-order

norms using these maps reads as follows.

Lemma 4.11. The following identity holds for all µ ∈ H̃−σ(Ωc):

‖µ‖
H̃−σ(Ωc)

≤ ‖Tη(µ)‖
H̃−σ(ΩH\Ω)

+ ‖T1−η(µ)‖
H̃−σ(ΩcH−1)

.

Proof. We first notice that, for every ψ ∈ Hσ(Ωc), it holds that

ψ = Tη

(
ψ
∣∣
ΩH\Ω

)
+ T1−η

(
ψ
∣∣
ΩcH−1

)
,
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and that

‖Tη
(
ψ
∣∣
ΩH\Ω

)
‖Hσ(Ωc) ≤ ‖ψ

∣∣
ΩH\Ω

‖Hσ(ΩH\Ω),

‖T1−η

(
ψ
∣∣
ΩcH−1

)
‖Hσ(Ωc) ≤ ‖ψ

∣∣
ΩcH−1

‖Hσ(ΩcH−1).

So, given µ ∈ H̃−σ(Ωc), it follows that

〈µ, ψ〉
‖ψ‖Hσ(Ωc)

≤
〈Tη(µ), ψ

∣∣
ΩH\Ω

〉

‖ψ
∣∣
ΩH\Ω

‖Hσ(ΩH\Ω)

+
〈T1−η(µ), ψ

∣∣
ΩcH−1

〉

‖ψ
∣∣
ΩcH−1

‖Hσ(ΩcH−1)

(4.12)

for all ψ ∈ Hσ(Ωc). The proof follows by taking suprema in both sides of
the inequality above. �

Remark 4.12. From (4.12), it is apparent that, if µ ∈ H̃−σ(Ωc) and ν ∈
H̃−σ(ΩH \ Ω), then

‖µ− ν‖
H̃−σ(Ωc)

≤ ‖Tη(µ)− ν‖
H̃−σ(ΩH\Ω)

+ ‖T1−η(µ)‖
H̃−σ(ΩcH−1)

.

In order to simplify notation, in the sequel we just write ηµ and (1− η)µ
for Tη(µ) and T1−η(µ), respectively.

Next, we estimate the approximation errors within the meshed domain.

Proposition 4.13. The following estimates hold:

inf
vh∈Vh

‖u− vh‖Hs(ΩH) ≤ C h1/2−εΣf,g, (4.13)

inf
µh∈Λh

‖ηλ− µh‖H̃−s(ΩH\Ω)
≤ C h1/2−εΣf,g, (4.14)

where Σf,g is given by (3.2) and η is the cutoff function in (4.11).

Proof. Estimate (4.13) is easily attained by taking into account that u van-
ishes on Ωc

H (because we are assuming that the support of g is bounded), and
applying the regularity estimate (3.1) jointly with approximation identities
for quasi-interpolation operators.

In order to prove (4.14), in first place we assume s < 1/2, so that
ηλ ∈ L2(ΩH\Ω) by Theorem 3.2. Set µh = Ph(ηλ), then applying (4.10), ap-

proximation properties of Ph and the continuity of Tη : H−s+1/2−ε(ΩH\Ω)→
H−s+1/2−ε(Ωc), we obtain (4.14) immediately.

Meanwhile, if s > 1/2, considering σ = s in (4.5) and (4.10), we obtain:

‖w − Phw‖H̃−s(ΩH\Ω)
≤ C‖w‖

H̃−s(ΩH\Ω)

‖w − Phw‖H̃−s(ΩH\Ω)
≤ Chs‖w‖L2(ΩH\Ω).

Interpolating these two identities, recalling the regularity of λ given by The-
orem 3.2 and the continuity of Tη, we deduce that

‖ηλ− Ph(ηλ)‖
H̃−s(ΩH\Ω)

≤ Ch1/2−ε‖λ‖H−s+1/2−ε(Ωc) ≤ Ch
1/2−ε Σf,g.

�
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As the norms in both V and Λ involve integration on unbounded domains
and the discrete functions vanish outside ΩH , in order to estimate the infima
in (4.8), we need to rely on identities that do not depend on the discrete
approximation but on the behavior of u and λ. For the term corresponding to
the norm of u, Corollary 1.6 suffices (as long as supp(g) ⊂ ΩH), whereas for
the nonlocal derivative contribution it is necessary to formulate an explicit
decay estimate.

Proposition 4.14. Let ΩH be such that supp(g) ⊂ ΩH . Then, there exists
a constant C, independent of f , g and H, such that the estimate

‖(1− η)λ‖
H̃−s(ΩcH−1)

≤ ‖λ‖L2(ΩcH−1)

≤ CH−(n/2+2s)
(
‖f‖H−s+1/2(Ω) + ‖g‖Hs+1/2(Ωc)

)
holds, where η is the cutoff function from (4.11).

Proof. It is evident that

‖(1− η)λ‖
H̃−s(ΩcH−1)

≤ ‖(1− η)λ‖L2(ΩcH−1) ≤ ‖λ‖L2(ΩcH−1).

Given x ∈ Ωc
H−1, it holds that

|λ(x)| ≤ C(n, s)

[ˆ
Ω

|u(y)|
|x− y|n+2s

dy + |g(x)|
ˆ

Ω

1

|x− y|n+2s
dy

]
,

and therefore

‖λ‖2L2(ΩcH−1) ≤ C
[ˆ

ΩcH−1

(ˆ
Ω

|u(y)|
|x− y|n+2s

dy

)2

dx

+

ˆ
ΩcH−1

|g(x)|2
(ˆ

Ω

1

|x− y|n+2s
dy

)2

dx

]
.

(4.15)

We estimate the two integrals in the right hand side above separately. As
for the first one, consider the auxiliary function ω : Ω→ R,

ω(y) =

(ˆ
ΩcH−1

1

|x− y|2(n+2s)

)1/2

;

integrating in polar coordinates and noticing that (H−1)−(n/2+2s) ≤ CH−(n/2+2s),
we deduce

|ω(y)| ≤ CH−(n/2+2s) ∀y ∈ Ω,

and so, ‖ω‖L2(Ω) ≤ CH−(n/2+2s). As a consequence, applying Minkowski’s
integral inequality, the Cauchy-Schwarz inequality and the previous estimate
for ‖ω‖L2(Ω), we obtain

ˆ
ΩcH−1

(ˆ
Ω

|u(y)|
|x− y|n+2s

dy

)2

dx ≤ C
(ˆ

Ω
|u(y)| |ω(y)| dy

)2

≤ CH−2(n/2+2s)‖u‖2L2(Ω).
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Finally, the L2-norm of u is controlled in terms of the data (see, for example,
(3.1)).

As for the second term in the right hand side in (4.15), it suffices to notice
that for x ∈ Ωc

H−1, it holdsˆ
Ω

1

|x− y|n+2s
dy ≤ CH−(n+2s).

This implies that
ˆ

ΩcH−1

|g(x)|2
(ˆ

Ω

1

|x− y|n+2s
dy

)2

dx ≤ CH−2(n+2s)‖g‖2L2(ΩcH−1),

and concludes the proof. �

Remark 4.15. As the finite element approximation uh to u in ΩH has an
Hs-error of order h1/2−ε, we need the previous estimate for the nonlocal
derivative to be at least of the same order. Thus, we require H−(n/2+2s) ≤
Ch1/2, that is, H ≥ Ch−1/(n+4s).

Collecting the estimates we have developed so far, we are ready to prove
the following.

Theorem 4.16. Let Ω be a bounded, smooth domain, f ∈ H1/2−s(Ω) and

g ∈ Hs+1/2(Ωc). Moreover, assume that g has bounded support and consider

ΩH according to (4.1), with H & h−1/(n+4s). For the finite element approx-
imations considered in this work and h small enough, the following a priori
estimates hold:

‖u− uh‖V ≤ Ch1/2−εΣf,g, (4.16)

‖λ− λh‖Λ ≤ Ch1/2−εΣf,g. (4.17)

for a constant C depending on ε but independent of h, H, f and g, and Σf,g

defined by (3.2).

Proof. In order to obtain the above two inequalities, it is enough to estimate
the infima in (4.8). Since g is boundedly supported and H →∞ as h→ 0, if

h is small enough then supp(g) ⊂ ΩH . So, u− vh ∈ H̃s(ΩH) for all vh ∈ Vh
and thus we may apply Corollary 1.6 (or Remark 1.7 if s = 1/2) together
with (4.13):

inf
vh∈Vh

‖u− vh‖V ≤ C inf
vh∈Vh

‖u− vh‖Hs(ΩH) ≤ Ch1/2−ε Σf,g.

The infimum involving the nonlocal derivative is estimated as follows.
Consider the cutoff function η from (4.11). Since µh vanishes in Ωc

H , using
Remark 4.12, we have

inf
µh∈Λh

‖λ− µh‖Λ ≤ inf
µh∈Λh

‖ηλ− µh‖H̃−s(ΩH\Ω)
+ ‖(1− η)λ‖

H̃−s(ΩcH−1)
.



20 G. ACOSTA, J.P. BORTHAGARAY AND N. HEUER

The first term on the right hand side is bounded by means of estimate (4.14),
whereas for the second one we apply Proposition 4.14 and notice that the
choice of H implies that H−(n/2+2s) ≤ Ch1/2. It follows that

inf
µh∈Λh

‖λ− µh‖Λ ≤ Ch1/2−εΣf,g,

and the proof is completed. �

4.3. The Direct Method. As it is already mentioned in the introduction,
in this work we mainly focus on the mixed formulation. Nonetheless, here we
provide some details regarding the direct discrete formulation. We consider
the discrete problem: find uh ∈ Vh,gh such that

a(uh, vh) = F (vh) ∀vh ∈ Kh, (4.18)

where Vh,gh is the subset of Vh of functions that agree with gh in ΩH \ Ω.

The function gh is chosen as an approximation of g; for instance, we may
consider gh = Πh(g). As a consequence, it holds that ‖g − gh‖Hs(Ωc) ≤
Ch1/2−ε‖g‖Hs+1/2(Ωc). Let u and u(h) be the solutions of the continuous

problem with right hand side f and Dirichlet conditions g and gh, respec-
tively. Using Proposition 2.2, we deduce that

‖u− u(h)‖V ≤ Ch1/2−ε‖g‖Hs+1/2(Ωc).

Therefore, in order to bound ‖u − uh‖V it is enough to bound ‖u(h) −
uh‖V . However, if supp(g) ⊂ ΩH , then u(h) − uh ∈ K = H̃s(Ω) and due to
the continuity and coercivity of a in K we deduce the best approximation
property,

‖u(h) − uh‖V ≤ C inf
vh∈Vgh

‖u(h) − vh‖V .

Taking vh = Πh(u) and using the triangle inequality we are led to bound

‖u(h) − u‖V and ‖u − Πh(u)‖V . A further use of interpolation estimates
allows to conclude

Theorem 4.17. Let Ω be a bounded, smooth domain, f ∈ H−s+1/2(Ω),

g ∈ Hs+1/2(Ωc) for some ε > 0, and assume that supp(g) ⊂ ΩH . For the
finite element approximations considered in this subsection, it holds that

‖u− uh‖V ≤ Ch1/2−ε
(
‖f‖H−s+1/2(Ω) + ‖g‖Hs+1/2(Ωc)

)
,

for a constant C depending on ε but independent of h, H, f and g.

5. Volume constraint truncation error

The finite element approximations performed in the previous section re-
fer to a problem in which the Dirichlet condition g has bounded support.
Here, we develop error estimates without this restriction on the volume con-
straints. However, as it is not possible to mesh the whole support of g, we
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are going to take into account the Dirichlet condition in the set ΩH consid-
ered in the previous section. We compare u, the solution to (1.5) to ũ, the
solution to {

(−∆)sũ = f in Ω,
ũ = g̃ in Ωc,

(5.1)

where g̃ = ηg, and η is the cutoff function (4.11). This allows to apply the
finite element estimates developed in Section 4 to problem (5.1), because
supp(g̃) ⊂ ΩH . The objective of this section is to show that choosing H in

the same fashion as there, namely H ≥ Ch−1/(n+4s), leads to the same order
of error between the continuous truncated problem and the original one.

Since the problems under consideration are linear, without loss of gener-
ality we may assume that g ≥ 0 (otherwise split g = g+− g− and work with
the two problems separately).

Proposition 5.1. The following estimate holds:

|u− ũ|Hs(Ω) ≤ CH−(n/2+2s)‖g‖L2(ΩcH), (5.2)

for a constant C independent of H and g.

Proof. Denote ϕ = u − ũ the difference between the solutions to equations
(1.5) and (5.1). Then,{

(−∆)sϕ = 0 in Ω,
ϕ = g − g̃ ≥ 0 in Ωc.

We emphasize that ϕ is nonnegative (because of the comparison principle),
s−harmonic in Ω and vanishes in ΩH−1 \ Ω.

Moreover, let us consider ϕ̃ = ϕχΩ. As ϕ ∈ Hs+1/2−ε(Rn) vanishes in

ΩH−1 \Ω, it is clear that ϕ̃ ∈ H̃s+1/2−ε(Ω), and applying the integration by
parts formula (1.6):

a(ϕ, ϕ̃) =

ˆ
Ω
ϕ̃(−∆)sϕ = 0.

The nonlocal derivative term in last equation is null because ϕ̃ vanishes
in Ωc. Splitting the integrand appearing in the form a and recalling the
definition of ωsΩ (1.8), we obtain

|ϕ|2Hs(Ω) = −2

ˆ
Ω
ϕ2(x)ωsΩ(x) dx+ 2

ˆ
Ω
ϕ(x)

(ˆ
ΩcH−1

g(y)− g̃(y)

|x− y|n+2s
dy

)
dx

≤ 2

ˆ
Ω
ϕ(x)

(ˆ
ΩcH−1

g(y)− g̃(y)

|x− y|n+2s
dy

)
dx.

(5.3)

Applying the Cauchy-Schwarz inequality in the integral over Ωc
H−1 and tak-

ing into account that g − g̃ ≤ g and that (H − 1)−(n/2+2s) ≤ CH−(n/2+2s),
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it follows immediately that

|ϕ|2Hs(Ω) ≤ C(n, s)H−(n/2+2s)‖ϕ‖L1(Ω)‖g‖L2(ΩcH−1). (5.4)

We need to bound ‖ϕ‖L1(Ω) adequately. Let ψ ∈ Hs(Rn) be a function that
equals 1 over Ω. Multiplying (−∆)sϕ by ψ, integrating on Ω and applying
(1.6), since ϕ is s-harmonic in Ω, we obtain

0 = a(ϕ,ψ)−
ˆ

Ωc
Nsφ(y)ψ(y) dy,

or equivalently,

0 = C(n, s)

ˆ
Ω

ˆ
Ωc

(ϕ(x)− ϕ(y))(1− ψ(y))

|x− y|n+2s
dy dx

− C(n, s)

ˆ
Ωc

(ˆ
Ω

ϕ(y)− ϕ(x)

|x− y|n+2s
dx

)
ψ(y) dy.

This implies that ˆ
Ω

ˆ
Ωc

ϕ(x)− ϕ(y)

|x− y|n+2s
dy dx = 0.

Recalling that ϕ is zero in ΩH−1 \ Ω and that g − g̃ ≤ g, from the previous
identity it follows thatˆ

Ω
ϕ(x)ωsΩ(x) dx =

ˆ
Ω

ˆ
ΩcH−1

g(y)− g̃(y)

|x− y|n+2s
dydx ≤ CH−(n/2+2s)‖g‖L2(ΩcH−1).

Recall that the function ωsΩ is uniformly bounded in Ω and that ϕ ≥ 0. We
deduce

‖ϕ‖L1(Ω) ≤ CH−(n/2+2s)‖g‖L2(ΩcH−1), (5.5)

and combining this bound with (5.4) yields (5.2). �

As a byproduct of the proof of the previous proposition, we obtain the
following

Lemma 5.2. There is a constant C such that the bound

‖u− ũ‖L2(Ω) ≤ CH−(n/2+2s)‖g‖L2(ΩcH−1) (5.6)

holds, for a constant C independent of H and g.

Proof. As before, we write ϕ = u− ũ. From the first line in (5.3),

2

ˆ
Ω
ϕ2(x)ωsΩ(x) dx ≤

ˆ
Ω
ϕ(x)

(ˆ
ΩcH−1

g(y)− g̃(y)

|x− y|n+2s
dy

)
dx ≤

≤ CH−(n/2+2s)‖ϕ‖L1(Ω)‖g‖L2(ΩcH−1).

Combining this estimate with (5.5), we deduceˆ
Ω
ϕ2(x)ωsΩ(x) dx ≤ CH−(n+4s)‖g‖2L2(ΩcH−1),
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where the function ωsΩ is given by Definition 1.4. The lower uniform bound-
edness of ωsΩ implies (5.6) immediately. �

Given ũ, the solution to (5.1), let us denote λ̃ = Nsũ its nonlocal normal
derivative.

Proposition 5.3. There is a constant C such that

‖λ− λ̃‖Λ ≤ CH−(n/2+2s)‖g‖L2(ΩcH−1), (5.7)

for a constant C independent of H and g.

Proof. Let φ ∈ Hs(Ωc), according to Lemma 1.8 we consider an extension
Eφ ∈ Hs(Rn) such that ‖Eφ‖Hs(Rn) ≤ C‖φ‖Hs(Ωc). By linearity, it is clear

that λ − λ̃ = Nsϕ, where ϕ = u − ũ. Applying the integration by parts
formula (1.6) and recalling that ϕ is s−harmonic in Ω,ˆ

Ωc
(λ− λ̃)φ =

C(n, s)

2

¨
Q

(ϕ(x)− ϕ(y))(Eφ(x)− Eφ(y))

|x− y|n+2s
dx dy.

Since ϕ vanishes in ΩH−1 \ Ω, it is simple to boundˆ
Ωc

(λ− λ̃)φ ≤

C

(∣∣〈ϕ,Eφ〉Hs(Ω)

∣∣+

∣∣∣∣∣
ˆ

Ω

ˆ
ΩcH−1

(ϕ(x)− ϕ(y))(Eφ(x)− φ(y))

|x− y|n+2s
dx dy

∣∣∣∣∣
)
.

The first term on the right hand side above is bounded by C|ϕ|Hs(Ω)‖φ‖Hs(Ωc),

and Proposition 5.1 provides the bound |ϕ|Hs(Ω) ≤ CH−(n/2+2s)‖g‖L2(ΩcH−1).

For the second term, splitting the integrand it is simple to obtain the esti-
mates:∣∣∣∣∣
ˆ

Ω
ϕ(x)Eφ(x)

(ˆ
ΩcH−1

1

|x− y|n+2s
dy

)
dx

∣∣∣∣∣ ≤ C‖ϕ‖L2(Ω)‖Eφ‖L2(Ω),∣∣∣∣∣
ˆ

Ω
ϕ(x)

(ˆ
ΩcH−1

φ(y)

|x− y|n+2s
dy

)
dx

∣∣∣∣∣ ≤ CH−(n/2+2s)‖ϕ‖L1(Ω)‖φ‖L2(ΩcH−1),∣∣∣∣∣
ˆ

Ω
Eφ(x)

(ˆ
ΩcH−1

ϕ(y)

|x− y|n+2s
dy

)
dx

∣∣∣∣∣ ≤ CH−(n/2+2s)‖Eφ‖L1(Ω)‖ϕ‖L2(ΩcH−1),∣∣∣∣∣
ˆ

Ω

(ˆ
ΩcH−1

ϕ(y)φ(y)

|x− y|n+2s
dy

)
dx

∣∣∣∣∣ ≤ CH−(n+2s)‖ϕ‖L2(ΩcH)‖φ‖L2(ΩcH−1).

The terms on the right hand sides of the inequalities above are estimated
applying Lemma 5.2 and Proposition 5.1, as well as recalling the continuity
of the extension operator and of the inclusion L2(Ω) ⊂ L1(Ω). We obtain´

Ωc(λ− λ̃)φ

‖φ‖Hs(Ωc)
≤ CH−(n/2+2s)‖g‖L2(ΩcH−1) ∀φ ∈ Hs(Ωc).
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Taking supremum in φ, estimate (5.7) follows. �

Combining the estimates obtained in this section, we immediately prove
the following result.

Theorem 5.4. Let (u, λ) be the solution of problem (2.3), and consider g̃ as
in the beginning of this section. Moreover, let (uh, λh) be the finite element
approximations of the truncated problem (5.1), defined on ΩH , where H

behaves as h−1/(n+4s). Then,

‖u− uh‖Hs(ΩH−1) ≤ Ch1/2−ε Σf,g (5.8)

and

‖λ− λh‖Λ ≤ Ch1/2−ε Σf,g, (5.9)

for a constant C depending on ε but independent of h, H, f and g, and Σf,g

defined by (3.2).

Proof. Applying the triangle inequality, we write

‖u− uh‖Hs(ΩH−1) ≤ ‖u− ũ‖Hs(ΩH−1) + ‖ũ− uh‖Hs(ΩH−1).

The second term above is bounded by ‖ũ − uh‖V , which is controlled by
(4.16). As for the first one, recall that u = ũ in ΩH−1 \ Ω, so that

‖u−ũ‖2Hs(ΩH−1) =

‖u− ũ‖2Hs(Ω) + 2

ˆ
Ω
|u(x)− ũ(x)|2

(ˆ
ΩH−1\Ω

1

|x− y|n+2s
dy

)
dx.

The integral above is bounded by means of Hardy-type inequalities from
Proposition 1.5, (or by Remark 1.7 if s = 1/2) because (u − ũ)χΩ belongs

to H̃s(Ω). So, resorting to Proposition 5.1 and Lemma 5.2,

‖u− ũ‖Hs(ΩH−1) ≤ C‖u− ũ‖Hs(Ω) ≤ CH−(n/2+2s),

which –taking into account the behavior of H– is just (5.2) and (5.6).

Estimate (5.9) is an immediate consequence of the triangle inequality, the
dependence of H on h and equations (5.7) and (4.17). Indeed,

‖λ− λh‖Λ ≤ ‖λ− λ̃‖Λ + ‖λ̃− λh‖Λ ≤ Ch1/2−ε Σf,g.

�

Remark 5.5. We point out that (5.8) estimates the error in the Hs(ΩH−1)-
norm. Since it is only possible to mesh a bounded domain, there is no hope
in general to obtain convergence estimates for ‖u−uh‖V , unless some extra
hypothesis on the decay of the volume constraint is included.
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6. Numerical experiments

We display the results of the computational experiments performed for the
mixed formulation of (1.5). The scheme utilized for these two-dimensional
examples is based on the code introduced in [1], where details about the
computation of the matrix having entries a(ϕi, ϕj) can be found.

The examples we provide give evidence of the convergence of the scheme
towards the solution u both for Dirichlet data with bounded and unbounded
support. We point out that our convergence estimates (Theorems 4.16 and
5.4) are expressed in terms of fractional-order norms, and thus their com-
putation is, in general, out of reach. Whenever not possible, we compute
orders of convergence in L2-norms.

Also, as stated in Remark 4.8, although the possibility s = 1
2 was excluded

from our analysis, the numerical evidence we present here indicates that the
same estimates hold in such a case as for s 6= 1

2 .

Our first example is closely related to Remark 3.5. Indeed, the solution
considered there gives a function with constant fractional Laplacian and
supported in the n-dimensional unit ball. In this example, however, we
shrink the domain so that we produce a nonhomogeneous volume constraint
with bounded support. Namely, for Ω = B(0, 1/2) ⊂ R2 we study{

(−∆)su = 2 in Ω,
u = 1

22sΓ(1+s)2
(1− | · |2)s+ in Ωc. (6.1)

By linearity, the exact solution of this problem can be expressed as the sum
of the solutions to problems{

(−∆)su1 = 1 in Ω,
u1 = 1

22sΓ(1+s)2
(1− | · |2)s+ in Ωc, (6.2)

and {
(−∆)su2 = 1 in Ω,

u2 = 0 in Ωc.
(6.3)

The first problem above has a smooth solution within Ω, whereas the latter
has the minimal regularity guaranteed by Proposition 1.11. Explicitly, by
Remark 3.5, the exact solution is given by

u(x) = u1(x) + u2(x) =
1

22sΓ(1 + s)2

[(
1− |x|2

)s
+

+

(
1

4
− |x|2

)s
+

]
.

Moreover, finite element solutions to (6.1) can also be represented as
the sum of the corresponding solutions to (6.2) and (6.3). In practice, we
consider the two problems separately and add up their discrete solutions.

The error in the Hs(Ω)-norm is estimated as follows. In first place, we
write

‖u− uh‖Hs(Ω) ≤ ‖u1 − u1,h‖Hs(Ω) + ‖u2 − u2,h‖Hs(Ω).
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As for the first term in the right hand side above, since u1 is smooth in Ω,
we may bound it by interpolation,

‖u1 − u1,h‖Hs(Ω) ≤ ‖u1 − u1,h‖1−sL2(Ω)
‖u1 − u1,h‖sH1(Ω).

The second term can be computed by using the same trick as in [2, Lemma
5.1] because it corresponds to a problem with homogeneous Dirichlet condi-
tions,

|u2 − u2,h|Hs(Ω) ≤ |u2 − u2,h|Hs(Rn) =

(ˆ
Ω
u2(x)− u2,h(x)

)1/2

.

We carried out computations for s ∈ {0.1, . . . , 0.9} on meshes with size
h ∈ {0.045, 0.037, 0.03, 0.025}. The auxiliary domains considered were ΩH =

B(0, H + 1/2) with H = Ch−1/(2+4s) and C = C(s) was such that H would
equal 1 if h was set to 0.15. Therefore, the support of the volume constraint
was contained in every auxiliary domain ΩH .

Our results are summarized in Tables 1 and 2. In spite of only having
upper bounds for the errors, the experimental order of convergence E.O.C.
is in good agreement with the theory. In Table 1 it is also noticeable that
the error is driven by the contribution of the nonsmooth component u2, that
is two orders of magnitude larger than the error of the smooth component.
The observed order of convergence of the latter is in good agreement with
the fact that u1 ∈ H2(Ω).

h ‖u1 − u1,h‖Hs(Ω) ‖u2 − u2,h‖Hs(Ω) ‖u− uh‖Hs(Ω)

0.045 7.593× 10−4 6.423× 10−2 6.499× 10−4

0.037 4.629× 10−4 5.742× 10−2 5.789× 10−4

0.030 3.187× 10−4 5.196× 10−2 5.228× 10−4

0.025 3.168× 10−4 4.799× 10−2 4.831× 10−4

E.O.C. 1.53 0.49 0.50
Table 1. Upper bounds for the errors in Example 6.1 with
s = 0.5.

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E.O.C. 0.48 0.48 0.49 0.49 0.50 0.53 0.56 0.59 0.62
Table 2. Experimental orders of convergence in Hs(Ω) for
Example 6.1, for s ∈ {0.1, . . . , 0.9}.

We next display two examples where the Dirichlet condition has un-
bounded support, posed in the two-dimensional unit ball. The Poisson
kernel for this domain is known [28, Chapter 1], and thus it is simple to
obtain an explicit expression for the solutions of problems as the two we
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analyze next. More precisely, let Ω = B(0, r) ⊂ Rn for some r > 0 and let
g : Ωc → R. Then, a solution to{

(−∆)su = 0 in Ω,
u = g in Ωc,

(6.4)

is given by

u(x) =

ˆ
Ωc
g(y)P (x, y) dy, (6.5)

where

P (x, y) =
Γ(n/2) sin(πs)

πn/2+1

(
r2 − |x|2

|y|2 − r2

)s
1

|x− y|2
, x ∈ Ω, y ∈ Ωc.

We compute numerical solutions to (6.4) in the two-dimensional unit ball
with two different functions

g(x) = exp(−|x|2) and g(x) =
1

|x|4
.

In the experiments performed, we set ΩH = B(0, H + 1) with H =

Ch−1/(2+4s) and C = C(s) such that H = 1 for h = 0.1. We considered dis-
cretizations for s ∈ {0.1, . . . , 0.9} on meshes with size h ∈ {0.1, 0.082, 0.067, 0.055, 0.045}.
Table 3 shows the computed orders of convergence in L2(Ω) for these two
problems, and Figure 1 displays the computed L2-errors for some values
of s and g(x) = 1

|x|4 . In this example solutions are not smooth up to the

boundary of Ω. Thus, the observed convergence with orders approximately
s+ 1/2 is expected.

s g(x) = exp(−|x|2) g(x) = 1
|x|4

0.1 0.64 0.55
0.2 0.78 0.64
0.3 0.86 0.74
0.4 0.90 0.89
0.5 0.97 1.03
0.6 1.15 1.14
0.7 1.27 1.16
0.8 1.32 1.26
0.9 1.37 1.40

Table 3. Experimental orders of convergence in L2(Ω) for
(6.4) with Dirichlet data with unbounded support.

Moreover, since we cannot mesh the support of the volume constraint,
as h decreases the actual region where we measure the error is expanded.
According to Remark 4.15, in these experiments we have considered H =
Ch−1/(4+2s). Nevertheless, the computational cost of solving (4.2) for H
large is extremely high. In practice, we have worked with small values of
the constant C that relates H with h, especially for s small.
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Figure 1. Computed L2-errors for s = 0.1 (green), s = 0.5
(red) and s = 0.9 (blue) for problem (6.4) with g(x) = 1

|x|4 .

Finally, since it is expected that increasing the truncation parameter H
leads to a better approximation, we analyze the dependence on H in the
previous example with g(x) = 1

|x|4 . We compare convergence rates both in

L2(ΩH) and L2(Rn). Because

‖g‖L2(B(0,R)c) =

√
π

3
R−3,

the decay of the error in Ωc
H is algebraic in h,

‖g‖L2(ΩcH) ≤ Ch
3

2+4s .

Thus, if we utilize a sequence of domains {ΩH} with H not large enough,
the tail of the L2-norm of the volume constraint has a large impact on the
L2(Rn)-error. In Figure 2 we compare the effect of increasing the constant in

the identity H = Ch−1/(2+4s). Errors are observed to diminish considerably,
and there is a slight improvement in the orders of convergence as well. Notice
also that the errors in L2(Rn) are one order of magnitude larger than errors
in L2(ΩH).
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