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Abstract. A conceptually simple physical interpretation of a conserved Hamiltonian

H for a mechanical system with a time-dependent constraint is given. For the case of a

bead on a vertical hoop forced to rotate with constant angular velocity ω, H is nothing

but the total energy of the system plus the external actuator keeping ω fixed. In

an analogy with thermodynamics, the Hamiltonian is introduced as a thermodynamic

potential obtained from a Legendre transformation of the energy, in a very instructive

way. The ideas can be made extensive to different problems with time-dependent

constraints.
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1. Introduction

When teaching the Lagrange formalism in undergraduate or graduate classical mechanics

courses it is usual to deal with problems in which the mechanical energy EM is not

conserved, but the Hamiltonian H is. While this last property is a consequence that

the Lagrangian L does not depend explicitly on time, the time dependent energy is

due to the presence of non-conservative forces. In these situations, it is usual to hear

the same question from students: so, if H is constant, what is it? what is its physical

meaning? There is no general answer to these questions. Nonetheless, we give below

an example of a standard non-conservative problem where H has a straightforward

physical interpretation. We show as well that H can be obtained from a Legendre

transformation of EM (besides its usual definition as a Legendre transformation of

L) resulting in a simple and interesting parallelism between H and a thermodynamic

potential. This perspective can be useful to help students understand the physics behind

the Hamiltonian.

2. A bead on a rotating hoop

Let us consider the very well known mechanical setup depicted in Fig. 1: a bead of mass

m on a rotating massless hoop of radius a that is externally constrained to move with

constant angular velocity ω around the vertical ẑ axis. Due to this constraint, this is a

problem with just one degree of freedom. The best choice of a generalized coordinate

in order to write down L is the angular variable θ as shown in Fig. 1. The problem is

treated in many textbooks [1, 2, 3] as an example of time-dependent constraints (i.e.,

φ = ωt).

Due to the gravitational force acting on m, there is a critical frequency ωc =
√

g/a

below which the only stable equilibrium occurs at θ = 0. For ω > ωc, the stable

equilibrium θo is given by cos θo = g/aω2, with θo continuously moving from 0 to π/2

as ω increases. Much has been said and written about the many different aspects of

this problem and slight variations of it [4]. However, we are not interested here in the

detailed solution nor in the dynamics of the system. Instead we are going to focus on

more general matters, mainly associated with the conserved quantities.

The Lagrangian L = T − U of this 1-degree of freedom system is

L(θ, θ̇) =
1

2
ma2(θ̇2 + ω2 sin2 θ) +mga cos θ (1)

The mechanical energy EM = T + U is not a conserved quantity (i.e., dEM/dt 6= 0)

since an external actuator is doing work on the system to keep ω fixed. The system is

non-conservative not in the sense that there are dissipative forces, but in the sense that

there are forces doing work that have not been derived from a conservative potential

energy. In this case, the external force acting to keep ω fixed.
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Figure 1. (color online) A bead of mass m on a rotating hoop of radius a and constant

angular velocity ω, under gravity.

The Hamiltonian, on the other hand, calculated from its definition as the Legendre

transformation of L

H =
∂L

∂θ̇
θ̇ − L =

1

2
ma2(θ̇2 − ω2 sin2 θ)−mga cos θ (2)

is conserved.‡ Since it is conserved, does it have any physical interpretation? Let us

see.

The external constraint torque that keeps ω constant is collinear with the vertical

rotation axis of the hoop (ẑ axis). Any other torque component is canceled by the

constraint that the hoop only rotates around the vertical axis. We can calculate this

torque from its dynamical effects as Nz = dLz

dt
. The angular momentum is given by

Lz = Izω where Iz = ma2 sin2 θ is the moment of inertia around the ẑ axis. The work

done by the torque is

W =

∫ φ

0

Ndφ′ =

∫ φ

0

dLz

dt
dφ′ =

∫ Lz

0

dL′

z

dφ′

dt
=

∫ Lz

0

dL′

zω = ωLz

= mω2a2 sin2 θ (3)

‡ To be precise, H should be written explicitly in terms of its natural independent variables, θ and its

conjugated momentum pθ = ∂L

∂θ̇
. But we are not interested in these “minor” details here.
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since ω is constant.§ This work is done by the external actuator. Thus, the energy

change in the actuator after doing this work is Ea = −W . The total energy of the

bead-hoop system plus the external actuator is then

ET = Em + Ea (4)

=
1

2
ma2(θ̇2 + ω2 sin2 θ)−mga cos θ −ma2ω2 sin2 θ

=
1

2
ma2(θ̇2 − ω2 sin2 θ)−mga cos θ = H

So, we arrive at the very interesting result that the conserved Hamiltonian is nothing

but the total energy of the original system plus the actuator, that is, of the system and

its surroundings, which obviously must be a conserved quantity, unless dissipative forces

were acting (which are not).

The mechanical energy EM is not conserved because in the Lagrange formalism the

work done by the constraint forces is not included. When these forces are associated

with time-independent constraints, they do not do work. So, not including them has no

effect and EM is conserved unless dissipative forces are acting. But when the constraint

forces are linked to time-dependent constraints (as in our case), they indeed do work

and because this work is not included in EM , it cannot conserve [5].

3. Hamiltonian and thermodynamic potentials

We are going to make use of the fact that H is a conserved energy to go a step forward

and make an interesting analogy between H and the thermodynamic potentials. If the

constraint φ̇ = ω is relaxed, the system bead + hoop has now two degrees of freedom.

Choosing θ and φ as generalized coordinates (see Fig. 1), the Lagrangian is written as

L(θ, φ̇, θ̇) =
1

2
ma2(θ̇2 + φ̇2 sin2 θ) +mga cos θ. (5)

The energy is conserved now since the actuator is not working. On the other hand, φ is

a cyclic coordinate. Hence, its conjugate momentum is also conserved. This momentum

is just the ẑ-component of the angular momentum, Lz = mφ̇a2 sin2 θ. The energy is

given by

EM(θ, θ̇, Lz) =
1

2
ma2θ̇2 +

1

2

L2

z

ma2 sin2 θ
−mga cos θ (6)

where the first term and the last two terms to the right correspond to the kinetic energy

and the potential energy of the effective one dimensional reduced problem, respectively.

Since EM is conserved, Eqn. 6 is the “correct potential” and, from its minimization

(i.e.,
(

∂EM

∂θ

)

Lz

= 0), one can obtain the equilibrium states of the bead.

§ The lower limit of the integral in Lz has been arbitrarily set to 0. Any other value would just only

change the arbitrary energy zero, which has no physical significance.
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The equilibrium state of a thermodynamic system is ruled by the second law. If,

for simplicity, we consider a simple system whose equation of state can be described by

just the volume, temperature and pressure, the 2nd law states that in equilibrium the

internal energy U of such a system is a minimum if the entropy and the volume are kept

constant. This formulation of the 2nd law is sometimes referred as the Energy Minimum

Principle (EMP) [6] and is very useful for our purposes.

In the real world it is hard to find any process occurring at constant values of

extensive parameters like the entropy or volume. Instead, most processes occur at a

constant value of an intensive parameter, for instance, the pressure P . The concept of

a reservoir is useful in these cases [6]. For instance, a P -reservoir is a system so large

that any volume change affecting it can be considered negligible in such a way that the

pressure inside it is always constant. If it is put in contact with other system, it also

fixes the pressure of this system. A P -reservoir only exchanges energy in the form of

mechanical work PdV .

So, let us put our simple thermodynamic system in contact with a P -reservoir. The

equilibrium state can no longer be obtained from the minimization of U since V is not

constant. In order to apply correctly the EMP we need to consider the whole “isolated”

arrangement: system + P -reservoir, whose total volume (and entropy) is constant.

Sometimes, this can be a difficult task. But the magnificence of the thermodynamics

comes to our help and establishes that the equilibrium state is achieved from the

potential obtained from a Legendre transformation of U with respect to V (conjugate

variable associated with P ). In other words, minimizing UT = U + UR is absolutely

equivalent to minimize

H(S, P ) = U(S, V )−

(

∂U

∂V

)

S

V = U(S, V ) + PV (7)

where the potential H(S, P ) is nothing but the enthalpy of the system. Thus, when

the system is in contact with a P -reservoir, H is the correct potential to obtain the

equilibrium state, not U . Obviously, it is straightforward to show that H(S, P ) = UT .

Let us go back to our mechanical bead+hoop system and make an analogy. If

you put it in contact with a ω-reservoir (i.e., a very powerful external actuator that

keeps ω constant regardless what the bead does), the equilibrium state can no longer

be obtained from the minimization of EM since Lz is no longer conserved. We need to

consider, in turn, the whole “isolated” arrangement: system + ω-reservoir, whose total

Lz is constant. We have already seen that EM + Ea is just H. Anyway, let us follow

the protocol and calculate the Legendre transformation of EM with respect to Lz

EM((θ, θ̇, Lz))−

(

∂EM

∂Lz

)

Lz = EM((θ, θ̇, Lz))− ωLz

=
1

2
ma2(θ̇2 − ω2 sin2 θ)−mga cos θ (8)

= H(θ, θ̇, ω)
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So, H is the correct “potential” to analize the equilibrium state when the system is in

contact with a ω-reservoir.

4. Conclusions

Making use of a simple mechanical problem, i.e. a massive bead on a massless rotating

hoop at constant ω, we analyze the physics behind the conserved Hamiltonian. We

show that it corresponds to the total energy of the bead-hoop system plus the external

actuator that keeps ω fixed. We also present an interesting and instructive analogy

between the Hamiltonian and the thermodynamic potentials that can help students to

understand its physical meaning.
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