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Abstract 
Chromate conversion treatments have been widely used due to their excellent 
corrosion resistance properties; however, their use is increasingly restricted 
because of the highly toxic chromic acid solutions required, with consequent 
effluent disposal and ecological problems. The removal of these toxic chemi-
cals is considered a priority within most of the developed countries. In this 
work, the corrosion resistance of different alternative pretreatments applied 
on electrogalvanised steel sheet: 1) Cr(III) and Zr complexes layer, 2) Ce(III) 
layer, 3) Ce(III)/Ce(IV) double layer, 4) Cr(VI) chromating was investigated, 
and its results compared with those from the tests performed using bare elec-
trogalvanized steel sheets as a substrate. These samples were exposed to ae-
rated 0.05 mol/L NaCl or 0.1 mol/L Na2SO4 solutions. The electrochemical 
behavior of samples was studied by electrochemical techniques. For three 
days of immersion in the solution test, the experimental results have shown 
that, compared with the Cr(VI) protective properties, the Cr(III) + Zr com-
plex layer presented similar performance. Even though the initial corrosion 
resistance was offered by the Ce(III) and Ce(VI)/Ce(III) conversion coatings 
was relatively good, it quickly decreased as a function of the exposure time. 
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1. Introduction 

The corrosion of electrogalvanised steel is one of the major problems in indus-
try. The material could become more resistant to corrosion if a protective con-
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version coating is applied on top of the zinc layer. The term “conversion coat-
ing”, as used in the metal-finishing industry, refers to the conversion of a metal 
surface into a surface that will more easily accept applied coatings and/or pro-
vide a more corrosion resistant surface [1]. Conversion coatings for zinc have 
been in use since the early 1920’s and there are several different products on the 
market [2]-[16]. These layers protect the zinc coating by acting as a physical bar-
rier to the inducing corrosion species (water, oxygen and ions), and corrosion 
inhibitor. Furthermore, when the surface is scratched or mechanically damaged, 
enough water is absorbed by the layer to swell and mend the damaged areas 
(self-healing effect) [17]. 

The Cr(III)-based conversion coating technology was commercially intro-
duced in the late 1980’s as an earlier attempt to replace the carcinogenic hexava-
lent chrome from as many metal-finishing processes as possible [18]-[32]. To-
machuk et al. [33] evaluated the corrosion behavior in zinc coatings obtained 
from a cyanide-free alkaline bath, then subjected to Cr(III)-based passivation 
treatments with or without sealing treatment and submerged in different elec-
trolytes. The experimental data analysis allowed to infer that the Cr(III)-based 
conversion treatment with a suitable sealant provides good corrosion resistance. 
Also, that still performs better attached to a suitable painting system due to an 
increased amount of white corrosion products covering the surface micro-defects 
act as a barrier to oxygen and ionic species diffusion through the conversion 
layer. Furthermore, the Cr(III) layer also decreased the rate of the oxygen reduc-
tion reaction during oxidation of the zinc substrate. 

As well, among the chromate-free and environmentally friendly pre-treatments 
developed so far, the application of Zr-based conversion coatings has gained ac-
ceptance [34] [35] [36] [37]. They are currently introduced in several industrial 
applications, such as in the automotive industry. Puomi et al. [38] showed that 
the Zr-based conversion coatings on galvanized steel and Galfan steel is mainly 
composed of ZrO2 and their thickness < 50 nm. The ZrO2 has very attractive 
properties, such as improved resistance to wear and corrosion, heat resistance 
and good adhesion to metallic surfaces [39]-[50]. 

Hinton et al. made the first research on the rare earths salt-based treatments 
[9] [10] [51]. They found that cerium was effective in reducing the corrosion 
cathodic reaction. Other authors also investigated the mechanism of corrosion 
inhibition on zinc treated with Ce salts [52]-[58]. Aramaki [59] proposed mod-
ifying the Ce2O3 film usually formed on the treated surface, oxidizing with H2O2. 
The result was the formation of a highly resistant layer to the 0.5 mol/L NaCl 
solution. XPS (X-ray photoelectron spectroscopy) analysis showed the formation 
of a thin film (thickness < 50 nm) containing a small amount of Ce(IV) which is 
derived from the oxidation of Ce(III) by the H2O2. The coexistence of Ce(IV) is 
still investigated [60]. Shibli [61], developed a nanoparticulate CeO2 film where-
in Ce(NO3)3∙6H2O was incorporated into the zinc bath. The coating produced 
had a thickness of 50 µm; however the thickness of the CeO2 film was approx-
imately 20 nm to 40 nm. Hamlaoui [62] investigated the electrodeposition of 
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layers obtained from electrolytes based on cerium salts on galvanized steel. He 
found that the more concentrated solution to lower its pH and, therefore, work-
ing in highest concentration was vigorous bubbling confirming the presence of 
large amounts of H2↑. However, if the film was treated with cerium PEG (po-
lyethylene glycol) after passivation, this reduced the number of cracks in the de-
posit by reducing the hydrogen present in the aqueous medium or by decreasing 
the film thickness. Montemor et al. [63] and Ferreira et al. [64] have studied the 
effect of treatment time on the chemical composition and corrosion behavior of 
Ce(NO3)3 conversion coatings for galvanized steel and found that the film com-
position and thickness change with time. 

As an extensive research is still needed to find effective but non-toxic and en-
vironmentally friendly conversion treatments for replacing the based on Cr(VI), 
the aim of the present work was to study the protective performance of: 1) 
Cr(III) + Zr complex layer; 2) Ce(III) layer; 3) Ce(IV)/Ce(III) double layer; or 4) 
Cr(VI) chromating (as reference) applied on electrogalvanised steel sheets. For 
this, replicates of the coated sheets were immersed for 72 h in aerated 0.05 mol/L 
NaCl or 0.1 mol/L Na2SO4 solutions and their behavior investigated through AC 
(electrochemical impedance spectroscopy-EIS) and DC (potentiodynamic pola-
rization) electrochemical techniques. The EIS data were fitted and interpreted by 
means of equivalent electrical circuit models. 

2. Experimental Details 
2.1. Preparation of Electrogalvanised and Passivated Samples 

1) Panels of low-carbon steel (AISI 1010) with dimension of 7 cm × 10 cm and 
0.1 cm thickness were degreased in an alkaline solution (based on KOH, trie-
thanolamine and K2SiO3) at 22˚C ± 2˚C, and polarization with a current density 
of 4 A/dm2 for 3 min. Then, these panels were rinsed in deionized water, sub-
jected to pickling in HCl 1:1 with an iron inhibitor for 1 min, newly rinsed with 
deionized water, activated in 5% wt ammonium bifluoride solution for 30 s, and 
rinsed once more in deionized water. Once this step was completed, the steel 
samples were electrogalvanised using a cyanide-free alkaline bath containing 
Zn2+ 12.5 g/L, KOH 170 g/L, K2CO3 50 g/L, leveler additive 10 mL/L, brightening 
agents 1 mL/L, conditioner 10 mL/L. The cathodic current density was 2 A/dm2 
operated at 22˚C ± 2˚C for 45 min [32]; these samples were identified with the 
symbol (Z). 

Immediately after applying the electrogalvanising step, the surface was acti-
vated in 0.5% v/v HNO3 solution, pH = 1, for 10 s, rinsed in deionized water, 
and pretreated with any of the conversion products specified as follows:  

2) Blue-colored Cr(III)-Zr(IV)-based conversion treatment (symbol ZCrZr) 
whose operating parameters were pH = 4.2 (adjusted with 1% v/v NaOH or 5% 
v/v H2SO4 solutions), immersion in the industrial bath for 30 s, temperature 
22˚C ± 2˚C, and mechanical stirring. The passivation bath was composed by 
hexafluoro silicic acid + trivalent chromium ions + zirconium complexes (com-
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mercial product). 
3) Pale iridescent colored Ce(III)-based conversion treatment (symbol ZCe) 

whose operating parameters were pH 3.5, immersion for 30 s, temperature 22˚C 
± 2˚C, and mechanical stirring. The passivation bath was composed by 2.5 g/L 
CeCl3∙7H2O2, 1 mL/L H2O2, and 0.1 g/L H3BO3. The pH = 3.5 (adjusted to with 
1%v/v NaOH or 5% v/v H2SO4 solutions). 

4) Pale iridescent colored Ce(IV)/Ce(III) bilayer (symbol ZCeD). The first 
layer was obtained in 1 g/L Ce(NH4)2(NO3)6 solution, and the second one in 
2.5 g/L CeCl3, 1 mL/L H2O2, and 0.1 g/L H3BO3. The operating parameters in 
both passivation baths were pH = 3.5 (adjusted with 1% NaOH or 5% H2SO4 
solutions), immersion for 30 s, temperature 22˚C ± 2˚C, and mechanical stir-
ring. 

5) Yellow-colored Cr(VI)-based conversion treatment (symbol ZCr6) used as 
reference samples. The operating parameters were pH = 1.8, immersion for 30 s, 
temperature 22˚C ± 2˚C, and mechanical stirring. The passivation bath was 
composed by 4.6 g/L Na2Cr2O7, conductive salt (NaCl), and diluted HCl for pH 
adjustment. 

At finishing the conversion treatments, the samples were rinsed in deionized 
water and dried for 15 min at 80˚C. All the samples were stored in desiccators at 
22˚C ± 2˚C up to their use. 

2.2. Thickness Measurements 

Coatings thickness was measured using the X-Ray Fluorescence Method, Hel-
mut Fischer mod XDL-B according to the ASTM B568-98 standard [65]. 

2.3. Electrochemical and Corrosion Behavior 

The corrosion resistance of the conversion coatings was evaluated by potenti-
odynamic polarization and electrochemical impedance spectroscopy in aerated 
0.05 mol/L NaCl or 0.1 mol/L Na2SO4 solutions at 22˚C ± 2˚C. 

The electrochemical cell consisted of a classic three-electrode arrangement, 
where the counter electrode was a Pt mesh, the reference a Saturated Calomel 
Electrode (SCE = +0.244 V vs. NHE), and the tested specimen acted as the 
working electrode. The area of the working electrode exposed to the electrolyte 
solution was 15.9 cm2.  

The potentiodynamic polarization curves were acquired by a Potentios-
tat/Galvanostat Solartron 1280 at a swept rate of 0.2 mV/s, over the range ±0.250 
V/(SCE) from the corrosion potential (Ecorr). The electrode potentials were stabi-
lized for 10 min in the electrolyte solution before starting each test. The inhibi-
tive eficiency (E%) was calculated from the following equation [66]: 

( )-0 - -0% 100corr corr i corrE j j j= − ×  

where: 
jcorr-0 is the corrosion current density of the bare galvanized steel sheet; and 
jcorr-i is the corrosion current density of the galvanized steel sheet protected by 
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the i-conversion coating. 
The EIS tests were performed with a Solartron 1255 Frequency Response 

Analyser® (FRA) coupled to an Impedance Potentiostat-Galvanostat Omnimetra 
PG-19A®, and both controlled by the ZPlot®. The measurements were performed 
at the Ecorr in the 105 to 10−1 Hz frequency range, as a function of the exposure 
time in the electrolyte solution. A sinusoidal signal with 8 mV of amplitude was 
applied, and the acquisition rate was 10 points/decade. The Ecorr was recorded 
before and after the finishing point of each experiment to verify that the statio-
nary requirement was obeyed. 

The experimental spectra were fitted and interpreted on the basis of equiva-
lent electrical circuits using the software developed by Boukamp [67]. All im-
pedance measurements were carried out with the electrochemical cell inside a 
Faraday cage to reduce external interferences as much as possible. 

Considering that the corrosion resistance of passivated materials depends on 
the production procedure, each test was performed on three replicates of each 
samples type, and the reported results in the following Tables and Figures are 
the average of them. 

3. Results and Discussion 
3.1. Chemical Physical Characteristics and Thickness  

Measurements 

The identification symbol, description and thickness measurements of the inves-
tigated samples are summarized in Table 1. It can be observed that the samples 
present similar coating thickness. As it was not possible to obtain information 
about the passive layer thickness, the values shown in Table 1 correspond to the 
total coating thickness (zinc + passive layer). 

3.2. Polarization Curves 

Potentiodynamic measurements were performed to study the corrosion behavior 
of electrogalvanised steel/conversion layer systems in comparison to the electro-
galvanised steel sheets without treatment and in contact with aerated 0.05 mol/L 
NaCl or 0.1 mol/L Na2SO4 solution at 22˚C ± 2˚C. Four coating compositions 
were studied corresponding to the ZCe, ZCeD, ZCrZr and ZCr6 samples,  
 
Table 1. Identification, description and coating thickness of the tested samples. 

Identification 
Description 

(zinc/conversion layer) 
Average thickness of the 

Zn + conversion coating (μm) 

Z Zn without conversion treatment 9.47 ± 0.23 

ZCe Zn/Ce3+ 9.88 ± 0.39 

ZCeD Zn/Ce3+ and Ce4+ 9.48 ± 0.75 

ZCrZr Zn/Cr3+ + Zr complexes 10.82 ± 0.53 

ZCr6 Zn/Cr6+ 11.12 ± 0.56 
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respectively. The potentiodynamic curves are shown in Figure 1(a) and Figure 
1(b), and both the corrosion potential (Ecorr) and corrosion current density (jcorr) 
values obtained from the Tafel extrapolation method are collected in Table 2. It 
also presents the calculated polarization resistance (Rp) and protective efficiency 
percentage (E%)values offered by each of the investigated samples. 

Potentiodynamic curves obtained in aerated 0.05 mol/L NaCl solution for all 
the tested surface conditions are displayed in Figure 1(a). The results show sim-
ilar anodic and cathodic characteristics for the bare zinc coating (Z), or those 
covered ZCe or ZCeD conversion layers, with a slight polarization of the ca-
thodic reactions and a strong dissolution tendency in the anodic ones. For these 
samples type, the main cathodic reaction (oxygen reduction) produces OH− ions,  
 

 
Figure 1. Polarization curves for the electrogalvanised samples without or with surface 
passivation treatments. Electrolyte: (a) 0.05 M NaCl solution; (b) 0.1 mol/L Na2SO4. 
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which react with the Zn2+ coming from the anodic areas to form zinc corrosion 
products. These, combined with the Cl− electrolyte ions, lead to the formation of 
Simonkolleite and/or other zinc-chloride charged ions [68] [69] and, as a con-
sequence, to a certain diffusional controlled tendency, which indicates that in 
Cl− medium these sample types are more inclined to inhibit the cathodic reac-
tion due to the high water permeability and porous nature of the protective lay-
ers [70] [71] [72] [73]. Both the pure zinc coating and the conversion layers de-
fects lead to anodic depolarization, whereas the conversion layer deposition on 
partial substrate areas would be the reason for the slight cathodic polarization 
reaction on the ZCe and ZCeD samples. 

On the contrary, the anodic and cathodic branches of the ZCrZr and ZCr6 
samples presented significant differences regarding the above tested samples. 
The Ecorr value of the chromium treated samples was comparatively more nega-
tive than the measured in the other ones. Their potentiodynamic curves show 
that after an active dissolution the ZCrZr and ZCr6 samples revealed a passive 
behavior until approximately −0.96 V/SCE when the passive film formed on 
both sample surfaces was broken causing the restarting of the substrate active 
dissolution. As well, the cathodic polarization curves of the ZCr6 samples indi-
cated an activation control, while the corresponding to the ZCrZr samples was 
very different.  

The results also show that the reaction mainly depolarized by the chromate 
formed passivating film was the cathodic one. A comparison of the ZCrZr and 
ZCr6 treatments reveals that the first was related to much lower anodic or ca-
thodic current densities and presented a corrosion potential whose current den-
sity (<10−6 A∙cm−2, Table 2) is typical of passive materials. This indicates that  
 
Table 2. Electrochemical parameters obtained from polarization curves. 

Sample 
Ecorr 

(V/SCE) 
jcorr 

(A/cm2) 
Rp 

(Ω/cm2) 
E% 

 0.05 mol/L NaCl 

Z −1.026 1.52 × 10−5 232.43 - 

ZCe −1.046 1.73 × 10−5 213.47 13.82 

ZCeD −1.025 1.28 × 10−5 343.50 15.79 

ZCrZr −1.118 5.61 × 10−7 6143.40 96.32 

ZCr6 −1.172 2.06 × 10−6 1405.70 86.45 

 0.1 mol/L Na2SO4 

Z −1.127 1.25 × 10−5 272.52 - 

ZCe −1.111 1.19 × 10−5 252.24 4.80 

ZCeD −1.113 1.44 × 10−5 277.21 −15.2 

ZCrZr −1.173 4.71 × 10−7 9407.20 96.24 

ZCr6 −0.930 2.31 × 10−7 13569.00 98.16 
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potential instabilities due to environmental changes in the potential range until 
passive film breakdown does not lead to highly corrosive and harmful conditions 
once the passive film stays on the surface, showing that it is a highly protective 
film. The lowest anodic and cathodic current densities associated to this type of 
sample show that the conversion layer polarizes the anodic and cathodic reac-
tions, although its breakdown resistance was like the ZCr6 coating. The high 
corrosion protection that the ZCrZr film afforded to the substrate could be due 
to the Zr component, however, the Cr3+ component plays an important role 
contributing to the enhancement of the barrier properties. 

Polarization curves obtained in aerated 0.1 mol/L Na2SO4 solution at (22˚C ± 
2˚C) for all the tested surface conditions are presented in Figure 1(b). As seen in 
Figure 1(a), de DC data obtained on zinc (Z) and coated samples (ZCe or 
ZCeD) confirm that these conversion layers do not significantly affect the elec-
trochemical behavior of the electrogalvanised steel. Therefore, it is possible to 
assume that the Ce-based conversion layers produced in both cases cannot pro-
tect the electrogalvanised steel as a barrier. On the contrary, the ZCrZr and ZCr6 
samples show a noticeable jcorr decrease, Table 2. In that sense, the anodic and 
cathodic characteristics of ZCrZr and ZCr6 samples presented large differences 
from the Z ones. As seen, reduction of the anodic slope and shifting of Ecorr to-
wards more cathodic domains occurs. The higher barrier properties provided by 
the ZCrZr coating can be ascribed to both the stability and presence of Cr2O3 
and Zr complexes, respectively. 

3.3. Impedance Measurements 

Examples of the impedance spectra in Bode form obtained at different exposure 
times in aerated 0.05 mol/L NaCl or 0.1 mol/L Na2SO4 solution at (22˚C ± 2˚C) 
are shown in Figure 2 and Figure 3, respectively.  

Figure 2 displays the impedance evolution of electrogalvanised steel samples, 
either without or with passivation treatments, after potential stabilization in ae-
rated 0.05 mol/L NaCl solution. Two time constants were indicated in the im-
pedance spectra of the untreated electrogalvanised sample, the one at the higher 
frequencies (HF) likely due to the presence of zinc corrosion products, and the 
one at the lower frequencies associated to charging of the electrochemical double 
layer in parallel with the charge transfer processes at the zinc/solution interface. 
The HF time constant dislocated into lower frequencies with the immersion 
time, due to the slowing down of the dissolution processes as result of the in-
creasing zinc corrosion products formed on the electrogalvanised surface. Simi-
lar effects were obtained for ZCe or ZCeD samples, however, for these last sam-
ples types, the second time constant at lower frequencies are not well defined. 
Besides, the electrochemical response of a Ce conversion layer, usually seen at 
high frequencies was not identified on neither of the two types of the tested Ce 
surface coatings.  

The impedance spectra for ZCrZr samples show higher impedance values  
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Figure 2. Effect of immersion time in naturally aerated 0.05 mol/L NaCl solution on the 
Bode plots of the tested samples at (a) 0 d; (b) 1 d; (c) 2 d; and (d) 3 d. 
 

 
Figure 3. Effect of immersion time in naturally aerated 0.1 mol/L Na2SO4 solution on the 
Bode plots of the tested samples at (a) 0 d; (b) 1 d; (c) 2 d; and (d) 3 d. 
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associated to these samples compared to the other tested surface treatments, and 
the protection afforded lasted for longer periods than for the previous ones. The 
protection afforded lasted for at least 1 d and deteriorated between 1 and 2 d in 
the exposed ZCrZr samples, whereas for the ZCr6 samples the protection af-
forded increased with time until 1 d, likely due to precipitation of protective 
products on the surface, characteristic of this type of layer, being fairly stable un-
til 3 d when the test was concluded. For these two treatments, two times con-
stants were identified, being clearly separated for the ZCr6 samples. These re-
sults show that the protection afforded by the Cr(VI) conversion layer not only 
was greater than the provided by the ZCrZr layer containing trivalent chromium 
and fluorzirconium particles, but also offered longer duration.  

Figure 3 exhibits the evolution of the electrogalvanised steel samples imped-
ance spectra, either without or with passivation treatments, after potential stabi-
lization in aerated 0.1 mol/L Na2SO4 solution. This Figure shows that the ZCrZr 
and ZCr6 samples provided the largest impedance (over almost the frequency 
range) while the Z, ZCe and ZCeD samples presented lower and very similar 
impedance values for the 3 days of immersion. Also, in this electrolytic medium 
the Bode diagrams show at least two well-defined time constants at the different 
immersion times tested. However, the deconvolution of these diagrams through 
the fitting program showed that, in some cases, there were overlapping time 
constants (not detectable by naked eye), which is why their number could be 
greater than 2. In accordance with the results obtained in the DC tests, the high-
er barrier properties provided by the ZCrZr coating can be ascribed to both the 
stability and presence of Cr2O3 and Zr complexes, while the corresponding to the 
ZCr6 samples to the effective passivating action offered by the Cr(VI)-based 
bath.  

In this study, the impedance data of pure zinc coating, and the Cr(III) + Zr 
complex layer, Ce(III) layer, Ce(IV)/Ce(III) double layer or Cr(VI)-treated sur-
faces can be fitted by the complete or partial version of the equivalent circuit 
proposed in Figure 4. In this equivalent circuit, Rs represents the electrolyte re-
sistance, R1 the resistance to the ionic flux in the pore and C1 the dielectric capa-
citance of the conversion layer. The R2 and C2 parameters account for the charge 
transfer resistance and the electrochemical double layer capacitance of the cor-
rosion process, respectively [19] [74]. As immersion time and zinc dissolution 
increases, corrosion products could accumulate at the bottom or within the 
pores. In such circumstances, their contribution to the system impedance would 
be characterized by the R3 and C3 parameters [19] [74]-[80]. The diffusion com-
ponent W obtained at certain exposure times was associated with an oxygen dif-
fusion-controlled reaction usually found in zinc corrosion [81] [82]. 

The values of the R1, C1, R2, C2, R3, and C3 parameters estimated from the 
analysis of the impedance spectra fitting as a function of immersion time in 0.05 
mol/L NaCl or 0.1 mol/L Na2SO4 are reported in Figures 5(a)-(e) and Figures 
6(a)-(g), respectively. 
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Figure 4. Equivalent circuits used to model the experimental impedance data of the 
tested samples as a function of the immersion time in naturally aerated 0.1 mol/L Na2SO4 
or 0.05 mol/L NaCl solutions. 
 

 
Figure 5. Time dependence of the resistive-capacitive components of the impedance 
corresponding to the tested samples immersed in naturally aerated 0.05 mol/L NaCl for 3 
d. 

3.4. Evolution of Samples, Ecorr and Impedance Components with  
the Immersion Time 

Figures 5(a)-(e) show the evolution of the Ecorr and each component of the 
equivalent circuit as a function of immersion time of the bare or coated electro-
galvanised steel sheets in contact with naturally aerated 0.05 mol/L NaCl solu-
tion. 
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Figure 6. Time dependence of the resistive-capacitive components of the impedance 
corresponding to the tested samples immersed in naturally aerated 0.1 mol/L Na2SO4 
solution for 3 d. 
 

As previously mentioned, the poor barrier properties provided by the conver-
sion layer made possible that the zinc corrosion reaction initiated just after im-
mersion. In general terms, the displacements shown during the immersion test 
by the Ecorr values corresponding to the different samples can be attributed to the 
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following effects: the decrease of such values were caused by the activation of the 
zinc areas at the bottom of the conversion layers defects (micropores, micro-
cracks) due to their interaction with the Cl− ions present in the electrolyte. The 
activation mechanism includes the replacement of the outer part of the zinc 
oxides by zinc corrosion products, which are less protective than the original 
oxides. This change enhances electrochemical reactions such as the zinc anodic 
dissolution. On the contrary, the displacement of the Ecorr values towards nobler 
values observed for the different samples can be associated to the delay or pola-
rization of the surface reactions between the electrochemically active areas of 
zinc and the electrolyte due to certain protective capacity developed by the cor-
rosion products on the zinc surface and/or within and at the bottom of the con-
version layers defects. This is to attenuate the zinc dissolution rate (anodic reac-
tion) and/or the diffusion of oxygen to cathodic zones. 

The results obtained from the fitting procedure described in the above para-
graph are shown in Figures 5(b)-(e). The chi squared (χ2) value for the fitting 
was ≤5 × 10−4 (the smaller this value is, the closer to fit to the experimental data).  

Suzuki and Venkatesan [83] [84] studied the corrosion products of zinc in Cl− 
media. According to these authors, zinc is always covered by a ZnO layer and, 
depending on the environment humidity, Zn(OH)2 may also be present, which 
act as a protective barrier preventing corrosion. During the exposure to the ae-
rated 0.05 mol/L NaCl solution for 72 h one interesting observation was that the 
corrosion of the Z samples was reasonably localized, i.e. it started at small areas 
and then it changed from side to side along the surface. The corrosion process 
started with the attack of the zinc oxide/hydroxide barrier by the action of H2O 
and Cl− ions and zinc dissolution occurred not in uniform way, but in local 
areas.  

The more interesting data to discuss are the resistance of the chemical conver-
sion layer R1 (giving information on the barrier properties of this layer) and the 
charge transfer resistance R2 (giving information on the kinetic of the corrosive 
process). An example of evolution of the coating resistance (R1) for the Z sam-
ples is in Figure 5(b). The same Figure shows that the resistance provided by the 
ZCrZr and ZCr6 pretreatments offers a higher protection, in comparison with 
the ZCe and ZCeD pretreatments. 

Particularly for the ZCr6 samples along throughout the test, and for the 
ZCrZr for the first day of immersion, this fact has a strong influence on the 
charge transfer resistance and therefore on the corrosion rate (Figure 5(d)). 
Generally, the decrease of R1 (Figure 5(b)) and increase of C1 (Figure 5(c)) in-
dicates that the blocking performance of the conversion layer has been gradually 
disappearing [17] [85]. The decline of the anticorrosive performance is attri-
buted to local microcracks formed on the conversion-coating layer. Comparing 
with the initial stage, the microcracks have propagated throughout the coating 
surface during the immersion. On the contrary, the trend of the resistance inside 
the defects (R1) to show certain increase and/or of the coating capacitance (C1) 
to decrease can be related to the formation and gathering of the zinc corrosion 
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products. 
During the same testing time, the evolution of R2 values (Figure 5(d)) reflect 

the variability of the active surface where corrosion occurs and, hence, the pro-
tection effectiveness. In that sense, it is remarkable that passivation-activation 
can occur simultaneously on the zinc surface with different extension. The high-
er protection efficiency for the 3 days of immersion was provided by the ZCr6 
pretreatment due to the passivation action of the mobile Cr6+ ions available in 
the coating, followed by the ZCrZr whose protective action has been attributed 
to both the Zr and the Cr3+ components, as it was established when discussing 
the results with DC. On the other hand, the R2 values in the ZCe and ZCeD 
samples dropped drastically during the first day of immersion but then remained 
almost constant until the end of the test. In all the cases, the presence of a pla-
teau region during the test indicates that a dynamic equilibrium between the 
anodic and cathodic reactions is reached and suggest a lateral surface coverage of 
the conversion coating. 

The increasing of R2 means that the charge transfer resistance between the 
zinc and the solution becomes more difficult due to the passivation property af-
forded by the corresponding conversion coating layer during the immersion. 
The decreasing of R2 indicates a progressive drop of the protection provided by 
the conversion layer. The C2 values (Figure 5(e)) are proportional to the area 
involved in the electrochemical reactions, i.e., the area of microcracks in contact 
with the solution. Therefore, an increasing indicates that the corrosion inside the 
microcracks becomes more severe and the microcracks area increases with the 
immersion time.  

Figure 6 shows the evolution of the Ecorr (a), and of each component obtained 
from the impedance data deconvolution (b-g) for pure or coated electrogalva-
nised steel sheets immersed for 3 days in naturally aerated 0.1 mol/L Na2SO4 so-
lution. As seen in Figure 6(a), in comparison with the changes in the Ecorr values 
obtained for the samples tested in contact with NaCl, the measured for their rep-
licates for the same testing time in Na2SO4 solution were much less important. In 
this case, the most significant displacement (±0.060 V/SCE) occurred in the 
ZCeD sample, while in the rest, a shift mostly towards slightly more positive 
values took place. This shift is concern with a slow increase in the amount of 
corrosion products within the conversion layers defects, which act as a diffusion 
barrier to ions such as 2

4SO −  through the conversion layer. However, with the 
increasing of the immersion time it can be expected that the corrosion inside the 
defects of the conversion layer become more severe and the cracks occurs, this 
was may be what happened with the ZCeD samples. Another possibility is that 
the corrosion products inside the defects loosened and diffuse towards the solu-
tion. In this case, the barrier effect is lost, and zinc dissolution is increased, ge-
nerating new corrosion products and, therefore, a new barrier effect that reduces 
the electrochemically active areas making that the Ecorr moves towards nobler 
values. 
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In Figure 6(b) it is possible to note an increase of the conversion layer resis-
tance (R1) values along the 72 h of immersion for the Z, ZCe and ZCr6 samples. 
On the contrary, those corresponding to the ZCeD and ZCrZr ones decreased 
within the first 24 h but then remained constant up to the end of the test. As 
seen, the R1 values were mostly greater for the Z, ZCe and ZCr6 than those for 
the ZCeD and ZCrZr samples. Despite this, the charge transfer resistance (R2) 
(Figure 6(d)) values not only for the ZCr6 but also for the ZCrZr samples were 
greater than those for the ZCe and ZceD samples, and all of them higher than for 
the Z ones. This means that to a greater or lesser extent all the conversion coat-
ings were able to reduce the zinc corrosion rate throughout the test. It is as-
sumed that the particularly anomalous behavior of the ZCrZr samples, this is 
low R1 but high R2 values, could be because the local microcracks formed on this 
conversion layer do not affect its very effective passivating effect.  

The dielectric capacity (C1) evolution for the pure zinc (Z) and the four con-
version films tested is shown in Figure 6(c). In this the C1 value remained nearly 
constant for all the samples, but also that it was almost two orders of magnitude 
smaller for the better and more protected ZCr6 and ZCrZr samples. This consis-
tency throughout the test was attributed to the fact that once the conversion 
layer microdefects were full of solution, both the microdefects number and size 
as well as the dielectric constant value of the electrolyte accumulated inside them 
remained unchanged. 

The electrochemical double layer capacity (C2) initially increased with the 
immersion time but then remained almost stable for the Z, ZCe, and ZCeD sam-
ples, Figure 6(e). As occurred with the coating dielectric capacity (C1), the C2 
value was less for the ZCr6 and ZCrZr than for Z, ZCe, and ZCeD samples. The 
C2 value is proportional to the area involved in the electrochemical reactions, i.e. 
the area of microdefects in contact with the electrolyte. Therefore, changes in C2 
indicate that the corrosion inside of such microdefects become more severe if 
the electrochemically active areas increase, or else that these latter decrease due 
to the gathering of corrosion products within and/or the bottom of those mi-
crodefects. Finally, another possibility is that its value remains constant if the 
anodic areas/cathodic areas ratio does not change, as mostly occurred in the case 
of the ZCr6 and ZCrZr samples. 

The time constant (R3C3) at the lowest frequency region corresponds to the 
corrosion products formed in the micropores or microcracks of the conversion 
layer. Its presence indicates that the conversion coating has been penetrated by 
the corrosive medium and corrosion reacts on the zinc coating. Again, the sta-
bility over the time as well as the higher R3 and lower C3 values (Figure 6(f) and 
Figure 6(g)) evidence that the conversion layer based on Cr(VI) provided the 
best protective behavior against the pure zinc corrosion in such an aggressive 
environment for this last metal as it is that containing 2

4SO −  ions. Figure 6(f) 
also shows that except at the beginning of the test, after 24 h of immersion in 0.1 
mol/L Na2SO4 solution, the resistive behavior of the corrosion products formed 
in the Z, ZCe, ZCeD, and ZCrZr samples was similar and constant. As it hap-
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pened with the evolution of the parameters discussed in the previous para-
graphs, the R3 values stability is indicative that, for these exposure conditions, 
the corrosion process as well as the blocking action exerted by the corrosion 
products reached a steady state that lasted until the end of the test. The contri-
bution of the corrosion products capacity (C3) to the impedance of each tested 
sample is shown in Figure 6(g). As seen, the C3 values did not change signifi-
cantly; this suggests that the surface area of the corrosion products in contact 
with the electrolyte neither did it throughout the 72 h of immersion. According 
to the results obtained with all the resistive and capacitive parameters contri-
buting to the impedance measured for each sample as a function of the immer-
sion time, after a short time of initiation the corrosion processes developed in 
each of them reached a relative and permanent steady state.  

4. Conclusions 

The potentiodynamic polarization and EIS techniques allowed the evaluation of 
the protective efficiency for the tested systems, which was different depending 
on the conversion layer formulation used to protect the electrogalvanised steel 
sheets.  

The electrochemical behavior of the coated electrogalvanised steel sheets un-
der immersion conditions could be modelled using a different number of time 
constants hierarchically distributed considering the presence of the conversion 
layer and both its microcracks and the corrosion products deposited in them. 
The high frequency time constant (R1C1), was related to the dielectric properties 
of the conversion layer; the second time constant (R2C2) refers to the zinc corro-
sion process, while the third one (R3C3) was associated to the presence and di-
electric behavior of the zinc corrosion products. The evolution of these parame-
ters pointed out that: 1) in contact with the 0.05 mol/L NaCl solution the higher 
protection efficiency was provided by the ZCrZr-based coating (96.32%) fol-
lowed by the ZCr6-one (86.45%), while the less effective corresponded to the 
ZCe and ZCeD-based coatings, 13.82% and 15.79%, respectively; and 2) in the 
0.1 mol/L Na2SO4 solution, the afforded protection degree by the ZCrZr and 
ZCr6 coatings was again very significant, 96.24% and 98.16%, respectively, but 
almost negligible (4.80%) by the ZCe-one. An opposite effect to the expected one 
presented the ZCeD coating since its presence accelerated the corrosion rate of 
the base substrate by an estimated value of 15.2%. 

Although the presence of chromates, particularly those based on hexavalent 
chromium Cr(VI), remains at the forefront as a corrosion inhibitor of the steel 
family, the intense research carried out in different laboratories around the 
world to replace them with other types of coatings being more friendly to the 
human health and the environment is providing more and more encouraging 
knowledge. As examples of this, results produced by studies like the one here 
presented show that new and complex formulations based on a range of 
rare-earth metal (La, Y, Nd, Gd) salts were shown to be good corrosion inhibi-
tors, acting by reducing the cathodic oxygen reduction reaction. In the same 
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way, organic carboxylate compounds (such as salicylate and cinnamate) at rela-
tively high concentrations, were found to be efficient anodic inhibitors by form-
ing a protective layer, mainly at the anodic sites. 
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