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Dynamics of indistinguishable free particles driven by a quantum bath
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The time evolution of correlations for two indistinguishable free particles, in a one-dimensional lattice
interacting with a quantum bath, is studied in the Born-Markov approximation. The analytical solution for the
density matrix is obtained, for bosons and fermions, in the second quantization formalism. The time evolution of
the negativity of indistinguishable particles is analyzed for quantum mixed states. Quantum correlations heavily
depend on the selected bipartition; in return, a small difference between the statistics of the particles is noted, due
to the Pauli exclusion principle. In the presence of dissipation, the negativity (a nonclassical correlation) shows
a time-oscillatory behavior for a particular geometrical bipartition. The total probability of finding one particle
in each subsystem is also calculated and shows consistent behavior.
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I. INTRODUCTION

It has been pointed out that quantum systems that are not
directly coupled to each other may experience a complex
dynamics due to indirect bath-mediated coupling [1]. These
results emphasized the fact that taking into account bath
degrees of freedom will improve the coherence description
of any particular microscopic system [2]. The problem men-
tioned is somewhat reminiscent of the study of fluctuations
and dissipation in a classical system [3], but the extension of
this task to the quantum world still has unknown features. One
possible way to get insight is the construction of a suitable
generalized infinitesimal generator [2–5]. Cases where bath-
mediated inference has been reported, for instance, can be
found in synchronization of open spin systems [6], energy
transfer in photosynthetic systems [7], quantum spin chains
immersed in a common thermal bath [8], and entanglement in
a system of two (two-level) atoms interacting with a squeezed
vacuum [9].

As a prototypical model to study the exact solution of an
open quantum system, we will focus our attention on a system
of free indistinguishable particles interacting with a common
quantum thermal bath. Then, as the system S we consider
two free tight-binding particles in a one-dimensional lattice
interacting (linearly) with a phonon bath B. The interaction
with B will be mediated by shift (nearest-neighbor transla-
tional) operators acting on the particles. To describe these
shift operators, we use the second quantization formalism.
Previous experiences with these types of systems have been
introduced using distinguishable particles [10,11]. These free
models are many-body extensions of the well-known dissipa-
tive quantum-walk approach [12–17], which has been shown
to be very suitable for describing the superposition of quantum
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states and decoherence phenomena in quantum information
theory [18].

To tackle this model we derive the evolution equation
for the reduced density matrix in the Fock representation.
We prove that this quantum master equation (QME) is a
completely positive map, that is, the infinitesimal generator
fulfills the structural theorem of Kossakowsky and Lindblad
[4]. Then we find its exact analytical solution. In order to see
how the quantum bath will affect the quantum correlations
between two indistinguishable particles, we need to define a
good measure of nonclassical correlations. This is not a simple
task because of symmetrization (bosons) or antisymmetriza-
tion (fermions) of the wave function (pure states) imposed
by the character of indistinguishability of the particles, and
so many different approaches have been proposed [19–26].
Of all possible measures of nonclassical correlations for in-
distinguishable particles, we follow the proposal of Wiseman
and Vaccaro [19], but for mixed states [20,27]; this approach
has a quite accessible numerical character. Thus, using this
approach, we can choose some standard measure for the non-
classical correlation for mixed states. We use the negativity to
quantify the nonclassical correlations between two indistin-
guishable particles [28]. Additionally, we show the total prob-
ability of finding one particle in each subsystem belonging to
a chosen bipartition; in fact, in the present paper, we choose
two different geometrical bipartitions. Complementary to this
calculation, we calculate also the total probability of finding
two particles in either subsystem and zero particles in the
other (this is similar to the mirror correlation calculated for
distinguishable particles [10]).

We show that the time evolution of the negativity de-
pends strongly on the type of bipartition we have chosen.
So the selection of the bipartition should be made carefully
when planing an experimental setup. In fact, we show that
in the presence of dissipation (a thermal bath) nonclassical
correlations go to a constant value for a mirror-alternative
bipartition, while for a left-right bipartition (our first defined
bipartition) this constant behavior does not occur. This is an
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interesting result that has also been confirmed experimentally
in fermionic systems [6–9]. In the present paper we investigate
how the negativity, for indistinguishable particles, depends on
the geometry we use to define a bipartition. Note that when
we refer to a given geometry of a bipartition we are concerned
with a set defined on a regular one-dimensional lattice.

II. INDISTINGUISHABLE PARTICLES
(MARKOV APPROACH)

The equivalence between Fock’s space and the symmetric
(antisymmetric) Wannier basis for indistinguishable particles
was previously established in [10,11]. In this section we
introduce the QME for many indistinguishable particles in
the second quantization approach. In the present paper the
QME will be written in terms of the translation operator in
Fock’s representation; in this form the entanglement of the
indistinguishable particles can properly be established.

The total Hamiltonian of the system S interacting with a
common bath B is

HT = HS + HB + HSB, (1)

where HS is the free tight-binding Hamiltonian HS =
E0I− 1

2�
∑∞

s=−∞(C†
s+1Cs + C†

s−1Cs), with {C†
s ,Cs} Fock’s cre-

ation and annihilation operators with the lattice label s and
I the identity operator. In addition, Np and E0 represent the
number of particles and the site energy, respectively. The
phonon bath Hamiltonian is defined as HB = ∑

k h̄ωkB
†

kBk ,
where {B†

k,Bk} are bosonic operators characterizing the ther-
mal bath at equilibrium. In the present paper we investigate
an interaction Hamiltonian which is expected in thermally
activated transport processes, leading therefore to a diffu-
sion coefficient proportional to the temperature of the bath.
Thus, for the interaction between S and B, we choose the
Hamiltonian

HSB = h̄�

(
R ⊗

∑
ν

vνBν + R† ⊗
∑

ν

v∗
νB

†

ν

)
. (2)

This interaction represents the action of the thermal bath
to produce a translation on any indistinguishable particle.
Here vν represents the spectral function of the phonon bath
and � is the interaction parameter between S and B. Other
interactions, for example, proportional to the position operator
[29], may reproduce the electric conductivity in conducting
polymers and in Fermi liquids.

Shift operators appearing in (2) acting on indistinguishable
particles can be written in the form

R =
∞∑

s=−∞
C†

s−1Cs, R† =
∞∑

s=−∞
C†

s+1Cs.

The two statistics (for indistinguishable particles) are taken
into account by using the commutation relations

CsC
†
s ∓ C†

s′Cs = δs,s′ ,

CsCs′ ∓ Cs′Cs = 0, (3)

C†
s C†

s ∓ C†
s′C†

s = 0,

where ∓ are used for bosons and fermions, respectively.

By introducing the Born-Markov approximation the QME
can in general, for any number of particles, be written in the
form

dρ

dt
= −i

h̄
[Heff , ρ] + D

2
(2RρR† − R†Rρ − ρRR†)

+ D

2
(2R†ρR − RR†ρ − ρRR†) (4)

(for more details see Appendix). Here the dissipative param-
eter is D = �2kBT/h̄, with T representing the temperature of
the bath B. Having that E0 is the site energy and using that
it is constant for all sites, without loss of generality, we can
set NpE0 = �, wherewith the effective Hamiltonian can be
written as

Heff = �

(
I − R† + R

2

)
− h̄ωcRR†,

where ωc is proportional to the frequency cutoff in the Ohmic
approximation [12,13]. In Refs. [10,11] it was noted that the
terms R†Rρ and RR†ρ generate coherence, while R†ρR and
RρR† are responsible for inducing decoherence in the system.

III. SOLUTION OF THE QME (TWO PARTICLES)

To solve the QME (4) and to find an analytical solution, we
use the Fourier representation because both the von Neumann
and the Kossakowsky-Lindblad (KL) superoperators can be
diagonalized on this basis. In order to simplify the analysis
of the QME (4) we will omit the term for the frequency cutoff
h̄ωcRR† in the effective Hamiltonian. This term only produces
additional reversible coherence [10].

A. Fourier analytical solution

The Fourier representation is characterized by operators in
the second quantization

C†
k = 1√

2π

∞∑
s=−∞

eiksC†
s , Ck = 1√

2π

∞∑
s=−∞

e−iksCs. (5)

In the present paper we are interested in studying the dy-
namics of two indistinguishable particles (the number of
particles is conserved for the present Hamiltonian model). We
will characterize the system S by the two-particle state (in
Fourier’s representation)

|k1, k2〉 = C†
k1

C†
k2
|φ〉,

where |φ〉 is the vacuum state. Using that

R†C†
s1

C†
s2
|φ〉 = C†

s1+1C
†
s2
|φ〉 + C†

s1
C†

s2+1|φ〉, (6)

RC†
s1

C†
s2
|φ〉 = C†

s1−1C
†
s2
|φ〉 + C†

s1
C†

s2−1|φ〉, (7)

as well as (5) in the QME (4), the analytical solution in the
Fourier representation can be found after some algebra. The
QME can be written as

d

dt
〈k1, k2|ρ(t )|k′

1, k′
2〉 = F (k1, k′

1, k2, k′
2)〈k1, k2|ρ(t )|k′

1, k′
2〉,
(8)
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where F (k1, k′
1, k2, k′

2) is the KL infinitesimal generator [4].
Then the solution of the QME in the Fourier basis is

〈k1, k2|ρ(t )|k′
1, k′

2〉 = eF (k1,k′
1,k2,k′

2 )t 〈k1, k2|ρ(0)|k′
1, k′

2〉, (9)

with

F (k1, k′
1, k2, k′

2) ≡ [F (1)(k1, k′
1) + F (1)(k2, k′

2)]

+ 2D[C(k1, k′
2) + C(k2, k′

1)

− C(k1, k2) − C(k′
1, k′

2)], (10)

where

F (1)(ki, k′
i ) ≡

[−i

h̄

(
Eki − Ek′

i

) + 2D(C(ki, k′
i ) − 1)

]
(11)

is the one-particle infinitesimal generator in the Fourier repre-
sentation, with

Eki ≡ �(1 − cos ki ), (12)

that is, the eigenenergy of one free particle in the lattice [13].
In (10) we have defined the function

C(k1, k2) ≡ cos(k1 − k2), (13)

which produces bath-induced correlation between particles.

B. Analytical solution in the lattice

The solution (9) is similar to the case for distinguishable
particles (see [10,11]); the difference is in the use of Fock’s
vector states leading to its indistinguishable character. Noting
that

C†
s = 1√

2π

∫ π

−π

e−iksC†
k dk, Cs = 1√

2π

∫ π

−π

e+iksCkdk,

(14)

in Fock’s lattice mode the solution is

〈s1, s2|ρ(t )|s′
1, s′

2〉 = 〈φ|Cs1Cs2ρ(t )C†
s′

1
C†

s′
2
|φ〉,

which can be written, returning to the lattice representation,
as

〈s1, s2|ρ(t )|s′
1, s′

2〉 = 1

(2π )2

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

dk1dk′
1dk2dk′

2

×〈k1, k2|ρ(0)|k′
1, k′

2〉
× eik1s1 e−ik′

1s′
1 eik2s2 e−ik′

2s′
2 eF (k1,k′

1,k2,k′
2 )t ,

(15)

where

|s1, s2〉 ≡ | . . . , 0, 1s1 , 0, . . . , 0, 1s2 , 0, . . .〉. (16)

This is the mode-occupation basis, which represents two
particles at sites s1 and s2 on the lattice.

A general initial condition (IC) in the lattice will be

|
(0)〉l1,l2 = α(l1, l2)C†
l1
C†

l2
|φ〉. (17)

Therefore, the IC ρ(0), in (15), can be written as

ρ(0) = |
(0)〉l ′1,l
′
2
〈
(0)|l1,l2 . (18)

Thus the IC gets the form

〈k1, k2|ρ(0)|k′
1, k′

2〉 = {e−ik1l1 e−ik2l2 e+ik′
1l ′1 e+ik′

2l ′2

−βe−ik1l1 e−ik2l2 e+ik′
1l ′2 e+ik′

2l ′1

−βe−ik1l2 e−ik2l1 e+ik′
1l ′1 e+ik′

2l ′2

+ e−ik1l2 e−ik2l1 e+ik′
1l ′2 e+ik′

2l ′1} A

(2π )2
,

where

A = α(l1, l2)α(l ′
1, l ′

2)∗, β =
{

1 (for bosons)
−1 (for fermions),

and so

〈φ|Cn1Cn2C
†
r1

C†
r2
|φ〉 = δn1,r2δn2,r1 − βδn2,r2δn1,r1 .

In order to analyze quantum correlations, we are interested
in studying lattice bipartitions, so we introduce initial condi-
tions with the index l1 = −l2 = p, that is, with α(p,−p) =
1/

√
2. For example,

|
(0)〉p,−p = 1√
2

C†
−pC

†
p|φ〉

and

|
(0)〉 = 1√
2

2∑
j=1

C†
−p j

C†
p j

|φ〉.

Thus, in the lattice the IC of ρ gets the form

ρ(0) = 1
2C†

−p1
C†

p1
|φ〉〈φ|Cp1C−p1 + 1

2C†
−p1

C†
p1

|φ〉〈φ|Cp2C−p2

+ 1
2C†

−p2
C†

p2
|φ〉〈φ|Cp1C−p1 + 1

2C†
−p2

C†
p2

|φ〉〈φ|Cp2C−p2 .

(19)

We will use, for example, p1 = 1 and p2 = 2. Then it is
possible to see that the solution of the QME for bosons or
fermions has an analytical form. To do this task we apply some
general properties of Bessel functions [30] and we define
several parameters in order to simplify its expression, that is,
t� ≡ �t

h̄ and tD ≡ 2Dt . After some algebra it is possible to
check that ρ(t ) is Hermitian, positive definite, and satisfies
the normalization condition.

IV. DIRECT AND INDIRECT INDICATORS
OF CORRELATIONS

A. Negativity of indistinguishable particles

In general, measuring entanglement for indistinguishable
particles is not a simple task (because of the exchange sym-
metry of the quantum state); this has led to many extensive
studies [19–26]. One such measurement was proposed by
Wiseman and Vacaro [19], who offered a simple operational
procedure.

The entanglement Ep for two particles can be calculated as

Ep = P1,1ε(ρ1,1), (20)

where ρ1,1 ≡ ∏
1,1 ρAB

∏
1,1 is the projected state of ρAB and∏

1,1 represents the projection onto one vector state with one
particle in each subsystem (of course a given bipartition is
necessary to define this measure) [19,20,27]. For example, in
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FIG. 1. Quantum correlation for two bosons (negativity) as a
function of the dimensionless time t ′ for several values of the
dissipative parameter rD = 0, 0.25, 0.5, 1.0, 2.0. The inset shows the
bipartition used in (20).

Ref. [27] Beggi et al. proposed the measurement of quantum
discord based on the definition of entanglement of particles
given by Wiseman and Vaccaro. The probability of finding
one particle in each subsystem is denoted by P1,1, and ε(ρ1,1)
represents a bipartite entanglement measure which estimates
the quantity of nonclassical correlations.

There are different measures for characterizing quantum
correlations of mixed quantum state (see, e.g., Refs. [31,32]).
One of them is the negativity proposed by Vidal and Werner
[28]. This measure is straightforward to calculate for the
bipartite mixed state ρAB ≡ ρ. The reduced partial transpose
of the density matrix in the space A or B is required. In this
context the matrix elements of the partial transpose of ρ are
defined as (in space A)

〈iA, jB|ρTA |i′A, j′B〉 ≡ 〈i′A, jB|ρ|iA, j′B〉, (21)

where the orthonormal product basis is defined as |iA, jB〉 ≡
|iA〉 ⊗ | jB〉 ∈ HA ⊗ HB, with HA (B) representing the Hilbert
space in A (B) [in the present case the basis is in the Fock
representation (16)]. Using (21), the negativity is calculated
as

N (ρ) = ‖ρTA‖ − 1

2
, (22)

where ‖ · ‖ represents the trace norm [28]. From (22), the
negativity can also be expressed as

N (ρ) =
∑

i

|μi|, (23)

where μi is a negative eigenvalue of ρTA . Therefore, it is
straightforward to obtain the negativity for a bipartite mixed
state.

1. Left-right bipartition

In order to study quantum correlations between the par-
ticles, first we define the left-right bipartition {A, B} such
that subsystem A has the negative sites on the lattice and
B the non-negative sites (the left-right bipartition is shown
in the inset of Fig. 1). In Fig. 1 we show the quantum
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0.5

N
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rD = 1.0
rD = 2.0

Fermions

FIG. 2. Quantum correlation for two fermions (negativity) as
function of dimensionless time t ′ and the same values of rD and
bipartition as in Fig. 1. It decreases with increasing t ′ or rD.

correlation (negativity) between two bosons for a correlated
initial condition (19) with sites p1 = 1 and p2 = 2. Here
we define a dissipative parameter as rD = �h̄/2D and use
the dimensionless time t ′ = t� ≡ �t/h̄ for convenience. We
note that negativity decreases with increasing time and/or
dissipation; even for rD = 0 the negativity is reduced for
t ′ > 0. The latter is due to the fact that the chosen bipartition
does not consider quantum correlations between correlated
internal states in A or B, for instance, correlations between
sites −1 and −2 (or 1 and 2). Figure 1 shows how cor-
relations between particles are reduced by the presence of
dissipation.

In the same way, for fermions the negativity decreases with
increasing time and/or dissipation, as can be seen in Fig. 2.
There is not a big difference in the behavior of the negativity
for bosons and fermions, as was also pointed out in [19]. The
small variations that we can see here are due to the Pauli
exclusion principle (double occupation at sites on the lattice
in the subsystems A or B are not allowed).

2. Mirror-alternative bipartition

Now we define another bipartition {A, B}, each having
alternative sites on the whole lattice (the set B includes the
origin; see the inset in Fig. 3). Using this (second) bipartition,
the geometry of the set allows us to detect the overlap in
neighboring sites.

This set {A, B} helps one understand how quantum correla-
tions between the particles depend on the chosen bipartition.
In this case and for rD = 0, the negativity for bosons and
fermions has an oscillatory behavior in time because the
mirror-alternative bipartition considers correlations between
neighboring sites throughout the entire lattice (see Figs. 3
and 4). For rD > 0 (in the presence of dissipation) quantum
correlations for the mirror-alternative bipartition are slightly
larger than for the first bipartition. We can conclude that it is
important to choose a good bipartition, on the lattice, in order
to obtain a higher nonclassical correlation for rD > 0.
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FIG. 3. Negativity for two bosons as a function of the dimension-
less time t ′ for the same values of the dissipative parameter rD as in
Fig. 1. The studied bipartition is represented in the inset.

B. Quantum probability of finding the particles

Another possible indirect measure of the instantaneous
correlation between particles can be given in terms of the
total probability function of finding one particle P1,1 in each
subsystem A and B (see the bipartitions studied above).
This function is defined from the two-particle density matrix
evaluated as

P1,1 =
∑

sA

∑
sB

〈sA, sB|ρ(t )|sA, sB〉. (24)

Another complementary measure is the total probability func-
tion of finding two particles in A (none in B), P2,0, or zero
particles in A (two particles in B), P0,2,

P2,0 =
∑
sA,sA′

〈sA, sA′ |ρ(t )|sA, sA′ 〉, (25)

P0,2 =
∑
sB,sB′

〈sB, sB′ |ρ(t )|sB, sB′ 〉, (26)

where |sR1 , sR2〉 is given by (16) (in the Fock representation),
with R1, R2 ∈ A, B (according to the case).
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N
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rD = 0.5
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rD = 2.0

Fermions

FIG. 4. Negativity of indistinguishable particles (two fermions)
as function of dimensionless time t ′ and the same values of rD and
bipartition as in Fig. 3.
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(c)

1
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1

0

0.1
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0

rD = 0
rD = 0.25
rD = 0.5
rD = 1.0
rD = 2.0

0 0.5 1 1.5 2 2.5 3
t′

0

0.2

0.4

P 0,
2

Bosons

FIG. 5. (a) Probability of finding one particle P1,1 in A and B
as a function of dimensionless time t ′ and several values of rD.
(b) Probability of finding two particles in A. (c) Probability of finding
two particles in B. The bipartition is at left and right sites with respect
to the origin of the lattice.

1. Left-right bipartition

The total probability of finding the particles in either sub-
system is given by (24)–(26) for this particular bipartition (see
the inset in Fig. 1), that is, sA = {−∞, . . . ,−3,−2,−1} and
sB = {0, 1, 2, 3, . . . ,∞} (representing sites in subsystems A
and B, respectively). In Fig. 5 we have plotted these functions
for bosons P1,1 (total probability of finding one particle in each
subsystem) and P2,0 and P0,2 (the total probability of finding
two particles in one subsystem) as a function of the dimen-
sionless time t ′ = t� and for several values of the dissipative
parameter rD = �h̄/2D. The IC has one particle in each
subsystem [the IC is given by (19)]; then, for t ′ > 0 and/or
rD > 0, the probability P1,1 decreases; P2,0 and P0,2 show a
complementary behavior. The fact that P1,1 > 0 for rD and t ′
different from zero means that quantum correlations between
particles is not null. Nevertheless, quantum correlations are
destroyed by the presence of the thermal bath. On the other
hand, the small differences between P2,0 and P0,2 are due
to the fact that the bipartition is not symmetric (subsystem
B has the origin of the lattice). The quantum correlation
between fermions is very similar to the bosonic case and for
that reason we do not show the results. We noted that similar
quantum correlations have been reported by Wiseman and
Vaccaro [19].

2. Mirror-alternative bipartition

For completeness, we calculate P1,1, P2,0, and P0,2 in the
second bipartition (see the graphical representation in the
inset in Fig. 3) with sA = {−∞, · · · ,−3,−1, 2, 4, · · · ,∞}
and sB = {−∞, · · · ,−4,−2, 0, 1, 3, · · · ,∞}. In Fig. 6 we
show the results of the probability for this bipartition as a
function of t ′ and rD (for two bosons). The case for fermions
is very similar (see the results for the left-right bipartition).
In contrast with the first bipartition, the functions P1,1, P2,0,
and P0,2 have an oscillatory behavior. For t ′ = 0, P1,1 has
its maximum value, which decreases with increasing t ′ and
rD and seems to converge to 1/2; P2,0 and P0,2 show a
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FIG. 6. Probability (a) P1,1, (b) P2,0, and (c) P0,2 as a function of
dimensionless time t ′ and rD = 0, 0.25, 0.5, 1.0, 2.0 for the mirror-
alternative bipartition (see the inset in Fig. 3).

complementary behavior to P1,1. In this case, P2,0 and P0,2

are not equal, because the mirror-alternative bipartition is not
symmetric with respect to an exchange of A and B. Therefore,
we can say that the mirror quantum probability supports and
explains our previous results obtained with the negativity
measure (Sec. IV A).

V. CONCLUSION

We have worked out, in a one-dimensional lattice, two
indistinguishable particles coupled to a common phonon bath
B. We have solved the density matrix in the Markov approxi-
mation and an analytical solution for bosons and fermions has
been found in the Fock representation.

Quantum correlations between two indistinguishable parti-
cles (bosons or fermions) have been studied in the presence
of a thermal quantum bath. These correlations depend on
the chosen bipartition. However, small differences are found
between them because of the Pauli exclusion principle.

In general, the bath destroys correlations but for fermions
correlations seem to saturate to a constant value for a finite
value of the dissipative parameter rD, in the mirror-alternative
bipartition case.

The analysis of the negativity has been supported by the
study of the total probability of finding one, two, or no
particles in each subsystem {A, B}.

Different coupling interaction between S and B [Hamilto-
nian (2)] may have important implications in the analysis of
the efficiency to obtain greater values of quantum correlations.
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APPENDIX: THE THERMALLY ACTIVATED QME FOR
FREE INDISTINGUISHABLE PARTICLES

Here we derive in a Fock representation the QME for free
indistinguishable particles interacting with a thermal bosonic
bath. A similar demonstration has been done for a single
Levy-like free particle in a lattice [12].

The total Hamiltonian of the system S interacting with a
common bath B is

HT = E0I−�

2

∞∑
s=−∞

(C†
s+1Cs + C†

s−1Cs)

+
∑

k

h̄ωkB
†

kBk + HSB, (A1)

where {C†
s ,Cs} are Fock’s creation and annihilation operators

with the lattice label s and I is the identity operator. In
addition, Np and E0 represent the number of particles and the
site energy, respectively. The bath Hamiltonian is defined in
terms of bosonic operators {B†

k,Bk} characterizing the thermal
bath at equilibrium. In the present paper we investigate an
interaction Hamiltonian HSB given by

HSB = h̄�

(
R ⊗

∑
ν

vνBν + R† ⊗
∑

ν

v∗
νB

†

ν

)
, (A2)

where the system’s operators R and R† are written in terms of
the Fock operators

R =
∞∑

s=−∞
C†

s−1Cs, R† =
∞∑

s=−∞
C†

s+1Cs. (A3)

The interaction (A2) represents the action of the thermal bath
B to produce a translation on any indistinguishable particle of
system S . Here vν gives the spectral function characterizing
the phonon bath and � is the interaction parameter. As we
mentioned before, {C†

s1
,C†

s2
} are Fock’s creation operators;

both operators acting on the vacuum state |φ〉 will produce
a two-particle vector state

C†
s1

C†
s2
|φ〉 = ∣∣ . . . , 0, 1s1 , 0, . . . , 0, 1s2 , 0, . . .

〉
, (A4)

which has been created by two indistinguishable particles at
sites s1 and s2. If these particles are bosonic, the operators
C†

s1
,C†

s2
and Cs1 ,Cs2 satisfy the usual relations[

Cs1 ,C†
s2

] = δs1,s2 ,
[
Cs1 ,Cs2

] = [
C†

s1
,C†

s2

] = 0. (A5)

In (A2) we can recognize that R and R† are translation
operators in the one-dimensional lattice; for example, using
(A5) we can prove that R translates back (individually) two
indistinguishable particles

RC†
s1

C†
s2
|φ〉 =

∞∑
s=−∞

C†
s−1CsC

†
s1

C†
s2
|φ〉

=
∞∑

s=−∞
C†

s−1

(
δs,s1 + C†

s1
Cs

)
C†

s2
|φ〉

= C†
s1−1C

†
s2
|φ〉 +

∞∑
s=−∞

C†
s−1C

†
s1

(
δs,s2 + C†

s2
Cs

)|φ〉

= C†
s1−1C

†
s2
|φ〉 + C†

s2−1C
†
s1
|φ〉, (A6)
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where we have used that Cs|φ〉 = 0. In a similar way, noting
that

R† =
∞∑

s=−∞
(C†

s−1Cs)† =
∞∑

s=−∞
C†

s Cs−1 =
∞∑

s′=−∞
C†

s′+1Cs′ ,

(A7)

it is simple to prove that R† translates forward:

R†C†
s1

C†
s2
|φ〉 = C†

s1+1C
†
s2
|φ〉 + C†

s2+1C
†
s2
|φ〉. (A8)

To calculate the infinitesimal Kossakoswki-Lindbland gen-
erator it is necessary to know the action of the operator R†R
on an arbitrary Fock vector state. To calculate this operator,
we use the definitions of R†, R, and (A5) to obtain

RR† =
∞∑

s=−∞
C†

s−1Cs

∞∑
s′=−∞

C†
s′+1Cs′

=
∞∑

s′=−∞
C†

s′Cs′ +
∞∑

s=−∞

∞∑
s′=−∞

C†
s−1C

†
s′+1CsCs′ .

Therefore, for example, applying RR† to a two-particle vector
state, we get

RR†C†
s1

C†
s2
|φ〉 = 2C†

s1
C†

s2
|φ〉 + C†

s1−1C
†
s2+1|φ〉

+C†
s1+1C

†
s2−1|φ〉. (A9)

In a similar way we can also prove that RR† = R†R and
therefore R and R† commute, i.e., [R, R†] = 0. These are
important relations necessary to calculate the QME when
eliminating the bath degree of freedoms. We remark that a
similar calculation can be done for fermionic particles.

The QME can be obtained by eliminating the variables
of the thermal bath B and assuming for the initial condi-
tion of the total density matrix a direct product ρT (0) =
ρ(0) ⊗ ρ

eq
B , where ρ

eq
B is the equilibrium density matrix of B.

Then introducing a second-order perturbation (Born-Markov
approximation), we can arrive at an infinitesimal generator [3]

ρ̇ = −i

h̄
[Heff , ρ] +

∫ ∞

0
TrB{[HSB, [HSB(−τ ), ρeq

B ρ(t )]]}dτ.

(A10)

The crucial point is to ensure that this infinitesimal gen-
erator has a KL structure (a completely positive condition);
this fact strongly depends on the interaction model. For an
interaction Hamiltonian of the form (A2), that is, HSB =∑2

β=1 Vβ ⊗ Wβ , the QME can be written as

ρ̇ = −i

h̄
[Heff , ρ] + F [ρ] − 1

2
{F ∗[1], ρ}+. (A11)

Here the operator {F ∗[1], •} can be regarded as a dissipative
operator and F [•] as a fluctuating one. The effective Hamilto-
nian is given by

Heff = HS − i

2h̄

2∑
α,β=1

∫ ∞

0
dτ [χαβ (−τ )V †

α Vβ (−τ )

− χ∗
αβ (−τ )V †

β (−τ )Vα], (A12)

where χαβ (−τ ) ≡ TrB[ρeq
B W†

αWβ (−τ )] are bath thermal cor-
relations. The superoperator F [•] (and its dual F ∗[•]) appear-
ing in (A11) is given by

F [•] = 1

h̄2

2∑
α,β=1

∫ ∞

0
dτ [χαβ (−τ )Vβ (−τ ) • V †

α

+ χ∗
αβ (−τ )Vα • V †

β (−τ )]. (A13)

In our case V1 = V †
2 = h̄�R, with � > 0, and W1 = W†

2 =∑
ν

vνBν , and so the KL structure is ensured because [R, HS ] =
[R†, HS ] = 0. That is, translational operators do not evolve in
time, so (A12) and (A13) can easily be worked out. In fact,
(A12) and (A13) reduce to

Heff = HS − i(h̄�)2

2h̄

{∫ ∞

0
dτ [χ11(−τ ) − χ∗

11(−τ )]R†R

+
∫ ∞

0
dτ [χ22(−τ ) − χ∗

22(−τ )]RR†

}
, (A14)

F [•] = (h̄�)2

h̄2

{∫ ∞

0
dτ [χ11(−τ ) + χ∗

11(−τ )]R • R†

+
∫ ∞

0
dτ [χ22(−τ ) + χ∗

22(−τ )]R† • R

}
. (A15)

Here we have used that phonon thermal statistical correlations
fulfill χαβ (−τ ) = 0 ∀α �= β. On the other hand, it is possible
to show that at equilibrium

χ11(−τ ) = TrB
[
ρ

eq
B W†

1W1(−τ )
]

=
∑

j

|v j |2eiτω j (eh̄ω j/kBT − 1)−1, (A16)

χ22(−τ ) = TrB
[
ρ

eq
B W†

2W2(−τ )
]

=
∑

j

|v j |2e−iτω j
eh̄ω j/kBT

eh̄ω j/kBT − 1
. (A17)

The next step is to adopt an spectral function characterizing
the phonon bath. Here we will assume the Ohmic approxima-
tion, that is,

∑
j |v j |2δ(ω − ω j ) � gω�(ω̃c − ω), where g is a

constant, �(z) the step function, and ω̃c the Caldeira-Leggett
frequency cutoff. Time integrals appearing in (A14) and (A15)
can be computed by invoking half Fourier transforms and
Hilbert transforms of correlations; then we get∫ ∞

0
dτ [χ11(−τ ) + χ∗

11(−τ )] =
∫ ∞

0
dτ [χ22(−τ ) + χ∗

22(−τ )]

= 2πgkBT/h̄,∫ ∞

0
dτ [χ11(−τ ) − χ∗

11(−τ )] =
∫ ∞

0
dτ [χ22(−τ ) − χ∗

22(−τ )]

= −i2gω̃c.

Collecting all these results, the effective Hamiltonian and the
superoperator F [•] can be computed, leading to the QME
presented in (A11), that is, the KL infinitesimal generator (4)
with D ∝ kBT , as we expected from our thermally activated
interaction Hamiltonian model (A2).
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