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Abstract

Synthesis of tri-iodothyronine (T3) and thyroxine (T4) follows a metabolic pathway that depends on the integrity of the thyroglobulin structure.
This large glycoprotein is a homodimer of 660 kDa synthesized and secreted by the thyroid cells into the lumen of thyroid follicle. In humans it is
coded by a single copy gene, 270 kb long, that maps on chromosome 8q24 and contains an 8.5 kb coding sequence divided into 48 exons. The
preprotein monomer is composed of a 19-amino acid signal peptide followed by a 2749-amino acid polypeptide.

In the last decade, several mutations in the thyroglobulin gene were reported. In animals, four of them have been observed in Afrikander cattle
(p.R697X), Dutch goats (p.Y296X), cog/cog mouse (p.L2263P) and rdw rats (p.G2300R). Mutations in the human thyroglobulin gene are associated
with congenital goiter or endemic and nonendemic simple goiter. Thirty-five inactivating mutations have been identified and characterized in the
human thyroglobulin gene: 20 missense mutations (p.C175G, p.Q310P, p.Q851H, p.S971I, p.R989C, p.P993L, p.C1058R, p.C1245R, p.S1447N,
p.C1588F, p.C1878Y, p.I1912V, p.C1977S, p.C1987Y, p.C2135Y, p.R2223H, p.G2300D, p.R2317Q, p.G2355V, p.G2356R), 8 splice site mutations
(g.IVS3−3CNG, g.IVS5+1GNA, g.IVS10−1GNA, g.IVS24+1GNC, g.IVS30+1GNT, g.IVS30+1GNA, g.IVS34−1GNC, g.IVS45+2TNA) 5 nonsense
mutations (p.R277X, p.Q692X, p.W1418X, p.R1511X, p.Q2638X) and 2 single nucleotide deletions (p.G362fsX382, p.D1494fsX1547).

The thyroglobulin gene has been also identified as the major susceptibility gene for familial autoimmune thyroid diseases (AITD) by linkage
analysis using highly informative polymorphic markers. In conclusion the identification of mutations in the thyrogobulin gene has provided
important insights into structure–function relationships.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Normal biosynthesis of thyroid hormones requires the
integrity of a complex protein system and several sequential
steps [1–5] . The most abundant expressed protein in the thyroid
gland is thyroglobulin (Tg), which functions as the matrix for
thyroid hormone synthesis and in the storage of the inactive form
of thyroid hormone and of the iodine. Iodine enters the thyroid
follicular cell as inorganic iodide and is transformed in organic
form by the iodination of specific iodotyrosyl residues of Tg [5].
The iodide transport consists of two steps and involves trans-
porters located either in the basal or apical membranes (Fig. 1).
Iodide is accumulated from the blood into the thyroidal cell
through the sodium/iodide symporter (NIS) localized in the ba-
solateral membrane [6]. On the other hand, the pendrin, located
in the apical membrane, is responsible for the iodide transport
from epithelial cell to follicular lumen [7,8]. Rodriguez et al.
identified a new putative iodide transport in the apical mem-
brane, named hAIT for human Apical Iodide Transporter [9].
Fig. 1. Schematic representation of the maturation, internalization and transepithelia
relevant processes in the different organelles and the thyroid-specific proteins a
P, peroxisome; L, lysosome; SV, secretory vesicles; MP micropinocytosis; Tg, thyrog
1, thyroid transcription factor 1; TTF-2, thyroid transcription factor 2; PAX-8, paired
PDI, protein disulfide isomerase; ASGPR, asialoglycoprotein receptor.
The step preliminary to thyroid hormone formation is the ox-
idation of iodide, then, the attachment of iodine to tyrosyl residues
in Tg is produced to generate MIT and DIT [5]. The final step is
the coupling of two iodotyrosyl residues to form iodothyronine,
two DIT form T4, one DIT and one MIT form T3 (Fig. 1). TPO is
the key enzyme in the thyroid hormones formation; it catalyzes
both the iodination and coupling of hormonogenic tyrosyl
residues of Tg with an absolute requirement of hydrogen
peroxide, which acts as an electron acceptor [10–12]. H2O2 is
generated on the apical plasmamembrane of the thyroid follicular
cell by a metabolic pathway, involving two members of the
NADPH oxidase family (Duox1 and Duox2) [13,14]. Recently, a
thiredoxin-related protein named EFP1 (EF-hand binding protein
1) was identified as a novel partner in the assembly of the
multiprotein complex constituting the thyroid H2O2 generating
system [15]. Afterwards, the hormones are released from Tg by
proteolysis (Fig. 1). The action of thyroid hormones is mediated
by T3, by binding to the nuclear receptor [2,5]. Thyroid hormone
receptors regulate the transcription of target genes by binding to
l transport pathways of the thyroglobulin protein within the thyroid cells. The
re shown. N, nucleous; ER, endoplasmic reticulum; GA, Golgi apparatus;
lobulin; TPO, thyroperoxidase; TSH, thyrotropin, TSHr, receptor for TSH; TTF-
box transcription factor 8; NIS, sodium iodide symporter; Duox, dual oxidase;
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thyroid hormone response elements (TREs) in their promoter
regions. Thyroid hormone receptors bind to TREs as homodimers
or heterodimers with retinoid X receptors.

The general organization of the Tg gene and its mRNAhas been
studied in detail by several groups [16–45]. Deeper function–
structure relation features remain unresolved because of our lack of
knowledge about the three-dimensional structure of the protein.

Inactivating mutations of the Tg gene have been identified in
humans in the last decade, resulting in structural defects and
endoplasmic reticulum retention of Tg proteins, and have been
linked to subsequent thyroid hormone-impaired and primary
congenital goiter with hypothyroidism or euthyroidism [46–65].
Mutations in Tg gene also have been reported associated with
endemic [66] and nonendemic goiter [67,68]. Congenital hypo-
thyroidism occurs with a prevalence of approximately 1 in 4000
newborns [69,70]. Patients with this syndrome can be divided into
two groups: nongoitrous (dysembryogenesis) and goitrous (dys-
hormonogenesis) congenital hypothyroidism. The dysembryogen-
esis or dysgenesis group, which accounts for 85% of the cases,
results from ectopy thyroid tissue at the base of the tongue or in any
position along the thyroglossal tract, agenesis and hypoplasia. In a
minority of these patients, the congenital hypothyroidism is
associatedwithmutations in genes responsible for the development
or growth of thyroid follicular cells: thyroid transcription factor 1
(TTF-1, also known as TITF1, NKX2-1 or T/EBP) [71–73],
thyroid transcription factor 2 (TTF-2, also known as TITF2,
FOXE1 or FKHL15) [74], paired box transcription factor 8 (PAX-
8) [75–78], thyrotrophin (TSH) [79,80] and TSH receptor genes
[81–83]. The presence of congenital goiter (which accounts for the
remaining 15% of the cases) has been linked to mutations in the
NIS [84–86], Tg [46–65], TPO [87–93], DUOX 2 [94–96] and
PDS genes [97,98]. These mutations originate a heterogenous
spectrum of congenital goitrous, transmitted in an autosomal
recessive mode. The patients with Tg synthesis defects present a
congenital goiter, hypothyroidism or euthyroidism, high iodide 131I
uptake, normal organification of iodide, elevated serum TSH with
simultaneous low or normal serumT4 and T3 levels, and low serum
Tg concentration in relation to the degree of TSH stimulation
[69,70]. Neonatal thyroid screening programs have been largely
successful in diagnosis and treatment of congenital hypothyroid-
ism. The early identification and treatment of congenital
hypothyroidism are effective in preventing mental retardation and
the other long-term consequences of hypothyroidism inmost cases.

The Tg gene has been identified as the major susceptibility
gene for familial autoimmune thyroid diseases (AITD), by link-
age analysis using highly informative polymorphic markers [99–
105].

This paper reviews the recently advances in our knowledge of
Tg disorders, in man and animals, their pattern of inheritance,
genetic markers, mutational processes and pathogenesis mech-
anism, with special emphasis on the genetic mechanism respon-
sible for congenital goiter.

2. The nucleotide and amino acid nomenclatures

The nucleotide position in human Tg mRNA is designated
according to reference sequences (GenBank accession number
NM_003235). The A of the ATG of the initiator methionine
codon is denoted nucleotide +1. The amino acid positions are
numbered after subtracting the 19-amino acid signal peptide.
Intronic nucleotides located upstream have negative numbering,
while those located downstream have positive numbering.

3. The thyroglobulin gene: structure, expression
and regulation

Tg is a homodimeric glycoprotein of 660 kDa synthesized
and secreted by the thyroid cells into the follicular lumen. Tg is
synthesized as a 12 S molecule, but forms 19 S homodimers and
even 27 S tetramers. In human, it is coded by a single copy gene,
270 kb long (Table 1) [36,38–40], that maps on chromosome
8q24.2–8q24.3 [41–45] and contains an 8.5 kb coding se-
quences divided into 48 exons, separated by introns varying in
size up to 64 kb (GenBank accession number NT_008046)
[36,38–40]. The 64 kb intron (intron 41) of the Tg gene is an
example of a large intron containing a small gene [106]. This
gene codes for the human Src-like adaptor protein and appears
to be transcribed in the opposite direction to Tg.

Tg gene expression is controlled positively by TSH through the
modulation of the intracellular level of cyclic adenosine monopho-
sphate (cAMP) via its receptor (TSHr) located at the basal
membrane of the cell [107–117]. Transcription of the Tg gene is
regulated by thyroid-specific transcription factors TTF-1 [118,119],
TTF-2 [120–122] and PAX-8 [123]. It ismediated by binding to the
Tg promoter on their consensus sequences [124–126].

The human Tg mRNA is 8449–8468 kb long [127–131]. The
general organization of the sequence showed a 41-nucleotide 5′-
untranslated segment, followed by a single open reading frame of
8307 bases and a 3′-untranslated segment ranging from 101 up to
120 bp. TgmRNA in human thyroid tissues is very heterogeneous
due to 21 nucleotide polymorphisms [56,65,130–132], 11 alter-
natively spliced transcripts [130,133–137] and 4 polyadenylation
cleavage site variants [132]. The preprotein monomer is com-
posed of a 19-amino acid signal peptide followed by a 2749
residues polypeptide [129,132] (Fig. 2). The 80% of themonomer
primary structure is characterized by the presence of three types of
repetitive units [129,132]. The remaining 20%, that constitutes
the carboxy-terminal domain of the molecule, is not repetitive and
shows a striking homology with acetylcholinesterase (ACHE)
[138,139]. This suggests a probable convergent origin of the Tg
gene from different ancestral DNA sequences. The relation be-
tween the three families of cysteine-rich repetitive units and the
intron–exon junctions organization was analyzed [40]. The
monomer contains eleven Type 1, three Type 2 and five Type 3
repeat motifs (Fig. 2). The analysis in detail of the repeats showed
the following distribution: (i) Repeats Type 1, 2, 4, 7, 10 and 11
are each encoded by a single exon (exon 4, 8, 10, 16 and 22,
respectively), repeats 1 and 9 by two exons (exon 2 and 3, and 14
and 15, respectively), repeats 3 and 8 by three exons (exon 5, 6
and 7 and 11, 12 and 13, respectively) and repeats 5 and 6 are a
fraction of exon 9. (ii) The three Type 2 repetitive elements map
between exons 20 and 21. (iii) The Type 3 domain includes two
subtypes, 3a and 3b, and map between exons 23 and 37 (3a-1:
between exons 23 and 26, 3b-1: between exons 26 and 30, 3a-2:



Table 1
Intron–exon organization of the human thyroglobulin gene

3′ end intronic sequences Exon 5′ end Exon number Exon size (bp) Exon 3′ end 5′ end intronic sequences Intron number Intron size (bp)

5′UTR 1 108 TTC G gtaagt 1 1047
ttttcttttcctag AG TAC 2 109 TTC CA gtaagg 2 1505
tgtctcctcctcag G ACT 3 98 GCT T gtaagt 3 1521
ccttgtacccacag GT CTG 4 204 CGAT gtgagt 4 1510
gtgaaaatgtttag GT CCA 5 160 AAC AG gtaagg 5 8641
tcattctctccaag G TTT 6 107 ACA G gtgagt 6 499
ctgtctttgctcag GT TTG 7 144 CGAT gtaagt 7 201
tggatttcctctag GC CCC 8 186 TGT G gtgggt 8 3448
tttgtctcatgcag CT GAA 9 1101 AAAT gtaagt 9 435
ttgttcctccccag GC CCC 10 585 ACAT gtgagc 10 5121
ttttattcccctag GT CCT 11 240 TCT A gtgagt 11 3719
ttccctgactccag CC TTA 12 138 ACT G gtaagg 12 382
tggctcttttccag GG CAC 13 78 CAG T gtaagt 13 551
tctctctcccacag GC CCG 14 113 CTA GAA gtaagg 14 1326
cggctttgtctcag ACA GGA 15 103 CAG T gtgagt 15 1013
tgtctctgtgtcag GC CCA 16 201 GAG A gtaagt 16 5134
tttccttctcccag GC CCG 17 213 CAA C gtgagt 17 1285
gtgcttgcctgcag GG CCC 18 155 ATC CAG gtacat 18 3036
ctgtcttcttgtag GTG AAG 19 157 ATT G gtatgt 19 1513
cctgtgtcttacag AG AGA 20 219 TGC G gtaggt 20 6110
ctgtttttttctag TT AAG 21 150 CAC T gtaagt 21 3812
tctattggttctag GT GTC 22 171 TTG A gtaggt 22 5567
tgctttatttttag TG ATG 23 117 ACA G gtgagg 23 4368
catggtgcttgcag AT TGC 24 116 GAC CAG gtgagg 24 2079
ctttccatctccag AAA CGA 25 109 AAG G gtaggt 25 5486
tgcctttcccccag GC CAA 26 192 GGA G gtaatg 26 7233
cttgtgattctcag GT GCC 27 168 AAG A gtaagt 27 12064
atcttcctttgcag GT CTG 28 66 AAA G gtgagc 28 1920
ttttttcctcctag AT TCT 29 81 GCA G gtactg 29 3485
tgcttctttttcag GT TTG 30 138 TCT C gtaagt 30 1096
tctcttgcctgtag GT TGT 31 177 AAA G gtgagc 31 1487
cttcctctatgaag TT ATA 32 112 AAT GG gtaagc 32 2224
tcttcctatgccag G TTC 33 80 AAA G gtaata 33 724
tttttccaccccag GA GGA 34 144 CCC A gtaagt 34 10608
tttttccttttcag TT GCT 35 63 AAA G gtaagt 35 28488
gccttctctcctag TG TCT 36 135 TCG G gtaagg 36 1564
cctcttttctgcag AA TGT 37 165 CCA G gtaagc 37 4013
ccctttcccaacag GA ATC 38 220 CCA AG gtatgg 38 1604
gtctgtatctgcag G GCC 39 94 AAT GTG gtgagt 39 2295
tccaatacccacag GCC CCT 40 160 TCT G gtgagt 40 7670
cctcttttctgaag GG TCC 41 203 CTG ATG gtaagt 41 65019
gctttctcttccag GGA GGC 42 165 ACC AAG gtgagc 42 997
tgcatccaatgcag CTC TTG 43 168 GTG AAG gtaagc 43 17048
ttttttttttctag CAATTT 44 182 ACC CG gtaagc 44 3005
tctcttttcaccag G GAC 45 108 GGC AG gtaaga 45 15095
ctctgttttctcag C CTG 46 135 TCA GG gtaatt 46 1523
tctcatttgcccag A AAT 47 191 GCA G gtagca 47 1015
cccctctgtttcag AT GGA 48 239 3′UTR

Exons sequences are in capital letters, introns sequences are in lower-case letters.
Genomic sequence of the Tg gene: GeneBank data base accession numbers AH008122, AH007064, AF237421, AF255396, AH008090, AY053519, NT_008046.
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between exons 30 and 33, 3b-2: between exons 33 and 36 and 3a-
3: between exons 36 and 37). Type 1 repeats could function as
binders and reversible inhibitors of the protease in the lysosomal
pathway [140,141]. Once Tg has reached the follicular lumen,
several tyrosine residues are iodinated and certain iodinated
tyrosines are coupled to form T3 and T4. Four hormonogenic
acceptor tyrosines have been identified and localized at positions
5 (exon 2), 1291 (exon 18), 2554 (exon 44) and 2747 (exon 48) in
human Tg (132) (Fig. 2) and several tyrosines localized at posi-
tions 130 (exon 4), 847 (exon 10) and 1448 (exon 21) have been
proposed as outer ring donor sites [142]. Tyrosine 5 is the most
likely acceptor site for the donated iodotyrosyl from positions 130
[143,144].

After translation, intensive posttranslational processes take
place in the endoplasmic reticulum (ER), Golgi apparatus, apical
membrane and follicular lumen and include homodimers assem-
bly, intrachain disulfide bond formation, glycosylation, sialyla-
tion, sulphatation, phosphorylation, iodination andmultimerization
[145–149] (Fig. 1). Several ER chaperones, such as ERp72,
calnexin, Grp94 and Bip, interact with Tg during its maturation



Fig. 2. Structural organization of the human thyroglobulin protein. a) Schematic representation of the repetitive, acetylcholinesterase-homology (ACHE-like domain)
and hormonogenic domains. b) Wild-type protein sequence. The repetitive motifs (Type 1, Type 2 and Type 3), ACHE-like domain and hormonogenic sites are shown.
Y–, tyrosine acceptor site; SP, signal peptide.
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[52,150,151] and may serve to prevent the exportation of
improperly folded Tg proteins. This process is known as ER
quality control machinery [152].

On the other hand, Tg interacts with several proteins of the
apical membrane in the exocytosis and endocytosis pathways of
thyrocytes, such as Apical Membrane Asialoglycoprotein Re-
ceptor (ASGPR) [153], Megalin [154–157] and Protein Disulfide
Isomerase (PDI) [158,159] (Fig. 1). The ASGPR transports new
synthesized Tg to the follicular lumen. It is hypothesized that the
ASGPR is also indirectly involved in the endocytosis and
proteolytic cleavage of highly iodinated Tg. The region of the Tg
that interacts with the receptor is unknown. The Tg regulates the
thyroid gene expression mediating the ASGPR [153]. It is
interesting to note that the follicular Tg acts as a feedback sup-
pressor of the thyroid function [160,161], by inhibiting expression
of TTF-1, TTF-2 and PAX-8 and consequently, decreasing
expression of the Tg, TPO, NIS and TSHr genes. These findings
support the idea that the Tg is not only the substrate for the
biosynthesis of the thyroid hormones but also a regulator of the
thyroid function, playing a role in transcriptional signaling or
being related with some unknown mechanisms that remain to be
determined.

Highly iodinated Tg is removed from the follicular lumen by
internalization via pseudopod ingestion and micropinocytosis,
followed by fusion of the endosome with a lysosome and its
proteolytic cleavage. It has been reported that Megalin, a member
of the low density lipoprotein receptor family, participates in the
internalization ofmature Tg as a high affinity receptor for Tg [155].
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Megalin interactswith a heparin-binding region (SRRLKRP) in the
carboxyl-terminal portion of rat Tg [155]. However, this domain
was not detected in human Tg when we searched the complete Tg
protein for heparin-binding consensus sequences, using the
computer program. Megalin plays a role in intact Tg transcytosis
from apical to the basolateral surface of the thyrocyte [156,157]
(Fig. 1). Subsequently, the endocytosis for proteolytic cleavage in
the lysosomal pathway occurs via other mechanisms, such as fluid
phase uptake or uptake by other affinity receptors.

In addition, it has been suggested that at the apical surface of
the thyroid cell a quality control mechanism exists, that prevents
premature lysosomal transfer and degradation of immature Tg
[158]. The immature molecules are internalized and recycled
through the trans-Golgi compartments [162]. PDI is thought to
be the candidate receptor that mediates the internalization [159]
(Fig. 1). However, there are no further reports to substantiate
that observation.

To complete the complex profile of the Tg protein, the 11
most prominent antigenic regions were characterized using
monoclonal antibodies [163,164]. These antigenic regions likely
play a role in the correct positioning of hormonogenic tyrosines
so as optimize iodination-coupling reactions [164].

4. Thyroglobulin gene molecular markers

Highly informative Tg DNA polymorphic markers were
identified and can be used in linkage studies in families with
congenital hypothyroidism or autoimmunity thyroid diseases.
The Tg DNA polymorphisms proved to be interesting and
informative genetic markers which also investigate whether a
common ancestral chromosome or a mutational hot spot
accounted for the occurrence of the same mutation in the all
affected individuals. The term DNA polymorphism refers to a
wide range of variations in nucleotide base composition, single
nucleotide polymorphism (SNP), insertion and deletion
sequences (Indel), or length of nucleotide repeats. This later
group includes two categories of multiallelic tandemly repeated
DNA sequences. Loci with repeated motifs of a few base pairs
are often referred to as short tandem repeats (STR) or
microsatellites, while those with longer repeated motifs are
referred to as variable number of tandem repeats (VNTR) or
minisatellites.

21 SNPs were identified and characterized in the coding
sequence of the Tg gene, 14 of them resulting in amino acid
polymorphisms: p.G58S, p.S715A, p.S715L, p.G796R, p.Q811E,
p.R969P, p.M1009V, p.G1293D, p.T1479M, p.N1819D,
p.R1980W, p.P2213L, p.W2482R, p.R2511Q [56,65,130–132]
(Fig. 3, Table 2). There are no data on a putative functional role for
these Tg changes.

A large insertion/deletion (Indel) polymorphism of 1464 bp
localized in intron 18 of the human Tg gene was characterized
[165]. Data from sequence showed a high A+T content (62%), a
17 bp-long motif (AAGAATTTTGGAGAACA) was found
repeated two times, located at 791 and 849 bp downstream
from exon 18 and three different types of 10 bp long palindromic
sequences, ATTAGCTAAT, TTTTATAAAA and CAAA-
TATTTG, were also found at positions 288, 870 and 1214,
respectively. In addition, three short (A)n repeat traits along the
sequence were identified. A Long PCR method was used to
amplify the genomic DNA region containing intron 17/exon 18/
intron 18/exon 19/intron 19 by primers situated in the introns 17
and 19. The amplification generates two fragments of 3.5 and
5.0 kb that correspond to the exclusion or inclusion of a 1464 bp
segment, respectively. Both variants are thus widely represented
in the human population; giving allele frequencies of 0.56
(insertion) and 0.44 (deletion). The Indel polymorphism was
analyzed also bymultiplex PCR. The amplification generates two
fragments of 374 bp (between 18 exonic forward primer and
18 intronic reverse primer) and 541 bp (between 18 intronic
forward primer and 18 intronic reverse primer, indicating the
exclusion or inclusion of the Indel polymorphic region,
respectively. Genetic evidence indicates that the small additions
and deletions can occur spontaneously during replication.
Deletion and insertion also result from recombination events or
activities of the transposable elements. GenBank database search
showed that the 1464 bp Indel polymorphismdoes not correspond
to any known interspersed repetitive human sequence. However,
it is not possible to exclude that some ancient transposable
element, not identified in the intron 18, might have been involved
in the development of this polymorphism.

STRs proved to be the most suitable markers in linkage
analysis between a disease locus and a molecular marker, due to
their diversity levels, high degree of resolution, relatively low
mutation rates, high informativeness and rapid typing. Four
STRs were identified and characterized within introns 10
(Tgms1), 27 (Tgms2), 29 (TGrI29) and 30 (TGrI30) of the Tg
gene [100,166]. Tgms1 and Tgm2 consist of CA repeats and
present 5 and 16 alleles, respectively. TGrI29 exhibited clearly 4
distinguishable alleles ranging from 197 to 203 bp in length and
TGrI30 showed 8 alleles ranging from 502 to 542 bp. The
heterozygosities (HET) observed of TGrI29 and TGrI30 were
0.859 and 0.522, respectively. The polymorphism information
contents (PIC) were 0.471 and 0.434, respectively. No
significant differences from Hardy–Weinberg values were
found for these two systems. Sequencing analysis indicated
that both loci are complex repeats, TGrI29 containing 2 types of
variable motifs (TC)n and (TG)n, and TGrI30 a tetra-nucleotide
tandem units (ATCC)n [166]. In two TGrI29 alleles and one
TGrI30 allele were found two different subtypes in each one,
with the same molecular weights but different distribution of the
tandem repeats.

The availability of highly informative polymorphicmarkers will
allow indirect disease diagnosis by genetic linkage studies, such as
in cases with no identified mutations and for rapid identification of
affected newborns or gene carriers in families with Tg mutations.

5. Human thyroglobulin gene mutations

Thirty-five inactivating mutations have been identified and
characterized in the human thyroglobulin gene: 20 missense
mutations (p.C175G, p.Q310P, p.Q851H, p.S971I, p.R989C,
p.P993L, p.C1058R, p.C1245R, p.S1447N, p.C1588F, p.C1878Y,
p.I1912V, p.C1977S, p.C1987Y, p.C2135Y, p.R2223H, p.
G2300D, p.R2317Q, p.G2355V, p.G2356R), 8 splice site



Fig. 3. Inactivating mutations and polymorphisms in the human thyroglobulin gene. Inactivating mutations and polymorphisms at the nucleotide level are described
denoting the A of the initiator ATG as +1. Note the difference between scales used for introns and exons.
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mutations (g.IVS3−3CNG, g.IVS5+1GNA, g.IVS10−1GNA, g.
IVS24+1GNC, g.IVS30+1GNT, g.IVS30+1GNA, g.IVS34
−1GNC, g.IVS45+2TNA) 5 nonsense mutations (p.R277X, p.
Q692X, p.W1418X, p.R1511X, p.Q2638X) and two single
nucleotide deletions (p.G362fsX382, p.D1494fsX1547) [46–
65]. Fig. 3 and Table 3 summarize the reported inactivating
mutations indicating the location of the mutation within the
coding sequence or in the introns, and the amino acid alterations
in the mature polypeptide.

In one such patient there was a defective synthesis of Tg due
to the absence of exon 4 from the major Tg transcript because of
a cytosine to guanine transversion at position minus 3 in the
acceptor splice site of intron 3 (g.IVS3−3CNG) [46]. Removal
of exon 4 does not modify the reading frame of Tg mRNA,
producing an abnormal Tg devoid of the 68 residues. Exon 4
encodes tyrosine 130 which has been proposed as an important
donor tyrosine involved in the synthesis of thyroxine, after
coupling with the major acceptor tyrosine at position 5 [142–
144]. The deletion is localized in the Tg Type 1 repeat domain.

An aberrant splicing due to a guanine to thymine transversion
at position +1 in the donor splice site of intron 30 (g.IVS30+
1GNT) was identified in two members of a family with a history
of congenital goiter [51,57]. Both affected patients are
homozygous for the mutation. The elimination of 138 nt
corresponding to exon 30 does not affect the reading frame of the
resulting mRNA and is potentially fully translatable into a Tg
polypeptide chain that is shortened by 46 residues. The
functional consequences of the deletion are related to structural
changes in the protein molecule that either could modify the
normal routing of the translation product through the membrane
system of the cell [52] or could impair the coupling reaction.
However, small amounts of functionally active Tg could be
iodinated, and immediately hydrolized, yielding mostly T3,
because of the intense tissue stimulation by TSH. The deletion is
localized in the TG type III repeat domain, causing the loss of 1
putative N-linked glycosylation site.

A non-consanguineous Brazilian family with two affected
siblings and a nephew presenting congenital goiter, hypothyroid-
ism, and marked impairment of Tg synthesis was extensively
studied by Targovnik et al. [47,49,53,69,61]. Molecular studies
indicated that the affected individuals are either compound
heterozygous for p.R277X/g.IVS34−1GNC or p.R277X/p.
R1511X [59]. The p.R277X mutation (c.886CNT) in exon 7 is
the most frequently reported mutation in the Tg gene [55,59,60].
Recently, a new case of congenital goiter with hypothyroidism
caused by a homozygous p.R277X was reported [48,60]. The



Table 2
List of human thyroglobulin gene polymorphism

Exon Nucleotide position Amino acid position

3 c.229GNA p.G58S
4 c.426CNT p.D123D
10 c.2200TNG p.S715A
10 c.2330CNT p.P758L
10 c.2334TNC p.P759P
10 c.2443GNA p.G796R
10 c.2488CNG p.Q811E
11 c.2963GNC p.R969P
12 c.3082ANG p.M1009V
16 c.3474TNC p.S1139S
18 c.3906GNA p.P1283P
18 c.3935GNA p.G1293D
21 c.4493CNT p.T1479M
21 c.4506CNT p.A1483A
29 c.5512ANG p.N1819D
33 c.5995CNT p.R1980W
38 c.6695CNT p.P2213L
43 c.7408CNT p.L2451L
43 c.7501TNC p.W2482R
44 c.7589GNA p.R2511Q
46 c.7920CNT p.Y2621Y

References: [56,65,130–132]. The nucleotide position is designated according
to Tg mRNA reference sequences (GenBank accession number: NM_003235).
The A of the ATG of the initiator methionine codon is denoted nucleotide +1.
The amino acid positions are numbered after subtracting the 19-amino acid
signal peptide.

Table 3
List of human thyroglobulin gene mutations

Exon/intron position Nucleotide position Amino acid position References

Intron 3 g.IVS3−3CNG Skipping of exon 4 [46]
Exon 5 c.580TNG p.C175G [65]
Intron 5 g.IVS5+1GNA Skipping of exon 5 [64]
Exon 7 c.886CNT p.R277X [55,59,60]
Exon 8 c.986ANC p.Q310P [65]
Exon 9 c.1143delC p.G362fsX382 [58]
Exon 9 c.2131CNT p.Q692X [65]
Exon 10 c.2610GNT p.Q851H [66,67]
Intron 10 g.IVS10−1GNA Skipping of exon 11 [65]
Exon 11 c.2969GNA p.S971I [65]
Exon 12 c.3022CNT p.R989C [65]
Exon 12 c.3035CNT p.P993L [65]
Exon 14 c.3229TNC p.C1058R [62,65]
Exon 17 c.3790TNC p.C1245R [56,62,65]
Exon 20 c.4310GNA p.W1418X [65]
Exon 21 c.4397GNA p.S1447N [65]
Exon 22 c.4537delG p.D1494fsX1547 [65]
Exon 22 c.4588CNT p.R1511X Skipping

of exon 22
[49,53,59,61]

Exon 24 c.4820GNT p.C1588F [65]
Intron 24 g.IVS24+1GNC Skipping of exon 24 [65]
Intron 30 g.IVS30+1GNT Skipping of exon 30 [51,57]
Intron 30 g.IVS30+1GNA Skipping of exon 30 [65]
Exon 31 c.5690GNA p.C1878Y [63,65]
Exon 31 c.5791ANG p.I1912V [65]
Exon 33 c.5986TNA p.C1977S [56,62,65]
Exon 33 c.6017GNA p.C1987Y [65]
Intron 34 g.IVS34−1GNC Skipping of exon 35 [59]
Exon 37 c.6461GNA p.C2135Y [65]
Exon 38 c.6725GNA p.R2223H [58]
Exon 40 c.6956GNA p.G2300D [65]
Exon 40 c.7007GNA p.R2317Q [63,65]
Exon 41 c.7121GNT p.G2355V [65]
Exon 41 c.7123GNA p.G2356R [62,65]
Intron 45 g.IVS45+2TNA Skipping of exon 45 [65]
Exon 46 c.7969CNT p.Q2638X [65]

The nucleotide position is designated according to Tg mRNA reference
sequences (GenBank accession number: NM_003235). The A of the ATG of the
initiator methionine codon is denoted nucleotide +1. The amino acid positions
are numbered after subtracting the 19-amino acid signal peptide.
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comparison of the Tg polymorphic markers identified in this
patient with a member of the Brazilian family, who also carry the
mutation as a compound heterozygous mutation [59], revealed
that the two affected individuals do not share a common Tg allele,
supporting that a mutational hot spot mechanism is responsible of
the p.R277X mutation [60]. The truncated p.R277X form of Tg
still harbors both the acceptor tyrosine 5 and the donor tyrosine
130 [143,144]. Consequently, a 26 kDa aminoterminus Tg peptide
retained its ability for T4 synthesis. In agreement with this
observation it should be considered that the small p.R277X pep-
tide is sufficient for the synthesis of T4 in the N-terminal domain.
However, the premature stop codon eliminates the carboxy-
terminal hormonogenic domain, resulting in the loss of thyroid
hormone formation. The glycosylation of the Tg is an essential
process that permits the migration from the ER to the Golgi. In
vitro expression of the truncated p.R277X Tg cDNA showed that
the mutated Tg protein can be glycosylated [55], indicating their
possible exportation to apical surface of thyrocytes. The RT-PCR
analysis [49,55,60] excluded an alternative splicing mechanism,
by exon skipping, in order to restore the normal reading frame
disrupted by the nonsense mutation and eliminate the stop codon
which would truncate the protein.

The c.4588 CNT transition in exon 22 is also characterized by a
predicted premature stop codon which results in a truncated
protein of 1510 amino acids, p.R1511X [49,53,59,61]. However,
the nonsense mutation is, thus, removed from the transcripts by
exon skipping and there is a preferential accumulation in the goiter
of a Tg mRNA lacking exon 22 [49,59]. Interestingly, skipping of
mutated exon 22 in the pre-mRNA restores the reading frame
allowing translation to reach the normal stop codon. This alter-
native splicing is also present in mRNA from normal thyroid
tissue, but it represents a minor fraction of the total Tg transcripts
[135]. The excision of exon 22 in the Tg mRNA results in an in-
frame deletion of 57-amino acid residues, which is localized in the
TG Type 1 repeat motif. The alternative TG transcript lacking
exon 22 constitutes a new case of nonsense-associated alternative
splicing [61]. The construction and expression of the minigenes
showed that the c.4588CNTmutation itself does not interfere with
exon definition and processing in vitro [61]. The nonsense
mutations in exon 7 and 22 occur in a CpG dinucleotide sequence
and could be caused by deamination of a methylated cytosine
resulting in a thymine. The CGA arginine codon is considered a
“hot spot” for mutations in mammalian DNA. The functional
consequences of the deletion of exon 22 could be structural
changes in the protein molecule that alter the normal protein
folding and assembly, leading to a marked reduction in the ability
to export the protein from the ER. Alternatively, it is possible that
the elimination of exons containing repeat motifs by alternative
splicing results in an altered ability to transfer an iodophenoxyl
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group from the donor site to the acceptor iodotyrosine in the
coupling machinery [59]. Cysteines are thought to play an
important role in the tertiary structure of Tg, being five residues
localized in exon 22. Exon 22 contains a tyrosine residue, at
position 1510, that might be involved in hormonogenesis. The
c.4588CNT mutation eliminates a restriction site for Taq I.

A third mutation was identified in the familiar group described
above consisting of a guanine to cytosine transversion at position-1
in the acceptor site of intron 34 (g.IVS34−1GNC) [59]. This
discovery infers the possibility that this splice site mutation might
generate a total elimination of exon 35 of the Tg gene, since
removal of 63 nucleotides maintains the reading frame. Exon 35 is
the smallest exon of the TGgene and is flanked by two large introns
(intron 34: 10,608 bp, intron 35: 28,488 bp). It is conceivable that
intron size could affect the splicing. Gutnisky et al. [59] used an in
vitro exon-trapping system to evaluate if the g.IVS34−1GNC
mutation produces an abnormal transcript, by a defect in exon
splicing. Minigenes were constructed using the pSPL3 vector
which has a minimal gene organization: the SV40 promoter
followed by an exon–intron–exon structurewith amultiple cloning
site (MCS) located inside the intron.When a fragment cloned in the
MCS contains functional exons with their corresponding splicing
sites, they are included in the mature mRNA. In vitro transcription
showed that the mutation in the acceptor splice site causes the
skipping of the exon 35. The excision of exon 35 in the Tg mRNA
results in an in-frame deletion of 21-amino acid residues, which are
located in the Tg Type 3 repeat motif [59].

A compound heterozygous mutation in the Tg gene was
identified in a family with two affected siblings with congenital
goitrous hypothyroidism [58]. The paternal mutation consists of
a cytosine deletion at nucleotide position 1143 in exon 9
(c.1143delC), resulting in a frameshift at amino acid 362
which generates a stop codon at position 382 in the same exon
(p.362fsX382). The maternal mutation is a guanine to adenine
substitution at position 6725 in exon 38 (c.6725GNA), creating
the p.R2223H missense mutation in the ACHE-homology do-
main of Tg. The c.6725GNAmutation eliminates a restriction site
for Hae II. The wild-type arginine residue at position 2223 is
strictly conserved in all species for which suitable Tg and ACHE
sequences have been reported [58]. Computer analysis of the
protein's secondary structure showed that the p.R2223Hmutation
causes an extended stretch of the helix structure. Consequently,
the arginine residue in this position plays a critical structural role
in the Tg protein and the p.R2223Hmutationmay cause structural
instability leading to deficient Tg exportation [58].

Important insights into the consequences of Tg alterations have
been obtained from studies of various missense mutations. Two
substitutions that replace cysteine by either arginine or serine
(p.C1245R and p.C1977S) in exons 17 and 33, cause an abnormal
three-dimensional structure of Tg resulting in defective intracellular
transport of Tg and retention in the endoplasmic reticulum [56].
Kitanaka et al. [63] identified a patient with congenital goitrous
hypothyroidism,who has high serum triodothyronine levels instead
of low T4 and high TSH levels, due to a compound heterozygous
mutation in the Tg gene. One of the mutations was a guanine to
adenine transition at position 5690 in exon 31 (c.5690GNA),
resulting in the substitution of cysteine by tyrosine in codon 1878
(p.C1878Y). The other was a guanine to adenine transition at
position 7007 in exon 40 (c.7007GNA), resulting in the substitution
of arginine by glutamine in codon 2317 (p.R2317Q).

Recent studies have shown that Tg gene mutations are associated
with thyroid cancer development. Hishinuma et al. [62] reported
patients with homozygous mutations (p.C1245R, p.C1977S and
p.C1058R) or heterozygous compound (p.C1245R/p.G2356R).
That alterations were missense mutations and were identified in
papillary and follicular carcinoma, reflecting the fact that the
incidence rate in patientswith TGmutationswas significantly higher.
Subsequently, genomic sequencing of exon 15 of the BRAF gene, in
cancerous tissue, revealed two heterozygous activating mutations
(p.V599E and p.K600E) in two of these patients. On the other
hand, Alzahrani et al. [64] identified a homozygous guanine to
adenine point mutation at position +1 of the splice donor site of
intron 5 (g.IVS5+1GNA) in Tg gene in a patient with recurrent
goiter and a metastatic follicular thyroid carcinoma.

Recently, Hishinuma et al. [65] have reported 26 different
inactivating mutations in the Tg gene in euthyroid to mildly
hypothyroid, within the Japanese population, 20 are novel mu-
tations: 12 missense mutations (p.C175G, p.Q310P, p.S971I,
p.R989C, p.P993L, p.S1447N, p.C1588F, p.I1912V, p.C1987Y
p.C2135Y, p.G2300D, p.G2355V), 4 splice mutations (g.IVS10-
1GNA, g.IVS24+1GNC, g.IVS30+1GNA, g.IVS45+2TNA), 3
nonsense mutations (p.Q692X, p.W1418X, p.Q2638X) and one
single nucleotide deletion (p.D1494fsX1547) (Fig. 3, Table 3).
The patients harboring the frequent mutations p.C1058R and
p.C1977S showed the same combinations of the SNPs in the
coding region of the Tg gene [65]. Consequently, this finding
suggests that the occurrence of these mutations is due to a founder
effect.

6. Animal thyroglobulin gene mutations

Tg synthesis defects have been described not only in men, but
also in cattle [167–173], goats [174–177], sheep [178–183],mouse
[184–186], rats [187–190] and Bongo antelopes [191]. Hypothy-
roidism linked to Tg mutations have been reported in Afrikander
cattle (p.R697X) [192–195], Dutch goats (p.Y296X) [196–198],
cog/cog mouse (p.L2263P) [199] and rdw rats (p.G2300R)
[200–202] (Table 4).

The congenital goiter of Afrikander cattle is an autosomal
recessive disease characterized byTg synthesis defect. Translation
of goiter Tg mRNA produced no normal Tg protein [192,193],
products of 250 and 75 kDa antigenically related to Tg were
identified. The full-length bovine Tg mRNA contained an open
reading frame of 8307 nt, which consists of a signal peptide of 19
residues and amature protein of 2750 residues [31]. RNA analysis
from affected animals revealed both a shorter (7300 nt) and normal
sized TG mRNAs (8431) [193,194]. This shorter mRNA exists in
low abundance in normal thyroid tissue, suggesting that it is
normally produced by alternative splicing [194]. The 7300 nt
mRNA encodes the 250 kDa peptide, whether the presence of the
75 kDa peptide was caused for an in-frame stop codon in the full-
length mRNA. The mutation responsible for the diseases is a
cytosine to thymine transition at nucleotide position 2146 in exon
9 (c.2146CNT) that generates a stop codon at amino acid position



Table 4
List of thyroglobulin gene mutations in animal species

Species Phenotype Nucleotide
positions

Amino acid
positions

References

Afrikander
cattle

Goiter,
euthyroidism

c.2148CNT
Nonsense-
mediated
exon skipping
of exon 9

p.R697X Tassi et al. [192],
Ricketts et al.
[193–195]

Dutch
goat

Goiter,
hypothyroidism

c.945CNG p.Y296X Sterk et al. [196],
van Ommen
et al. [197],
Veenboer and
de Vijlder [198]

cog/cog
mouse

Goiter,
hypothyroidism

c.6848TNC p.L2263P Kim et al. [199]

WIC-rdw
rat

No goiter,
hypothyroidism

c.6958GNC p.G2300R Hishinuma et al.
[200], Kim et al.
[201], Baryshev
et al. [202]

The nucleotide position is designated according to Tg mRNA reference
sequences. The A of the ATG of the initiator methionine codon is denoted
nucleotide +1. The amino acid positions are numbered after subtracting the
amino acid signal peptide.
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697 (p.R697X) [195,203]. The nonsensemutation is thus removed
from the transcripts by exon skipping, and there is a preferential
accumulation in the goiter of a 7300 ntmRNA lacking exon 9. The
original reading frame is maintained in the shorter mRNA, which,
as it lacks the mutated exon, is translatable into a potentially
functional protein [195]. As was observed in human congenital
goiter due to the p.R1511Xmutation in the Tg gene, the nonsense
mutation at codon 697 is expected to cause a dramatic
destabilization of the full-length mRNA as a consequence of its
limited translatability [195]. The 7300 nt mRNA preexisting as a
minormRNA species in normal animals, is actively translated into
a 250 kDa Tg protein and escapes from the destabilization as it
does not contain the stop mutation.

An inbred Dutch goat strain with hereditary congenital hypo-
thyroidism and goiter was studied by de Vijlder et al. [174–
177,196–198]. Tg antigens are found at 0.01% of the normal
amount, sedimenting in a region corresponding to 200 kDa [176].
The goitrous Tg mRNA is present in reduced amounts, 2.5–10%.
About 1% of the full-length Tg mRNA amount is found in the
endoplasmic reticulum [176]. Translation of TG mRNA isolated
from goiter in a cell-free system resulted in a 35 kDa Tg
polypeptide [196]. The hereditary Tg synthesis defect in Dutch
goats is caused by a cytosine to guanine mutation at position 945
(c.945CNG) that changes a triplet TAC coding for thyrosine
(amino acid 296) in exon 8 into a triplet TAG giving a termination
signal (p.Y296X) [198].

The cog/cog trait originally appeared as a spontaneous autosomal
recessive phenotype in the inbred AKR/J strain of mouse [184 185].
A severe congenital hypothyroidism with colloid deficient goiter
along with abnormal growth and central nervous system develop-
ment was observed in cog/cog mouse, suggesting a defect of the Tg
synthesis [186]. TgmRNAwas abundant and showed a normal size,
but the reduced level of Tg protein exhibited enhanced susceptibility
to proteolysis. The full-length mouse Tg mRNA contained an open
reading frame of 8298 nt, which consisted of a signal peptide of 20
residues and amature protein of 2746 residues [199].Kim et al. [199]
identified a missense mutation, contained within the ACHE -like
domain of the Tg coding sequence, as the molecular basis for
congenital hypothyroid goiter in cog/cog mouse. The thymine at
nucleotide 6848 was substituted by cytosine (g.6848TNC),
generating the p.L2263P mutation in the mature cog Tg protein
[199]. The wild-type leucine residue in this position is conserved in
all species for which suitable Tg sequence has been reported.
Expression studies indicated that cog Tg exhibits a severe defect in
the exit from the ER, whether the correction of this missense
mutation restores the normal Tg secretion [199].

The rdw rat is a hereditary hypothyroid variant derived from
the Wistar–Imamichi strain [187,188]. In contrast to human
patients and animal models of congenital hypothyroidism, the
rdw rat presents a hypoplastic thyroid gland that was smaller than
the normal control, despite of the elevated circulating levels of
TSH and the reduced level of T3 and T4. The immunohistochem-
ical analysis showed that Tg was detected at very low levels in the
colloid lumen with a substantial quantity in the dilated ER, sug-
gesting an impaired intracellular transport of Tg [189]. Protein
analysis revealed markedly elevated expression of molecular
chaperones, GRP94, GRP78 and hsp70 [190]. The full-length rat
Tg mRNA contained an open reading frame of 8304 nt, which
consists of a signal peptide of 20 residues and a mature protein of
2748 residues [200,201,204–209]. The homology of the rat Tg
with the mouse, bovine, and human TG is 90%, 76%, and 78%,
respectively, at the nucleotide level; and 90%, 71%, and 74%,
respectively, at the amino acid level. The complete sequencing of
the rdw rat Tg cDNA revealed a single nucleotide change,
the guanine at nucleotide 6958 was substituted with cytosine
(g.6958GNC) [200,201]. The corresponding amino acid substi-
tution was glycine with arginine (p.G2300R) at a position in
the ACHE-like domain which is highly conserved in other
mammalian species. As in cog/cog mouse models of defective Tg
trafficking, the rdw Tg was retained inside the ER in cells that
were transfected with the rdw Tg cDNA. The functional
consequences of the missense substitution from a smaller neutral
amino acid, glycine, to a larger basically charged amino acid,
arginine, may have caused a conformational change in the
C terminal region of Tg protein.

Baryshev et al. [202] demonstrated that the p.G2300R mu-
tation in the rdw rat, as well as the p.C1245R and p.C1977S
mutations in the human [56] induces the unfolded protein response
(UPR). UPR is an adaptive cellular reaction that regulates the
protein folding capacity of the ER perturbed by the excessive
accumulation of the mutant secretory proteins. The UPR includes
a transcriptional induction of molecular chaperones, via enhanced
splicing of X-box binding protein (XBP1) or activated processing
of activating transcription factor 6 (ATF6) and general transla-
tional attenuation by PERKR-like ER kinase (PERK). In normal
conditions, these sensors are silenced by interaction with a major
ER chaperone, BiP. The processing of ATF6 was observed in both
human and rat tissues with Tg mutations, whereas XBP1 splicing
was detected only in the p.C1245R mutant [202].

cog/cog mouse and rwd rat models showed many similarities,
both are associated with normal sizes and amounts of the Tg gene
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transcripts, increased susceptibility to proteolysis of the mutant
full-length Tg proteins, decreased synthesis and impairment of
intracellular transport andmarked accumulation of the chaperones,
causing the named thyroidal ER storage diseases (ERSD) [199].
The only one important difference between the two models is the
size of their thyroid glands. In the cog/cog mouse, the constant
TSH stimulation leads to the development of a goiter, whether the
rdw mutation is associated with a hypoplastic thyroid gland.

7. Thyroglobulin gene mutations in patients with
nonendemic and endemic goiter

Nonendemic goiter is defined as an enlargement of the thyroid
gland that is not the result of an inflammatory or neoplastic
process, and is not associated with hyperthyroidism or hypothy-
roidism, inmost cases the cause is unknown. In contrast, the iodine
deficient is the most relevant etiologic factor in endemic goiter.

Corral et al. [67] described three unrelated families with
nonendemic goiter, transmitted in an autosomal dominant mode.
Analysis by direct sequencing showed a guanine to thymine
transversion at position 2610 in exon 10 (c.2610GNT), which
replaces the wild-type glutamine at codon 851 by an histidine
(p.Q851H) (Fig. 3, Table 3). The missense mutation was
identified in heterozygous state in 25 of 56 members of the
three families, 14 of the carriers had developed the disease.
However, the putative function of this mutation in the goiter
development is not yet clear. The p.Q851H mutation was not
detected in the general population, suggesting that this change is
not a polymorphism. Consequently, it is not possible to exclude
that this substitution affects the protein expression, intracellular
transport, or hormonogenesis. The p.Q851H mutation was also
described in one case with endemic goiter [66].

A large heterozygous deletion that involves the promoter
region and the 11 first exons of the Tg gene has been reported,
linked to a nonendemic goiter [68].

8. Risk of non-medullary thyroid cancer associated to the
p.R2511Q thyroglobulin gene polymorphism

Non-medullary thyroid cancer accounts 90% of all thyroid
cancers. Matakidou et al. observed that the frequency of the
R allele of p.R2511Q [131,132] was over-represented in non-
medullary thyroid cancer cases, in two studied populations,
compared with controls [210]. The odd ratios associated with
heterozygosity and homozygosity for the R allele were 1.6 (95%
confidence interval, 1.1–2.5) and 2.0 (95% confidence interval,
1.2–3.3), respectively. This substitution resides within the ACHE
homologous domain of Tg [132]. However, the precise role of the
Tg protein variants in non-medullary thyroid cancer remains to be
established.

9. Thyroglobulin gene is an important susceptibility gene
for autoimmune thyroid disease

The AITD are the most common human autoimmune diseases.
There are two forms of AITD, Graves' diseases, in which the
production of TSHr stimulates antibodies causing hyperthyroidism,
and Hashimoto thyroiditis, leading to hypothyroidism. Hashimo-
to's thyroiditis is an organ specific disorder, in which the thyroid
cells are selectively destroyed. Both forms are characterized by
infiltration of the thyroid by T cells and production of antiTg and
antiTPO antibodies. AITD are complex diseases caused by an
interaction between immunomodulatory genes, thyroid autoantigen
specific gene and environmental factors. Three immunomodulatory
genes have been identified as susceptible markers of the disease:
cytotoxic T lymphocyte-antigen 4 (CTLA4) [211], the HLA [212]
and the CD40 genes [213,214]. The CTL4 is considered a down
regulator of T cell function, playing a key role in autoimmunity.

Several predisposing loci have been mapped through the entire
human genome in AITD [99,101]. Themost important locus is the
8q24, which contains the Tg gene. The microsatellite inside intron
27 (Tgms2), was informative and it showed a significative asso-
ciation with AITD, suggesting that the Tg gene was the AITD
susceptibility gene on 8q24 [100,102,105]. No significant asso-
ciation between AITD and the Indel Tg polymorphism was
observed [103]. Moreover, genotyping studies in Caucasian
subjects, using Tg SNPs, demonstrated that the exon 10–12
SNP cluster and the exon 33 SNP were significantly associated
with AITD [103]. The analysis demonstrated also that the combi-
nation of these two SNP groups was more significantly associated
with AITD. In addition, the exon 33 SNP showed strong evidence
for interaction with HLA-DR3 in conferring susceptibility to
Graves' disease [215]. Interestingly, there is a significant
association between the exon 10 SNP haplotype and murine
experimental autoimmune thyroiditis. Fifty percent of the mouse
strains susceptible to thyroiditis had the haplotype Ser–Met–Thr
for exon 10, whereas all of the mouse strains that were resistant to
thyroiditis had the haplotype Asn–Val–Ile [103]. These observa-
tions confirm that the Tg gene is an important susceptibility gene
for AITD and demonstrated that the Tg is directly involved in the
genetic etiology of AITD, both in human and in mouse. In this
sense, it is interesting to hypothesize that the variations of the Tg
protein structure may predispose to AITD by changing its
antigenicity or its interaction with HLA molecules [103]. How-
ever, no evidence for association of exons 10, 12 and 33SNPswith
AITD was observed in Caucasian subjects by Collins et al. [104].

10. Conclusions and perspectives

The Tg is not only the substrate for the biosynthesis of thyroid
hormones but also a regulator of thyroid function, playing a role in
transcriptional signaling or being involved in some unknown
mechanisms that remain to be explored. The identification, in the
near future, of additional mutations in the Tg gene may provide
important insights into structure–function relationships and may
expand our knowledge of the molecular basis of familial hypo-
thyroid or euthyroid goiter, resulting in a rapid prenatal diagnosis,
and prevention of fetal hypothyroidism. Because the p.R277X,
p.C1058R, p.C1245R and p.C1977S mutations are the most
frequently reported mutations in the Tg gene, it would be helpful
to investigate further cases with familial hypothyroid or
euthyroid goiter, regarding these mutations. The identification
of the Tg as an AITD susceptibility gene will enhance the
prediction of individuals that are at high risk of developing the
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diseases, as well as to understand the pathogenesis in order to
establish the prevention and the best treatment of the disease.
Further studies in the field of gene expression, molecular
evolution and population genetics are necessary for elucidating
the additional biological roles of the Tg.
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