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Review

Naturally Occurring Mutations in the Thyroglobulin Gene

Jussara Vono-Toniolo,1,2 Carina M. Rivolta,3 Héctor M. Targovnik,3 Geraldo Medeiros-Neto,2

and Peter Kopp1

Thyroglobulin (Tg) is a large glycoprotein dimer secreted into the follicular lumen. It serves as the matrix for
the synthesis of thyroxine (T4) and triiodothyronine (T3), and the storage of thyroid hormone and iodide. In re-
sponse to demand for thyroid hormone secretion, Tg is internalized into the follicular cell and digested in lyso-
somes. Subsequently, the thyronines T4 (approximately 80%) and T3 (approximately 20%) are released into the
blood stream. Biallelic mutations in the Tg gene have been identified in several animal species and human pa-
tients presenting with goiter and overt or compensated hypothyroidism. In untreated patients, goiters are of-
ten remarkably large and display continuous growth. In most instances, the affected individuals have related
parents and are homozygous for inactivating mutations in the Tg gene. More rarely, compound heterozygous
mutations lead to a loss of function of both alleles. Molecular analyses indicate that at least some of these al-
terations result in a secretory defect and an endoplasmic reticulum storage disease (ERSD). This review dis-
cusses the nature and consequences of naturally occurring Tg gene mutations in humans and several animal
species. Recent recommendations for the nomenclature of mutations have led to different numbering systems,
an aspect that is discussed in order to clarify discrepancies between different publications.
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Congenital Hypothyroidism and Clinical Presentation
of Patients with Thyroglobulin Defects

THE PREVALENCE OF permanent congenital hypothyroidism
is approximately 1 in 3000–4000 newborns, and it is one

of the most common preventable causes of mental retarda-
tion. In approximately 85%, the disorder is associated with
developmental abnormalities of the thyroid such as agene-
sis of the gland, ectopic thyroid tissue, and thyroid hy-
poplasia (1–5). Recently, monoallelic mutations in the paired
domain transcription factor PAX-8 have been documented
and characterized in sporadic and familial patients with 
thyroid hypoplasia or ectopy (6–8). In addition, a familial
PAX-8 mutation was found in patients with congenital hy-
pothyroidism and a normally formed thyroid gland (9). Ho-
mozygosity for recessive mutations in the forkhead/winged-
helix domain transcription factor TTF2/FOXE1 cause a
syndromic form of thyroid dysgenesis (thyroid agenesis,
cleft palate, choanal atresia, bifid epiglottis, and spiky hair)

(10,11). Despite the elucidation of the molecular pathogene-
sis in a subset of patients with thyroid dysgenesis, the etiol-
ogy remains elusive in the vast majority of cases.

Approximately 10% of the patients with congenital hy-
pothyroidism harbor inborn errors of metabolism in one of
the steps for thyroid hormone synthesis in thyrocytes (1–5).
Dyshormonogenesis can be caused by recessive defects at
any of the steps required for normal thyroid hormone syn-
thesis including mutations in the Tg gene (Table 1). In un-
treated patients, thyroid dyshormonogenesis is typically as-
sociated with goitrous enlargement of the thyroid secondary
to long-term thyrotropin (TSH) stimulation. Goiters are of-
ten remarkably large and display continuous growth. Symp-
toms caused by compression of adjacent neck structures can
occur. Tg defects can result in overt hypothyroidism or, al-
ternatively, in compensated hypothyroidism if the available
Tg yields sufficient secretion of thyroid hormone. In these
patients, the radioiodine uptake is elevated indicating an ac-
tivation of the iodine concentration mechanism due to
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chronic stimulation by TSH. In patients evaluated with a per-
chlorate discharge test, there is no increased release of ra-
dioiodine after administration of the competitor, indicating
that the organification process itself is not affected. The
serum Tg levels are usually very low, or in the low normal
range, and the presence of a low Tg level in a goitrous indi-
vidual may suggest a Tg defect (12). Tg gene defects are in-
herited in an autosomal recessive manner and affected indi-
viduals are either homozygous or compound heterozygous
for mutations in the Tg gene (Table 1).

Thyroglobulin

Thyroglobulin (Tg) serves as a matrix for the synthesis of
thyroxine (T4) and triiodothyronine (T3), and for their sub-
sequent storage. Tg is encoded by a single-copy gene of 270
kb (13) (GenBank accession number NT_ 008046), which has
been mapped on chromosome 8q24.2–8q24.3 (14–16). It con-
tains 48 exons separated by introns of up to 65 kb (13,17,18).
The synthesis of the Tg gene is controlled by transcription
factors such as TTF-1 (NKX2.1), TTF-2 (FOXE1), and PAX-8
(19,20). The full-length human 8.5 kb messenger RNA
(mRNA) (GenBank accession number: NM 003235) contains
a 41-nucleotide 5�-untranslated segment preceding an open
reading frame of 8307 bases and a 3�-untranslated region
ranging from 101 to 120 bp (21,22). Alternative splicing gen-
erates various transcripts and subsequently a heterogeneous
population of Tg polypeptides (23). As of yet, at least 15 poly-
morphisms have been detected at the nucleotide level;

among them, 10 result in variations in the amino acid se-
quence, whereas 5 are silent (23).

After translation of the mRNA, the 19-amino acid signal
peptide drives the Tg molecule into the endoplasmic reticu-
lum (ER), where the Tg polypeptide is submitted to folding
and dimerization. The monomer of Tg is composed of a 19-
amino acid signal peptide followed by 2749 residues con-
taining 66 tyrosines (Fig. 1) (23). The motifs within the se-
creted protein are usually numbered after subtracting the
19-amino acid signal peptide. Similarly, mutations have tra-
ditionally been described using this numbering system (23).
However, others have included the signal peptide (24–26).
Moreover, the Recommendations for a Nomenclature Sys-
tem for Human Gene Mutations (27–29), a system supported
by many of the major genetic journals, recommend to denote
the A of the ATG encoding the initiator methionine as nu-
cleotide �1, and the initiator methionine of the signal pep-
tide is designated as amino acid 1 (27,28). Consequently, sev-
eral publications have based the description of Tg mutations
on these recommendations (30,31). Not surprisingly, the co-
existence of these two numbering systems, together with sev-
eral modifications of the initially published sequences (23),
often lead to confusion. Figure 2, Table 2 (human Tg muta-
tions), and Table 3 (Tg mutations in animals) summarize the
currently reported mutations indicating the location of the
mutation within the coding sequence, respectively in the in-
trons, and the amino acid alterations in the precursor, as well
as the mature polypeptide. Table 4 lists the known naturally
occurring mutations according to the type of mutation.

VONO-TONIOLO ET AL.1022

TABLE 1. KNOWN GENETIC DEFECTS CAUSING CONGENITAL HYPOTHYROIDISM

Phenotype Gene Chromosome

Thyroid dysgenesis
Agenesis TTF2 (FOXE1) 9q22
Hypoplasia, hemiagenesis PAX-8 2q12-q14
Ectopy Unknown

Dyshormonogenesis
A) Hypothalamic-pituitary axis
Combined pituitary hormone deficiency (CPHD) PROP1 5q

POU1F1 (PIT1) 3p11
LHX3 9q34.3
LHX4 1q25

HESX1 (RPX) 3p21.2-p21.1
Other, unidentified

Isolated TRH deficiency No known mutations in TRH 3p
TRH resistance TRHR 8q23
Isolated TSH deficiency TSH � subunit 1p13

B) Thyroid gland
Partial or complete hypothyroidism, hypoplasia TSHR 14q13
Pseudohypoparathyroidism Ia: hypothyroidism, hypogonadism, AHO GNAS1 20q13.2
Other postreceptor defects Other, unidentified
Hypothyroidism with defective iodide uptake NIS 19p12-13.2
Iodide organification defect TPO 2p25
Pendred’s syndrome: deafness, goiter, partial organification defect PDS/SLC26A4 7q31
Transient or permanent hypothyroidism, defective H2O2 generation THOX2 15q15
Goiter with compensated or overt hypothyroidism TG 8q42.2–24.3
Hypothyroidism, goiter, loss of iodine through secretion of DIT, MIT Gene unidentifie
Thyroid dysfunction, ataxia, respiratory distress TTF1 (NKX2.1) 14q13
Hypothyroidism with normally located thyroid of normal size PAX-8 2q12-q14

DIT, diiodinated tyrosine; MIT, monoiodotyrosine.



In the follicular lumen, Tg is a present as a 19S dimeric
glycoprotein of 660 kd (32–34). Analysis of the primary struc-
ture of the Tg protein for internal homology led to its divi-
sion into four major regions (Fig. 1). (1) The type 1 repetitive
region contains eleven type 1 motifs, a domain found in a
large family of proteins (35). In the mature polypeptide lack-
ing the signal peptide, these motifs are located between
amino acids 12 and 1191, and 1492 and 1546. (2) The type 2
repetitive region, which is composed of three type 2 ele-
ments, is located between amino acids 1437 and 1484. (3) The
type 3 repetitive region is characterized by five elements be-
tween residues 1584 and 2168. (4) The carboxyterminal part
of the Tg monomer, encompassing residues 2192 to 2716,
shares remarkable homology with acetylcholinesterase
(13,21,36,37). Overall, this structure has been interpreted to
indicate the possibility of a convergent origin of the Tg gene
from two different ancestral DNA sequences (38).

The maturation of Tg is controlled by several molecular
chaperones such as BiP, GRP94, Erp72, and calnexin (39).
Misfolded Tg is accumulated in the ER and then translocated
back into the cytoplasm to undergo degradation by the pro-
teasome system (39). This process, referred to as endoplas-
mic reticulum-associated degradation or ERAD, includes 
removal of interchain disulfide bonds, carbohydrate disso-

ciation, polyubiquination, and hydrolysis before complete
proteasomal degradation (40). Properly folded Tg dimers
migrate to the Golgi apparatus where glycosylation occurs.
The Tg monomer contains 20 potential glycosylation sites;
among them, 16 are known to be glycosylated (32,41), and
approximately 10% of the molecular weight is accounted for
by carbohydrates. Tg contains four types of carbohydrate
units. Simple or type A units consist of asparagine-linked
mannose and N-acetylglucosamine. Type B or complex car-
bohydrates contain three mannose residues and variable
numbers of N-acetylglucosamine, galactose, fucose, and
sialic acid residues. Two additional carbohydrate units are
linked to the peptide chain through the hydroxyl group of
serine or threonine. Type C carbohydrates consist chiefly of
galactosamine and type D is a large chondroitin sulfate unit.
Other secondary modifications of the Tg polypeptide include
sulfation and phosphorylation (42,43). Recent studies indi-
cate that consensus sequences required for tyrosine sulfation
are present at most of the hormonogenic sites within Tg (44).
Tyrosine sulfation may play a role in the hormonogenic pro-
cess (44), a concept that remains to be corroborated by fur-
ther experimental evidence.

From the Golgi apparatus, glycosylated Tg migrates to the
apical membrane in small secretory vesicles and is secreted

MUTATIONS IN THE TG GENE 1023

FIG. 1. Schematic structure of the thyroglobulin protein with the major hormonogenic sites.

FIG. 2. Naturally occurring mutations in the Tg gene in humans and animal species. Mutations at the nucleotide level are
described denoting the A of the initiator ATG as �1 (27,28). At the amino acid level the location is described 
after cleavage of the 19 amino acid signal peptide (bold) and in the precursor protein (italics). Premature stop codons 
resulting in nonsense-mediated altered splicing are indicated with brackets { }. For detailed sequence information see: 
GenBank data base accession numbers AH008122, AH007064, AF237421, AF255396, AH008090, AY053519, NT_008046;
EMBL accession numbers ENSG00000042832, ENST00000220616.
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into the follicular lumen in a regulated process (45,46). In
the follicle, selected tyrosyl residues of the Tg polypeptide
are iodinated, giving rise to monoiodotyrosines (MIT) and
diiodotyrosines (DIT), a reaction referred to as organifica-
tion (47,48). Aside from an appropriate substrate, this pro-

cess, the coupling reaction, requires a properly function-
ing thyroperoxidase (TPO) and H2O2. The next step in thy-
roid hormone synthesis consists of the coupling of two DIT
residues to form T4, or one DIT and one MIT to form T3.
This process also takes place under oxidative conditions

VONO-TONIOLO ET AL.1026

TABLE 4. LIST OF Tg GENE MUTATIONS ACCORDING TO TYPE OF MUTATION

Nucleotide Amino acid Functional consequence Species Reference

Missense mutations

3790T�C C1245R Impaired intracellular Human Hishinuma et al.
transport of Tg (24,25)

5986T�A C1977S Partial retention in ER Human Hishinuma et al.
(25)

6725G�A R2223H No detailed characterization Human Caron et al.
Possibly intracellular retention (71)

945C�G Y296X Impaired intracellular Dutch goat Veenboer et al.
transport of Tg (85)

6848T�C L2263P Impaired intracellular cog/cog mouse Kim et al.
transport of Tg (86)

6958G�C G2300R Impaired intracellular WIC-rdw rat Hishinuma et al.
transport of Tg (31)

Kim et al.
(30,31)

Nonsense mutation with documented nonsense-mediated exon skipping

IVS3-3C�G Deletion of exon 4 Skipping of exon 4 Human Gutnisky et al.
(62)

4588C�T R1511X Skipping of exon 22 Human Targovnik et al.
Nonsense- Nonsense-

mediated exon mediated exon Gutnisky et al.
skipping: skipping of exon (60,62)

del4529-4699 22
2146C�T R697X Deletion of exon 9 Afrikander cattle Ricketts et al.
Nonsense- Nonsense- (65)

mediated exon mediated exon
skipping of exon 9 skipping of exon 9

Nonsense mutation with or without preceding frameshift

886C�T R277X Truncated Tg Human Gutnisky et al.
(62)

Van de Graaf
et al., (64)

Rivolta et al.
(72)

1143delC FS362�382X No detailed characterization Human Caron et al.
Possibly truncated Tg (71)

Splice site mutations

IVS34-1G�C Deletion of exon Skipping of exon 35 Human Targovnik et al.
35 (60)

Gutnisky et al.
(62)

IVS34�1G�T Deletion of exon Skipping of exon 30 Human Targovnik et al.
30 Retention in ER (67,68)

Tg, thyroglobulin; ER, endoplasmic reticulum.



(47,48). During the coupling reaction, a tyrosyl residue do-
nates its iodinated phenyl group to become the outer ring
of the iodothyronine amino acid at an acceptor site, leav-
ing dehydroalanine or its derivative at the donor position.
In human Tg, the four main hormonogenic acceptor sites
have been localized at positions 5, 1291, 2554, and 2747 in
the mature polypeptide lacking the signal peptide (Fig. 1)
(32,49). Donor sites include tyrosines 130, 847, and 1448.
The most important T4 forming site is located at tyrosine
5 and there is evidence that tyrosine 130 is the dominant
donor site (Fig. 1) (50).

Further processing of Tg requires its reentry into the thy-
roid cell through vesicular internalization (i.e. mi-
cropinocytosis), with subsequent fusion with lysosomes re-
sulting in breakdown of the Tg–iodothyroxine complexes
and release of thyroid hormones (51). The micropinocyto-
sis may be initiated by both nonselective fluid phase up-
take and by receptor-mediated endocytosis (52,53). Aside
from degradation of Tg in lysosomes, Tg can also be recy-
cled back into the follicular lumen (54). Recycling of im-
mature forms of Tg back to the apical membrane after en-
docytosis is thought to involve an asyaloglycoprotein
receptor (55). Intact Tg can also be transported from the
apical to the basolateral membrane, where it is released
into the bloodstream (56,57). This transepithelial transport
or transcytosis is mediated by megalin, a receptor located

on the apical membrane of the thyroid follicular cells
(52,53).

Tg Gene Mutations in Humans

The first individuals with a documented Tg gene muta-
tion were reported by Ieiri et al. (58) (Table 2, Fig. 2). The in-
dex patient presented with hypothyroidism, congenital goi-
ter, and a marked impairment of Tg synthesis. Her parents
were first cousins and two of her five siblings also presented
with goiters. Analysis of a restriction length polymorphism
in the Tg gene demonstrated that the affected individuals
were homozygous for this allele and Tg mRNA obtained
from the goitrous tissue was slightly reduced in size in com-
parison to normal individuals. Sequencing of the cDNA re-
vealed that exon 4 was missing from the major Tg transcript
in the goiter and analysis of genomic DNA revealed a cyto-
sine to guanine transversion at position �3 in the acceptor
splice site of intron 3 (g.IVS3-3C�G) (Fig. 2) (58). Without
changing the reading frame, this mutation leads to skipping
of exon 4, a region that codes for the donor tyrosine at po-
sition 130, an important donor for the outer ring of T4 to ty-
rosine 5 (Fig. 1) (50,59).

A nonconsanguineous Brazilian family with two affected
siblings and a nephew presenting with congenital goiter, hy-
pothyroidism, and marked impairment of Tg synthesis was
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thyroglobulin (Tg) mutations. From (62) with permission of the Endocrine Society.



extensively studied by Targovnik et al. (60–62) (Fig. 3). In a
first report, the authors reported a diminished level of Tg
mRNA resulting in decreased translation of a fully mature
Tg (63). Subsequent analyses revealed the presence of an
mRNA transcript lacking 171 base pairs corresponding to
exon 22 (bp 4529–4699 in the cDNA). The shorter, alterna-
tively spliced Tg predominates in the goiter suggesting that
the patients have a mutation resulting in skipping of exon
22. The analysis of the patient’s cDNA revealed the presence
of a transition c.4588C�T in exon 22 (originally described 
as c.4626C�T) creating a stop codon at position 1511 in the
mature polypeptide (p.R1511X; originally described as
p.R1510X) (60). Rather than resulting in the translation of a
truncated protein, the nonsense mutation alters splicing
pathways that lead to the exclusion of the affected exon in
the final mRNA, a phenomenon referred to as nonsense-me-
diated exon skipping. Genomic DNA of all family members
was studied by restriction fragment length polymorphism-
polymerase chain reaction (RFLP-PCR) analyses and the re-
sults demonstrated that the nonsense cytosine to thymine
transition was present in the heterozygous state in the two
affected siblings, as well as in four unaffected members of
this family. Interestingly, the mutation was not identified in
the affected nephew. This finding suggested that at least one,
possibly two additional Tg gene mutations segregate in this
family and that the affected individuals are compound het-
erozygous for Tg gene mutations (61). Recently, genomic
DNA sequencing revealed that the affected nephew was in-
deed heterozygous for a previously described c.886C�T
transition in exon 7 resulting in a premature stop codon at
amino acid 277 (p.R277X) (64), and for a novel guanine to
cytosine transversion at position �1 of the splice acceptor
site in intron 34 (g.IVS34-1G�C) (62). The two affected sib-
lings inherited the p.R277X mutation from their mother and
the p.R1511X mutation from their father. In vitro transcrip-
tion analysis revealed that exon 35 is skipped entirely in the
presence of the IVS34-1G�C mutation (62).

The c.4588C�T/p.R1511X mutation, together with the mu-
tation documented in the Afrikander cattle (see below) (65),
illustrates the phenomenon of nonsense-mediated altered
splicing, in which an exon harboring a premature stop codon
is removed from the mature transcript (66). Several mecha-
nisms have been proposed to explain nonsense-mediated al-
tered splicing. They include removal of the altered exon by
nuclear scanning, nonsense-mediated mRNA decay of the
mutant transcript in combination with translation of small
amounts of exon-skipped isoforms, disruption of the sec-
ondary structure leading to exon excision, or disruption of
exonic splicing enhancers by the premature stop codon (66).

In a further consanguineous family with two affected in-
dividuals studied by Targovnik et al. (67), the patient’s Tg
mRNA was missing 138 nucleotides corresponding to exon
30. Analysis of genomic DNA showed a guanine to thymine
transversion at position �1 in the splice donor site of intron
30 (g.IVS30�1G�T) resulting in subsequent skipping of exon
30. Remarkably, the deletion does not affect the reading
frame of the resulting mRNA and generates a Tg polypep-
tide chain that is shortened by 46 residues. The deletion of
46 residues in the central region of Tg molecule might affect
its tertiary and quaternary structure resulting in impaired
thyroid hormone synthesis (68). Immunopositivity for Tg
was found in thyroid cells, but not in the follicular lumina,
and electron microscopy indicated abnormal distention of

the ER (69). The retention of the misfolded Tg induces the
expression of ER chaperones such as GRP94 and BiP sug-
gesting that the Tg mutations leads to a defective folding
and/or assembly, which results in a markedly reduced abil-
ity to export the protein from the ER (69). In spite of the fact
that the two siblings harbor the same mutation in the Tg
gene, their phenotype was quite different. The affected boy
was severely hypothyroid and has mental retardation, while
his sister was mildly hypothyroid with normal mental de-
velopment. The phenotypic differences may be related to the
onset of treatment with levothyroxine and/or, since this fam-
ily moved within Brazil, to variable nutritional iodide intake.

Van de Graaf et al. (64) studied three offspring of a con-
sanguineous marriage presenting with mild hypothyroidism
associated with defective Tg synthesis. The Tg cDNA was
analyzed by direct sequencing and revealed a cytosine to
thymine transition at nucleotide position 886 (c.886C�T) in
exon 7 that results in a stop codon at amino acid position
277 in the mature polypeptide (64). This mutation was ex-
pressed in a construct containing the first 2110 bp of the cod-
ing sequence. In vitro expression of this truncated Tg cDNA
showed that the mutated Tg protein can be glycosylated.
Moreover, this truncated form of Tg still harbors both the ac-
ceptor tyrosine 5 and the donor tyrosine 130. The presence
of the glycosylation sites may permit migration of the Tg mu-
tant from the ER to the Golgi. The partially retained hormone
synthesis of this mutant is in agreement with a study using
a 26 kd Tg peptide consisting of the aminoterminus with the
hormonogenic site A (i.e., tyrosine 5) that showed that this
small peptide is sufficient for T4 synthesis (Fig. 1 and 2) (70).

Hishinuma et al. (24,25) identified a homozygous muta-
tion at position 3790 (c.3790T�C; originally described as
c.3787T�C) in the Tg cDNA from two unrelated patients
with congenital goiter. One of them was euthyroid, the other
individual had mild hypothyroidism, but both had unde-
tectable Tg levels. The mutation results in a substitution from
cysteine to arginine at codon 1245 in the mature peptide, re-
spectively 1264 in the uncleaved precursor (p.C1245R; orig-
inally described as C1263R). The mutated protein is retained
in the ER as demonstrated by sensitivity to digestion with
endoglycosidase H and formation of high molecular aggre-
gates (24,25).

In two sisters presenting with euthyroid adenomatous goi-
ter and increased serum Tg levels, Hishinuma et al. (25) iden-
tified a thymine to adenine substitution at nucleotide 5986
of the Tg cDNA (c.5983T�A; originally described as
5983T�A) resulting in an amino acid substitution from cys-
teine to serine at codon 1977 in the cleaved peptide, respec-
tively 1996 in the precursor (C1996S; originally described as
C1995S) (25). The C1996S Tg is only partially resistant to en-
doglycosidase H treatment, and a fraction of the protein is
transported to the Golgi and, as reflected by the slightly in-
creased serum levels, secreted into the circulation (25).

Coincidental intrauterine detection of a fetal goiter by ul-
trasound led to the detection of compound heterozygous Tg
gene mutations by Caron et al. (71) (Table 2). The goiter was
first observed at 6-months of gestation and cordocentesis re-
vealed severe hypothyroidism of the fetus. Repeated in-
traamniotic injection of 200 �g levothyroxine was not suffi-
cient to suppress the fetal TSH and at birth the neonate had
a TSH of 284 mU/L. Moreover, a very low serum Tg led to
the suspicion that a defect in its synthesis could be the cause
of the goitrous hypothyroidism. Similar findings were ob-
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served in a subsequent pregnancy. During the second ges-
tation, intra-amniotic injection of 500 �g levothyroxine at 32
and 36 weeks led to a significant reduction of the TSH, which
was 472 mU/L at 29 weeks and 39 mU/L at birth. Sequence
analysis of genomic DNA obtained from the two siblings, a
girl and a boy, revealed a paternal Tg gene deletion 1143delC
in exon 9 resulting in a frameshift beginning at residue 362
that generates a stop codon at position 382 (382�) in the ma-
ture Tg protein, and a 6725G�A transition in the maternal
allele that leads to a substitution of arginine 2223 by histi-
dine (R2223H) (Fig. 2) (71).

In a patient of Argentinean origin with congenital hy-
pothyroidism, goiter and Tg deficiency, Rivolta et al. (72)
identified biallelic c.886C � T (p.R277X) mutations in exon
7. This mutation has been reported previously in two Brazil-
ian kindreds (60,62,64). Comparison of intragenic polymor-
phisms excluded a common ancestor of this patient and one
of the Brazilian individuals reported by Gutnisky et al. (62),
a finding indicating that this mutation is independently re-
current. RT-PCR with RNA obtained from thyroid tissue ex-
cluded that this nonsense mutation would lead to nonsense-
mediated exon skipping. The patient’s sister presented with
the same phenotype, but was not available for molecular
analyses (72,73).

Tg alterations associated with simple goiter

A monoallelic Tg mutation has been associated with
nonendemic simple goiter. Analyzing 56 individuals, a
2610G�T transversion in exon 10 substituting glutamine 851
by histidine (Q851H) in the mature polypeptide was found
in 14 individuals with simple goiter from three different fam-
ilies and the authors proposed an autosomal dominant in-
heritance of the defect (26). However, 11 unaffected indi-
viduals also carried the same allele (26). Subsequently, the
same authors reported the Q851H mutation in 1 of 36 pa-
tients with endemic goiter and suggested an association of
this allele with goiter development (74). Given that the Tg
gene contains multiple polymorphisms, and in the absence
of functional data, it remains unclear whether this alteration
is indeed causally involved in the development of the ab-
normal phenotype. Although the role of this alteration re-
mains uncertain, it is conceivable that a subset of mutated
and misfolded Tg polypeptides could lead to retention of the
wild type allele in intracellular compartments. This would,
for example, be analogous to the situation observed with
aquaporin 2 (AQP2) mutations causing nephrogenic diabetes
insipidus (NDI). While the majority of patients with NDI
caused by AQP2 mutations are homozygous or compound
heterozygous for inactivating mutations that lead to ER re-
tention, a few substitutions exert a dominant effect by re-
taining the wild-type allele in the Golgi (75).

In another series of 50 patients with simple euthyroid goi-
ter a monoallelic Tg deletion encompassing the promoter
and the first 11 exons was found in a single patient (76).
Given that heterozygous individuals with inactivating Tg
mutations do not display an abnormal phenotype, it remains
questionable whether this alteration has any significance for
the development of the goiter (76).

Tg Gene Mutations in Animals

Important insights into the consequences of Tg alterations
have been obtained from studies of various animal strains

such as sheep (77,78), cattle (79,80), goats (81,82), mice (83),
the Bongo antelope (84), and rats (30,31). In some of these
animal species, the molecular defect in the Tg gene has been
identified (Table 3, Fig. 2) (30,31,65,85,86).

The Afrikander cattle have a phenotype characterized by
euthyroid congenital goiter with Tg deficiency (65). The
goitrous tissue of these animals harbors a minor Tg mRNA
of 7.3 kb besides the normally sized Tg mRNA. A cytosine
to thymine transition (c.2081C�T) in exon 9 of the Tg gene
creates a stop codon (R697X in the mature polypeptide).
Rather than generating a truncated protein, alternative splic-
ing removes the exon harboring the premature stop codon
by nonsense-mediated altered splicing (65). This truncated
Tg protein is shorter (approximately 75 kd), but contains the
amino-terminal hormonogenic site and appears to be suffi-
cient for hormone synthesis at the expense of a large, com-
pensatory goiter.

De Vijlder et al. (81) identified an inbred strain of Dutch
goats with congenital goiter and hypothyroidism. Analysis
of the proteins expressed in the goiter of these animals
showed that the 19s Tg was not detectable, but a smaller 7s
protein with a molecular weight of a 35 kd could be identi-
fied. The amino-terminal hormonogenic site was maintained
in this Tg fragment and these shorter proteins were shown
to be able to produce thyroid hormone in circumstances of
high iodine intake (87). Under these nutritional conditions,
the animals are euthyroid but their goiters do not shrink (88).
At the molecular level, a transition of cytosine to thymine at
position 945 of the Tg cDNA results in a stop codon in exon
8 (945C�T, Y296X in the cleaved polypeptide) and transla-
tion of a truncated aminoterminal Tg polypeptide (85,89).

Beamer et al. (83) identified a mouse strain (cog/cog) with
autosomal recessive hypothyroidism and congenital goiter
(83). The cog/cog mouse has a Tg with abnormal immuno-
logic and sedimentation properties, rather than an absent 
Tg protein (90). The molecular basis of this abnormal Tg is
explained by a thymine to cytosine substitution at position
6848 of the Tg cDNA and creates a missense mutation of
leucine to proline at position 2263 (6848T�C, L2263P in the
mature polypeptide) (86). This mutation is localized in a re-
gion that is strictly conserved in the Tg of all species and that
displays remarkable homology with Torpedo californica
acetylcholinesterase. This domain appears to be essential for
the structural properties of the Tg molecule such as dimer
formation and transport through the secretory pathway (36).
The cog/cog Tg protein is unable to exit the ER and, analo-
gous to Tg mutations identified in humans, it is resulting in
an ER storage disease (ERSD) and thus thyroid dyshormono-
genesis (86).

The phenotype of the rdw rat is defined by dwarfism and
hypothyroidism (91). Initially, the phenotype was thought to
be caused by pituitary dysfunction associated with hy-
poplasia of the hypophysis. However, subsequent studies
suggested that a dysfunction of the thyroid gland is causing
the abnormal dwarfed phenotype (92). The rdw rat has no
goiter and low levels of Tg in the follicular lumen. However,
these animals have detectable Tg in the dilated ER, suggest-
ing that the export of Tg is impaired (93). Concomitantly,
there is an increased expression of the molecular chaperones
GRP94, GRP78, and (hsp70), proteins that are involved in
protein quality control (94). The molecular defect has been
unraveled independently by two groups. Genetic analyses
established linkage to rat chromosome 7 and the Tg locus,
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and subsequent sequencing of the rdw Tg cDNA revealed a
transversion of guanine to cytosine at position 6958. This
transversion results in the substitution of glycine by arginine
at position 2320 (6958G�C, G2301R in the mature polypep-
tide, respectively G2320 in the precursor protein) (30). This
finding has been independently confirmed by Hishinuma et
al. (31), who, after cloning of the rat wild-type and rdw
cDNA, identified the same mutation. Prediction of the pro-
tein structure by computer analysis suggests that the muta-
tion might give rise to a subtle structural change in the Tg
protein causing an extended helix, while maintaining nor-
mal disulfide bonds, and allowing partial monomer forma-
tion (31). Alternatively, the substitution of the neutral amino
acid glycine by the charged residue arginine in a highly con-
served domain in the Tg molecule may cause an important
conformational modification in the carboxyterminal region
of the Tg protein preventing proper folding and causing re-
tention in the ER (30). The amino acid glycine contains only
a hydrogen atom as side chain thus permitting to adopt a
much wider range of conformations than other residues.
Therefore, it could play a structurally important role allow-
ing unusual main chain conformations at this position of Tg.

Recently, Baryshev et al. demonstrated that the rdw mu-
tation, as well as the C1245R and C1977S mutations found
in humans, induce the so-called unfolded protein response
(UPR) (95). The UPR is activated by excessive accumula-
tion of mutant secretory proteins that are unable to attain
their correct three-dimensional structure and are thus re-
tained in the ER. The UPR includes the induction of ER
chaperones such as ERp29, ERp72, calreticulin, protein
disulfide isomerase (PDI), cytoplasmic (heat shock protein
[HSP] 70, HSP90) and mitochondrial (mtHSP70) upregu-
lated chaperones and folding enzymes, as well as the ap-
pearance of the active form of the X-box binding protein
(XBP1) and the transcription factor 6 (ATF6). The process-
ing of ATF6 was observed in both human and rat tissues
with Tg mutations (95).

Summary and Perspective

Naturally occurring mutations continue to provide unique
insights into pathophysiologic mechanisms. In the case of Tg,
it has become apparent that missense mutations can be as-
sociated with a classic ERSD (39). Mutations that cause al-
terations in the protein structure give rise to intracellular re-
tention of the altered proteins, emphasizing that a correct
conformation is essential for protein transport and biologic
activity. The goitrous phenotype can be explained by long-
term TSH stimulation and the accumulation of misfolded
proteins in the cells affected by ERSD that result in expan-
sion and dilatation of the ER (39). This contrasts, however,
with the mutation identified in the rdw rat, which does not
develop a goiter (30,31).

Some of the nonsense mutations in the Tg gene are of par-
ticular interest because of the plasticity generated by the
mechanism of nonsense-mediated exon skipping (R697X re-
sulting in skipping of exon 9 in the Afrikander cattle; C1510X
resulting in skipping of exon 22 in humans) (60,65). Exon
skipping can also be caused by mutations in splice acceptor
and donor sites (IVS3-3C�G; IVS30�1G�T) (58,67,68).

Remarkably, several very short, truncated Tg molecules
can be secreted and are sufficient for partial thyroid hormone

synthesis (945C�T, Y296X in the Dutch goat; 886C�T, R277X
in humans (62,64,82,88).

It can be anticipated that the study of further pedigrees
and sporadic cases with Tg deficiencies will provide further
insights into structure–function relationships of this unusual
protein. These endeavors are greatly facilitated by the thor-
ough sequence information that is now available (13,17,18,
22,23).

Recent studies established linkage of the Tg locus with au-
toimmune thyroid disease suggesting that alterations in the
Tg gene, together with variations in other genes and envi-
ronmental factors, may play a role in the pathogenesis of
these multifactorial disorders (96,97).

There are currently no data on the three-dimensional
structure of the protein. Given the size of Tg, this remains a
challenging task. A better understanding would, however,
be of great interest for the understanding of the structural
requirements underlying thyroid hormone synthesis.
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