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Signals of strong electronic correlation in ion scattering processes
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Previous measurements of neutral atom fractions for Sr+ scattered by gold polycrystalline surfaces show a
singular dependence with the target temperature. There is still not a theoretical model that can properly describe
the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a
first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process.
Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless
approach, where two charge channels are considered (Sr0 and Sr+) and the spin degeneration is neglected; (ii)
the infinite-U approach, with the same charge channels (Sr0 and Sr+) but considering the spin degeneration; and
(iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but
finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U
approach, indicating that e-correlation plays a significant role in charge-transfer processes. However, none of
them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest
that small changes in the surface work function introduced by the target heating, and possibly not detected by
experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same
theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description
of the experimental neutral fractions measured.
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I. INTRODUCTION

It is accepted that Kondo physics [1] may be observed in
ion scattering experiments by choosing appropriate projectile
ions and very low velocities [2,3]. These experiments can
actually be accomplished. The ion fractions of Sr+, Mg+, and
Ga+ backscattered by a polycrystalline Au surface have been
measured by the group of Yarmoff [4,5]. They found different
temperature dependencies of the neutral fraction that might be
suggesting the presence of strong electron correlation effects.
Up to now there is not a conclusive theoretical description
of these experimental results that allows us to understand
how the electron-electron interaction in the atomic localized
state is affecting the charge transfer and its dependence with
the surface temperature. Two previous articles, by the same
authors, present a theoretical description of He and Yarmoff’s
experiments with a limited success [6,7]. They used a model
calculation based on pseudoparticle operators [8] within the
finite-U noncrossing approximation [2,9,10]. They obtained
a neutral fraction quite strongly dependent on temperature
within an approximation they refer as the “U = 0 limit” (U
represents the electron repulsion energy in the atomic state) but
that actually corresponds to an infinite U limit approximation
[6]. Under the finite-U approximation they a found a slight
negative temperature dependence of the neutral fraction that
strongly depends on the surface work function. The neutral
fraction found in Refs. [6,7] failed in reproducing both the
neutral fraction temperature dependence and neutral fractions
measured. On the other hand, the neutral fractions of 1-keV
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incoming Mg ions calculated in [7] satisfactorily reproduce
the experimental results.

We believe that Yarmoff’s experiments deserve more effort
in the theoretical analysis since they represent an excellent
opportunity to obtain important physical information from a
theoretical model able to properly describe the experimental
data obtained.

In the present work we study the charge transfer between
positive ions of Sr and Mg and an Au surface at low incoming
energies. Both systems are described by an Anderson Hamil-
tonian projected over the most probable atomic configurations
and the Hamiltonian terms are calculated by using our bond-
pair model [11], which has proved to be successful in a great
variety of interacting systems (see for example [12–17] and
references therein).

Taking into account the first and second ionization poten-
tials of the isolated Sr atom (5.7 and 11 eV, respectively),
jointly with the energy level shifts (due to image potential) and
the work function of the gold surface (5.1 eV); three charge
state configurations are expected to be active in the charge-
transfer process: neutral (Sr0), single (Sr+), and double (Sr++)
ionized atoms. The different atomic charge state probabilities
are calculated by employing the appropriate Green-Keldysh
functions [18] solved by means of the equation of motion
method (EOM), using a strict second order in the coupling
term with the band states [19].

Both our ab initio calculation of the Anderson Hamiltonian
terms and the Green functions solved by using the EOM
method, used to determine the different atomic charge states,
are the most important differences with the theoretical model
used in Ref. [6]. Moreover, in Ref. [6] the authors mentioned
them as the two main points to be improved in their work.
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The adiabatic evolution of the atom spectral densities and
the valence occupation as a function of the target temperature
are also studied in order to provide a clear picture of the
correlation regimes taking place at different atom-surface
distances.

In the case of Mg, the first (7.65 eV) and second (15.04 eV)
ionization potentials of the isolated Mg atom suggest a large
neutralization and a negligible probability of having double
ionized species in the interaction of Mg with an Au surface.
Then, the infinite-U limit should be appropriate in this case. In
the present work we show that the calculated neutral fraction
using the infinite-U limit approximation effectively describes
the measured neutral fraction temperature dependence for 1
and 2-keV incoming energies.

II. THEORETICAL ASPECTS

Strontium and magnesium neutral atoms have full elec-
tronic inner shells with two s-valence electrons in the out-
ermost occupied shell. The possible atomic valence states
correspond to neutral, single, and double ionized atomic
configurations represented by |↑,↓〉 (neutral); |↑,0〉 and |0,↓〉
(single ionized); and |0,0〉 (double ionized), respectively.

The Anderson Hamiltonian projected over this configura-
tion space can be written as

H =
∑
kσ

εkn̂kσ+ε0|0,0〉〈0,0|+ε1[|↑,0〉〈↑,0|+|0,↓〉〈0,↓|]

+ ε2|↑,↓〉〈↑,↓|
+

∑
k

[Vks ĉ
†
k↑|0,0〉〈↑,0| + H.c.]

+
∑

k

[Vks ĉ
†
k↓|0,0〉〈0,↓| + H.c.]

−
∑

k

[Vks ĉ
†
k↓|↑,0〉〈↑,↓| + H.c.]

+
∑

k

[Vks ĉ
†
k↑|0,↓〉〈↑,↓| + H.c.]. (1)

The normalization condition of the selected atomic space
is

|0,0〉〈0,0|+|↑,0〉〈↑,0|+|0,↓〉〈0,↓| + |↑,↓〉〈↑,↓| = 1.

The infinite-U limit approximation corresponds to dis-
regarding the zero electron configuration |0,0〉 in Eq. (1).
More specifically, the charge fluctuation from one to zero
valence electrons in the atom is neglected (in the present
case, this means a second ionization energy tending to −∞).
The spinless approximation corresponds also to a charge
fluctuation from one to two electrons in the atomic state
where the spin degeneration is completely ignored during the
charge-transfer process.

The k index denotes band states, Vks is the coupling
between band states and the s-orbital of the atom. The total
energies of the atomic configurations, ε0 = Etot(|0,0〉),ε1 =
Etot(|↑,0〉) = Etot(|0,↓〉),ε2 = Etot(|↑,↓〉) and the coupling
term Vks depend on the position �R of the atom re-
spect to the surface. At infinite distance it is verified

that

I1 = Etot(|↑,0〉) − Etot(|↑,↓〉),
(2)

I2 = Etot(|0,0〉) − Etot(|↑,0〉),

I1 and I2 being the first and second ionization potentials of
the projectile atom respectively.

In the scattering process, these Hamiltonian terms depend
on time due to the atom´s motion with a finite velocity �v along
the in and out trajectories defined by �R = �Rtp + �v|t |, where
�Rtp is the turning point.

In the dynamical process, the time-dependent prob-
abilities of the different atomic charge configurations,
n0(t) ≡ 〈|0,0〉〈0,0|〉t , n1(t) ≡ 〈|↑,0〉〈↑,0|〉t = 〈|0,↓〉〈0,↓|〉t ,
and n2(t) = 〈|↑,↓〉〈↑,↓|〉t , are obtained from the Keldysh
Green functions:

F↑(t,t ′) = i〈[|↑,0〉〈0,0|t ′ ,|0,0〉〈↑,0|t ]〉, (3)

F
↑
↑↓(t,t ′) = i〈[|↑,↓〉〈↑,0|t ′ ,|↑,0〉〈↑,↓|t ]〉, (4)

G↑(t,t ′) = iθ (t ′ − t)〈{|↑,0〉〈0,0|t ′ ,|0,0〉〈↑,0|t }〉, (5)

G
↑
↑↓(t,t ′) = iθ (t ′ − t)〈{|↑,↓〉〈↑,0|t ′ ,|↑,0〉〈↑,↓|t }〉. (6)

The average 〈〉 is taken in the wave function that describes
the interacting system in the Heisenberg picture, and the []
symbol in Eqs. (3) and (4) denotes a commutator. The Green
functions (5) and (6) are the typical advanced Green functions
written in terms of the projection operators.

The Green functions, Eqs. (3)–(6), are calculated by using
the method based on the equations of motion closed within a
strict second order in the coupling term. Details are given in
Ref. [19]. The initial conditions for the scattering of Sr+ by
a gold surface correspond to a local magnetic moment on the
atom:

〈|↑,0〉〈↑,0|〉−∞ + 〈|0,↓〉〈0,↓|〉−∞ = 1 and

〈|↑,↓〉〈↑,↓|〉−∞ = 0.

In the stationary case, after Fourier transforming the Green
functions (5) and (6), we obtain G↑(ω) and G

↑
↑↓(ω). They

allow us to determine the single and double occupation of the
atom valence state in the following way:

n1 = 1

π

∫ ∞

−∞
dωf<(ω)ImG↑(ω),

(7)

n2 = 1

π

∫ ∞

−∞
dωf<(ω)ImG

↑
↑↓(ω).

In Eqs. (7), f<(ω) = 1
1+e(ω−EF )/kB T is the Fermi distribution

with a temperature T, and Fermi energy EF . From the Green
functions in the projection operator language we can recover
the Green function Gσ (ω) written in terms of the fermionic
operators ĉ+

sσ (ĉsσ ) that creates (destroys) an electron in the
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atomic orbital with a spin projection σ [1]:

G(ω) = 1 − 〈n̂aσ̄ 〉
ω̃ − εI − �0(ω) + U�<(ω)

ω̃−εI −U−�0(ω)−�1(ω)

+ 〈n̂aσ̄ 〉
ω̃ − εI − U − �0(ω) + U [�<(ω)−�1(ω)]

ω̃−εI −�0(ω)−�1(ω)

+ Uξ (ω)

[ω̃ − εI − �0(ω)][ω̃ − εI − U − �0(ω) − �1(ω)] + U�<(ω)
. (8)

In Eq. (8) we have introduced the following functions:

∑
0

(ω) =
∑

k

|Vks |2
ω − εk − iη

,

∑
1

(ω) =
∑

k

|Vks |2
ω + εk − εA − iη

+
∑

k

|Vks |2
ω − εk − iη

,

∑
<

(ω) =
∑

k

|Vks |2f<(εk)

ω + εk − εA − iη
+

∑
k

|Vks |2f<(εk)

ω − εk − iη
,

ξ (ω) =
∑

k

Vks

〈ĉ+
s−σ ĉk−σ 〉

ω − εk − iη

−
∑

k

Vk−σ

〈ĉ+
k−σ ĉs−σ 〉

ω + εk − εA − iη
. (9)

The εI energy is defined as εI = ε1 − ε0 and εA = 2εI + U .
The total s-orbital occupation per spin 〈n̂sσ 〉 can be obtained

straightforwardly from the Green function (8) as

〈nsσ 〉 = 1

π

∫ ∞

−∞
dωf<(ω)ImG(ω) = n1 + n2.

The importance of working with the Green functions (5)
and (6) instead of Green function (8) resides in that the latter
does not permit us to easily discriminate the single and double
occupation probabilities [Eqs. (7)].

A. Atom-surface interaction: Bond-pair model

The bond-pair model has been successfully used in many
different projectile-target combinations [12–17]. The atom
energy and the hopping terms are obtained from a model
Hamiltonian for the atom-surface adiabatic interaction based
on both the localized atom-atom interactions and the extended
features of the surface states [11]. A linear combination of
atomic orbitals (LCAO) is used to expand the surface band
states, and a mean-field approximation of the two-electron
interaction terms are performed. The effect of the long-range
interactions is introduced in the case of metal surfaces by
considering the image potential defining the energy level shifts
for large normal distances (z) to the surface. The energy level
of the first electron in the 5s orbital of the Sr atom is

εI (R) = ε̃I (R) + V Sr++
im (z) (10)

and for the second electron, εaf = εI + U , is

εaf (R) = ε̃af (R) + V Sr+
im (z). (11)

In Eqs. (10) and (11), ε̃I (R) and ε̃af (R) take into account
the short-range contributions to the energy-level variation with

the atom-surface distance caused by the overlap and mean-
field electrostatic interactions [11]. Far from the surface, the
energy shift of the double ionized atomic configuration is four
times the corresponding energy shift for the single ionized
configuration.

The image potential is matched at a distance z0 as follows:

εI (R) = ε̃I (R)+V Sr++
im (z), where V Sr++

im (z)

=
{

3
4|z−zim|z > z0

3
4|z0−zim|z < z0

, (12)

εaf (R) = ε̃af (R) + V Sr+
im (z), where V Sr+

im (z)

=
{

1
4|z−zim|z > z0

1
4|z0−zim|z < z0

. (13)

The image plane position for Au(100) surface is zim =
1.6 a.u. [20], and z0 is chosen equal to 8 a.u. [11].

The model calculation is based on an expansion of the solid
states φ�k(�r) in the atomic states ϕα(�r − �Ri) centered on the
different atoms of the solid (α denotes the orbital type and
�Ri the position relative to the scatter atom). In this way, the

coupling term V�ks can be written as

V�ks( �R) =
∑
α,i

c
�k
α,iVαi,s( �R − �Ri), (14)

where Vαi,s( �R − �Ri) is the atomic coupling between the
α states of the i atom of the solid and the s state of
the projectile positioned at the distance �R from the scatter
atom, calculated by using a mean-field approximation and a
symmetrically orthonormalized atomic basis set in the space
of the dimmer projectile-solid atom [11]. The coefficients c

�k
α,i

in the expansion (14) define the density matrix of the solid
given by the expression

ρi,j,α,β (ε) =
∑

�k
c

�k
α,ic

�k
β,j δ(ε − ε�k). (15)

Thus quantities like the noninteracting self-energy �0(ω) in
Eqs. (9) are calculated in terms of the surface density of states
[Eq. (15)] and the atom-atom coupling terms Vαi,s( �R − �Ri):

∑
0

(ω) =
∑

i,α,j,β

Vα,s( �R − �Ri)Vβ,s( �R − �Rj )

×
∫ ∞

−∞
dε

ρi,j,α,β (ε)

ω − ε − iη
. (16)
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FIG. 1. Affinity (solid line) and ionization energy levels of the
projectile as a function of the ion-surface distance referred to the
target-surface Fermi level (dotted line). The energy-level widths
�0(double shaded region) and �(single shade region) are included.
The total Au(100) DOS (horizontal strips) is also shown.

The imaginary part of Eq. (16) is the Anderson hybridiza-
tion width:

�0(ω) = π
∑

i,α,j,β

Vα,s( �R − �Ri)Vβ,s( �R − �Rj )ρi,j,α,β (ω). (17)

In Fig. 1, we summarize the results issued by the bond-pair
model. This figure shows the one electron energy levels given
by Eqs. (12) and (13), and the corresponding noninteracting
level half-widths �0(εI ) and �0(εaf ) are represented as
error bars. The level widths including the electron-electron
interaction [19] are also shown in this figure,

�(εI ) = �0(εI ) + �<(εI ), (18)

�(εaf ) = �0(εaf ) + �1(εaf ) − �<(εaf ), (19)

where �< and �1 are the imaginary parts of �< and �1

[Eqs. (9)] respectively.
The Sr and Au Gaussian basis sets provided by Huzinaga

[21,22] are used to calculate the atom-atom coupling terms
Vα,s( �R − �Ri). The density matrix ρi,j,α,β (ε) is calculated by
using the localdensity approximation (LDA) [23,24].

In the present calculation we have considered only the
scatter Au atom in the LCAO expansion of Eq. (14). This
assumption is justified on the grounds that the experimental
scattering geometry corresponds to a large scattering angle
(135°) with an exit angle of 90° relative to the target surface
plane.

The distance of closest approach (Rtp) is fixed to z = 5 a.u.,
according to the large ionic radius of both atoms. Nevertheless,
we found that the final neutral fraction practically does not
depend on the turning point, when it is varied from 4 to 6 a.u.

The ion trajectory was assumed to be normal to the target
surface during the whole collision process. However we used
the correct perpendicular components of the ion velocities
(vin/out) determined by the energy loss factor (α = 0.193) of the

Sr-Au elastic scattering. Thus, vin = 0.134 × sin(45◦) a.u.and
vout = 0.134 × 0.193 a.u.

III. RESULTS AND DISCUSSION

A. Sr-Au system

First, we analyze the adiabatic evolution of the interaction
through the atom spectral densities and the single and double
occupations [Eqs. (7)] for several atom-surface distances. In
the case of the infinite-U limit (U � �0(εI ) + �0(εaf )), differ-
ent correlation regimes will take place at different projectile-
surface distances depending on the ratio rc = εaf /�0(εaf )[1].

The charge fluctuation from one to two electrons in the
neutralization of Sr+ corresponds in the hole picture to
a fluctuation from one to zero holes. This picture is the
appropriate one to analyze the double occupation in the
infinite-U limit. The Kondo regime occurs for rc > 1, that
means εaf � �0. This is an energy level well above the Fermi
level and then, an occupation practically equal to 1 (hole). The
mixed valence regime for |rc| ≈ 0 means an energy level εaf

close to the Fermi level. Finally, the empty orbital regime for
rc < −1 corresponds to εaf well below the Fermi energy and
thus, an occupation of zero holes. On the other hand, Fig. 1
shows that the infinite-U limit becomes more valid for large
distances (z > 7 a.u.).

According to Eq. (7), ρ2(ω) = (1/π )ImG
↑
↑↓(ω) determines

the double occupation n2. Figures 2(a)–2(c) show the spectral
density ρ2(ω) for several atom-surface distances (6, 7, and 9
a.u., respectively), and different temperatures. Here, we can
clearly observe that our model leads to a Kondo regime at
large distances (9 a.u.), evolving to a mixed valence regime
for z = 6 a.u. We can also observe a robust resonance structure
at the Fermi energy that persists up to large temperatures (near
to 900 K).

The double and single occupations [Eqs. (7)] as a function
of temperature are shown in Fig. 3 for different distance values.

We can notice that the double electron occupation increases
with temperature in the Kondo regime (the hole occupation
decreases), while the opposite behavior is obtained in the
mixed-valence regime (z < 8 a.u.). This is consistent with the
temperature dependence of the probability of a single electron
in the s-valence orbital n1, shown in Fig. 3(b).

Due to the very low velocity (v = 0.0134 a.u.), the neutral
fraction of Sr atoms scattered by the Au surface is defined
far from the surface along the outgoing trajectory. This means
that distances larger than 8 a.u. are expected to be involved
in the determination of the final charge states of Sr projectile.
Therefore, according to the adiabatic results (Fig. 3), it is
expected that in the scattering process the neutral fraction,
n2(t → ∞), increases with temperature. This is actually the
result obtained, as it is shown Fig. 4. In this figure we also
include the calculations based on both the spinless model and
the infinite-U limit approximation.

As the spinless model (U = 0, no spin) neglects the
possibility of having electrons with spin up or down, when
we go from the spinless model to the U infinite model we
are showing how important the spin fluctuation statistics is in
this system. When we go from U infinite to U finite we learn
how relevant the electronic correlation is by including the
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FIG. 2. Spectral density ρ2 plotted as a function of the energy for
three different ion-surface distances: 6 a.u. (a), 7 a.u. (b), and 9 a.u.
(c), and four different temperatures: 5 K (solid line), 300 K (dashed
line), 600 K (dotted line), and 900 K (dash-dotted line).

possibility of other electronic configurations for the projectile
atom.

The differences in neutral fractions obtained under the
infinite-U and the spinless approaches at low temperatures can
be explained in terms of the level widths in one and another
approximation. In the infinite-U limit, the level width is given
by

�U→∞(εaf ) = Im
∑

k

[|Vks |2/2][2 − f<(εk)]

εaf − εk − iη
.

When compared to �0 [the corresponding level to the
spinless approximation, Eq. (17)], we can see that the electron-
loss processes have the same weight in both approximations
while the possibility of electron capture is lowered in the
infinite-U limit.

Since the atom spectral density does not depend on temper-
ature in the spinless model, the only variation of the neutral
fraction with temperature comes from the Fermi distribution,
which is nearly constant in the analyzed temperature range.
The fundamental difference between finite and infinite-U
calculations resides in the fact that the probability of double
ionized Sr atoms along the ion trajectory is not disregarded

FIG. 3. The double (a) and single (b) electronic occupations are
shown as a function of the target temperature for five different
projectile-surface distances: 6 a.u. (squares), 7 a.u. (triangles pointing
up), 8 a.u. (circles), 9 a.u. (triangles pointing left), and 10 a.u.
(triangles pointing right).

FIG. 4. Experimental (full squares) neutral fraction as a function
of the target temperature contrasted with theoretical calculations
under three different approximations: Spinless (triangles), infinite-U
limit (empty squares), and finite-U approximation (circles). Measured
neutral fraction magnitudes are better described by the latter (and
more complete) model.
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Total DOS (arb. units)

FIG. 5. (a) Neutral fraction as a function of the projectile trajec-
tory calculated under the three approximations: spinless (triangles),
infinite-U limit (squares), and finite-U (circles). (b) Evolution of the
Sr0 and the Sr++ probabilities during the collision. Negative/positive
distances indicate incoming/outgoing part of the trajectory. The
first and second ionization energy levels are shown with their
corresponding �0 widths. The total surface DOS is also shown
(shaded region).

in the first case. In Fig. 5(a) we can see the evolution of the
neutral fraction along the trajectory calculated by using the
three approximations. In Fig. 5(b) the probability of occurrence
of neutral (Sr0) and double ionized Sr++ are compared (both
calculated under the finite-U approach). Since the infinite-U
limit provides a proper description of the problem for a large
portion of the projectile’s trajectory, it is not surprising that
the temperature dependence of the neutral fraction is similar
in both finite- and infinite-U calculations. Our results show that
the possibility of the double ionized Sr atoms, only appreciable
at small distances from the surface, increases the neutral
fraction. This is a pure correlation effect, already identified
and discussed in a previous work [16].

The neutral fraction results to be quite dependent on the
surface work function in this atom-surface interacting system.
This is not surprising because of the proximity of the first
ionization level to the Fermi level. In the next figure (Fig. 6)
we can see the variation of the neutral fraction as a function of
temperature for small variations of the work function (less

FIG. 6. (a) Calculated neutral fraction as a function of the target
temperature under the three approximations above described: spinless
(a), infinite-U limit (b), and finite-U (c). Each solid line corresponds
to the calculation performed for different values of the work function
around 5.1 eV (indicated in the figure). The figure shows how
sensitive the neutral fraction is to small variations in the surface work
function. Moreover, typical precision in work-function measurements
(0.1 eV) introduce sufficiently large errors in the calculation to match
the experimental neutral fractions obtained (shaded region, finite-U
approach).

than 0.1 eV), under the three electron-electron interaction
approximations previously discussed in this work.

The finite-U model calculation is the most sensitive to small
variations of the surface work function. The results of Fig. 6(c)
suggest that a slight nonmonotonous temperature dependence
of the work function (�), possibly not detected within the
experimental error of the work-function measurement [25,26],
may explain the presence of a maximum in the temperature
dependence of the neutral fraction. It has been discussed a
long time ago that the thermal expansion of the crystals and
the thermal vibration of the atoms are mainly responsible for
the temperature dependence of the work function, and that each
of these two effects gives a temperature coefficient of opposite
sign [27–29]. The work-function dependence on temperature
extracted by fitting the results of Fig. 6(c) and shown in the
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FIG. 7. Calculated neutral fraction under the finite-U approach
when the work function is kept constant at � = 5.1 eV (full circles)
and when a small temperature dependence in the work function (inset)
is assumed (empty squares with crosses). Work-function variation
rates in the order of 10−4 eV/K are typical in metals.

inset of Fig. 7 seems to respond to these two effects, and it
allows for fairly reproducing the experimental behavior with
temperature of the neutral fraction (see Fig. 7).

Here, it is important to stress that the proposed temperature
work-function dependence must fulfill two essential extra
constraints: (i) the work function of polycrystalline Au at
room temperature (300 K) is 5.1 eV (measured independently
with different methods, even with lower experimental errors)
[30–32]; and (ii) the absolute deviation in the work function
from 5.1 eV should not exceed 0.1 eV for the whole
temperature range (see experimental error in work-function
measurement reported in Refs. [4,5]). Thus, with these two
extra constraints, it is clear from Figs. 6 and 7 that the finite-U
model (with e-correlation included) plus the work-function
temperature dependence proposed is the only model capable
to adequately describe the neutral fraction magnitudes and the
temperature dependence experimentally observed.

B. Mg-Au system

The neutral fraction along the ion trajectory in the case
of positive ions of Mg scattered by a gold surface is shown
in Fig. 8 for two incoming energies, 1 and 2 keV, and
T = 300 K. These results were obtained by using the infinite-U
limit approximation, that is, only the atomic configurations
with one and two electrons in the 4s orbital of Mg are
considered. The turning point is fixed in z = 4 a.u. and the
corresponding energy-loss factor (0.6547) is considered to
determine the exit velocity. The one electron energy level εaf

and its noninteracting width �0(εaf ), jointly with the density
of states (DOS) of Au(100), are also shown in Fig. 8.

We observe that the neutral fractions for the two incoming
energies are very similar and practically a full neutralization
(>90%) is obtained. This result is consistent with the first
ionization level well below the Fermi level along the major
part of the trajectory. The level width makes possible the
electron-loss processes only for distances smaller than 6 a.u. In
the next figure, the calculated and measured [5] temperature

Total DOS (arb. units)

FIG. 8. Neutral fraction (Mg0) evolution along the projectile
trajectory calculatesd under the infinite-U approach for two incoming
energies: 1 keV (circles) and 2 keV (squares). An almost complete
neutralization is achieved for both incoming energies consistent with
an energy level far from the surface Fermi level (also shown with its
corresponding �0 width). The total Au(100) DOS is also included
(shaded region).

dependencies of the neutral fraction are compared for both
incoming energies, 1 and 2 keV.

The calculated neutral fraction is in agreement with
measured values within the experimental errors. In Fig. 9 we
also include the results calculated by considering the �(T )
shown in the inset of Fig. 7. We observe that this temperature
dependence of the work function only introduces a slight
temperature dependence of the neutral fraction at 1 keV, which
is, in some way, an obvious result since a projectile level well

FIG. 9. Calculated (empty symbols) and experimental [5] (full
symbols) are compared for two incoming energies: 1 keV (circles)
and 2 keV (squares) when the work-function temperature is kept
constant (� = 5.1 eV). If the temperature dependence in the work
function (inset Fig. 7) is incorporated, the calculated neutral fraction
(crosses) is practically not altered. A noticeable agreement between
experimental and calculated neutral fractions is achieved.
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below the Fermi energy makes the neutral fraction not sensitive
to small changes of the work function.

From Fig. 8 we can also see that for z > 6 a.u. the relation
rc = εaf /�0(εaf ) is smaller than −2, indicating an empty
orbital regime and leading to practically no variation of the
valence occupation with the temperature.

IV. CONCLUSIONS

We report theoretical results about the neutralization prob-
ability of Sr+ ions scattered by a gold target surface. We
used three different approximations to include the electronic
correlation in our model: (a) spinless, (b) the infinite-U limit,
and (c) the finite-U limit. The proximity of Sr+ and Sr++
energy levels when compared to their widths indicate that the
finite-U model should be more appropriate to describe the
system under analysis. This speculation is indeed reinforced
by the improved agreement with experimental results found in
neutral fractions calculated under the finite-U limit. A detailed
analysis of the evolution of each probability indicates that
even when the final Sr++ fraction is negligible, it becomes
important at low projectile-target distances and affects the final
Sr0 neutral fraction.

The analysis of the adiabatic evolution of the interaction
between the ion Sr+ and the gold surface allows us to conclude
that the Kondo regime (once considered a key factor in the
anomalous neutral fraction temperature dependence obtained
[4]) takes place at large distances (>8 a.u.). It is found that
the neutralization probability increases with temperature in
the Kondo regime (the hole occupation decreases), while the
opposite behavior is obtained in the mixed-valence regime.

To explain the anomalous neutral fraction temperature
dependence experimentally found we proposed that slight
changes, caused by the sample heating or potential sample
contamination under detection limits, could be responsible
for the behavior observed. We based our conjecture on
two different grounds: (a) the neutral fraction in the Sr-
Au system is extremely sensitive to changes in the gold
work function, even those lower than typical errors [25] in
work-function measurements; (b) the necessary work-function

variations (0.1 meV/K) to reproduce the observed behavior
are comparable to previously reported thermal work-function
shifts for metals [27]. Despite a T 2 dependence of metal work
functions having been properly documented [27–29], there is
no, however, any previous work that supports the temperature
dependence proposed for gold surface work function in the
inset of Fig. 7. Only Gd polycrystalline [27] and Cu(111) [28]
were found to have a similar temperature dependence of that
proposed for Au.

Based on the fact that the energy level of the Mg first
s-valence electron is found well below the gold surface Fermi
level, the same theoretical formalism was applied to the
Mg-Au system under the infinite-U limit. The comparison with
experimental neutral fractions shows an excellent agreement,
either for magnitudes and temperature dependence of the
neutral fractions, for the two incoming energies considered, 1
and 2 keV. In addition, an identical work-function temperature
dependence to that one proposed for the Sr-Au system was
employed for Mg-Au. Minor changes were found when
compared to theoretical calculations with a constant work
function, showing that any potential slight change in the work
function, either from heating or contamination sources, cannot
be detected by measuring the neutral fraction in Mg-Au.

The model described above and the previous discussion
could be straightforwardly extended to other alkaline-Au
systems like Be-Au, Ca-Au, Ba-Au, or Ra-Au. Based on the
proximity of Ba first ionization energy level (5.2 eV) and gold
surface Fermi level (5.1 eV) and previous results on Sr-Au
and Mg-Au, we foresee a stronger dependence of the neutral
fraction with the temperature and the work function of the
Au surface (even stronger than the one obtained for Sr-Au).
Unfortunately, and due to different experimental difficulties,
the neutral fraction has not yet been measured in any of these
systems.
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