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Otachyriinae Butzin, one of the three subtribes within the Paspaleae tribe of grasses, includes seven genera and
approximately 35 species. Interestingly, this subtribe comprises species with C3, C3-C4 intermediate, and C4

photosynthesis. The circumscription of Otachyriinae has changed through time, and still varies among treatments in
current use. The monophyly of this subtribe has been recovered in previous studies based on plastid markers. A
phylogenetic study taking into account polyploidy and a low-copy nuclear gene (LCNG) is still lacking in Paspaleae. A
phylogeny including data from a LCNG is paramount to uncover reticulated evolution within the group. The purpose of
the present study was to reconstruct the evolutionary history of Otachyriinae, based on both chloroplast and LCNG
DNA with a focus on polyploidization. Several incongruences between gene trees allowed us to explore relationships
between diploid and polyploid taxa. Our study identified several promising topics for future studies: genetic
allopolyploidy and autopolyploidy was here documented using the characteristic pattern of double-labelled gene trees.
The molecular evidence indicates that at least 40% of species of Otachyriinae show phylogenetic signature of polyploidy
(16 taxa appear double-labelled in the nuclear gene trees); furthermore, the results support an allopolyploid origin of at
least nine taxa in the subtribe: Rugoloa polygonata, a species with unknown photosynthetic pathway, the proto-kranz
species Steinchisma laxum and Rugoloa hylaeica, and the C3 species Hymenachne felliana, H. grumosa, H. hemitomon,
H. donacifolia, H. pernambucense, and P. grande. Also, our results confirm that the C4 genus Anthaenantia is
unambiguously monophyletic and show that Anthaenantia lanata is an autopolyploid. We recognized six genera within
subtribe Otachyriinae: Anthaenantia, Hymenachne, Otachyrium, Plagiantha, Rugoloa, and Steinchisma. Finally, Panicum
species with historically ambiguous placements, i.e. P. condensatum, P. grande, P. harleyi, P. leptachne, P. longum, and
P. stagnatile were transferred to the genus Hymenachne.Q3
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Introduction
Otachyriinae Butzin, one of the three subtribes within
the Paspaleae tribe, consists of seven genera with
approximately 35 species. Species of this subtribe are
widely distributed in wet habitats in the tropics of
America, Asia, and Australia. Subtribe Otachyriinae is
morphologically characterized by having spikelets
usually arranged in unilateral branches, with the lower
glume shorter than the upper glume and lower lemma,
and upper anthecium membranous to indurate;
it includes species of Anthaenantia P. Beauv.,

Hymenachne P. Beauv., 'Panicum incertae sedis' spe-
cies of sect. Laxa, Plagiantha Renvoize, Otachyrium
Nees, Rugoloa Zuloaga, and Steinchisma Raf.
Species of Otachyriinae include C3, C3-C4 intermedi-

ate, and C4 species. In the 1980s, the anatomy, bio-
chemistry, and physiology of some Panicum species,
now considered in the Otachyriinae were extensively
characterized (Bouton, Brown, Bolton, & Campagnoli,
1981; Brown, Bouton, Evans, Malter, & Rigsby, 1985;
Brown, Bouton, Rigsby, & Rigler, 1983; Edwards, Ku,
& Hatch, 1982; Holaday & Chollet, 1983; Hylton,
Rawsthorne, Smith, Jones, & Woolhouse, 1988;
Morgan, Brown, & Reger, 1980; Renvoize, 1987;
Sternberg, Deniro, Sloan, & Black, 1986). Interestingly,
Monson, Rawsthorne, and co-workers (Monson &

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Correspondence to:Q1 Juan M. Acosta E-mail:
jacosta@darwin.edu.ar; Renata Reinheimer E-mail:
rreinheimer@ial.santafe-conicet.gov.ar

ISSN 1477-2000 print / 1478-0933 online
# The Trustees of the Natural History Museum, London 2019. All Rights Reserved.
https://dx.doi.org/10.1080/14772000.2019.1572035

Systematics and Biodiversity (2019), 0(0): 1–18

http://crossmark.crossref.org/dialog/?doi=10.1080/14772000.2019.1572035&domain=pdf
http://www.tandfonline.com
Author Query
AQ1: Please check and resupply corresponding author email address if the given is inaccurate.

Author Query
AQ3: f your paper introduces new zoological taxa at family-group level or below, you are now required to register your paper with ZooBank and insert the generated ZooBank ID (LSID) here. Individual new taxa need not be registered before publication; this can be done subsequently should you wish. Please go to http://www.zoobank.org/register to complete this task. You will need your article DOI to register. After publication, you must amend your ZooBank record of your paper to reflect the date of publication. Please see http://www.zoobank.org/help for further information.



Moore, 1989; Rawsthorne & Bauwe, 1998) proposed
the model of the gradual progression from C3 towards
C4 photosynthesis based on the leaf anatomical variation
observed in this group. Also, new insights in C4 evolu-
tion have highlighted the importance of the species
included in this subtribe to serve as a model for C4

grass evolution (Khoshravesh et al., 2016; Sage,
Khoshravesh, & Sage, 2014). The Otachyriinae was
strongly supported as monophyletic both when analysing
the ndhF dataset independently (Acosta, Scataglini,
Reinheimer, & Zuloaga, 2014; Aliscioni, Giussani,
Zuloaga, & Kellogg, 2003) or combined with morph-
ology (Morrone et al., 2012). Although these studies
contributed significantly to the knowledge of evolution-
ary relationships within Otachyriinae, the phylogeny of
this subtribe is still not completely resolved. Some ques-
tions remain unanswered while others have arisen as a
result of newly published data that uncovered novel
and/or complex patterns of relationships.
The circumscription of Otachyriinae has changed

through time, and still varies among treatments in cur-
rent use (Acosta et al., 2014; Grande Allende, 2014;
Kellogg, 2015). Several species included in
Otachyriinae previously belonged to Panicum sect Laxa
Hitchcock & Chase ex Pilger (Pilger, 1931). Zuloaga,
Ellis, and Morrone (1992) included 13 species in the
section. Later, Aliscioni et al. (2003) and Morrone et al.
(2012) found that sect. Laxa is polyphyletic, species of
this being morphologically similar to taxa of the
Otachyriinae, such as Steinchisma and Hymenachne.
Therefore, some Panicum taxa have been transferred to
genera of the Otachyriinae, such as Hymenachne, and
Steinchisma (Acosta et al., 2014; Aliscioni et al., 2003);
also, the new genus Rugoloa, including 'incertae sedis'
species of Panicum was established within the subtribe
(Acosta et al., 2014). Nevertheless, there remain
Panicum species of sect. Laxa in need of a clear system-
atic position (i.e., Panicum bresolini L.B. Sm. &
Wassh., P. condensatum Bertol., P. longum Hitchc. &
Chase, and the ungrouped P. grande Hitchc. & Chase),
whose taxonomic placement is unresolved because of
the lack of plant material or herbarium specimen obser-
vation. Additionally, some taxonomic discrepancies still
need to be analysed within the subtribe. Kellogg (2015)
considered the genera Plagiantha and Steinchisma
within the genus Otachyrium, based on phylogenetic
results and that all three genera share a distinctive hard-
ened palea. Also, Grande Allende (2014) treated some
species within the Otachyriinae and proposed several
new combinations at the species level, the new genus
Aconisia and new infrageneric synonyms previously
included in Panicum. However, Grande Allende's work
lacked observations of plant material and/or herbarium

specimens, while this author did not include any appro-
priate analytical method (or methods) to test his hypoth-
esis and conclusion.
A reconstructed phylogeny helps guide interpretation

of the evolution of organismal characteristics, providing
hypotheses about the lineages in which traits arose and
under what circumstance, thus playing a vital role in
studies of adaptation and evolution. Although the mono-
phyly of Otachyriinae has been recovered in previous
studies (Acosta et al., 2014), some of the currently
recognized genera resulted para- and polyphyletic, such
as Otachyrium and Hymenachne respectively (Acosta
et al., 2014).
Published chromosome counts are available for sev-

eral Otachyriinae species (Bouton et al., 1981; Davidse
& Pohl, 1972, 1974, 1978; Hidalgo, Caponio, &
Norrmann, 2007; Morrone, Hunziker, Zuloaga, &
Escobar, 1995; Pohl & Davidse, 1971; Zuloaga,
Morrone, Vega, & Giussani, 1998). Based on these data,
Otachyriinae shares, with the rest of the Paspaleae tribe,
a base chromosome number of x¼ 10 (Morrone et al.,
2012). Furthermore, these cytological studies showed
that some species included in the Otachyriinae were
identified as diploids while others were polyploids.
Polyploidy, the possession of more than two complete
genomes, is a major force in plant evolution known to
affect the genetic and genomic constitution and the
phenotype of an organism; as a result, polyploidy has a
strong influence in the ecology and geography as well
as in lineage diversification of taxa (Weiss-Schneeweiss,
Emadzade, Jang, & Schneeweiss, 2013).
Phylogeny reconstruction in clades including poly-

ploid species groups is often difficult due to the reticu-
late nature, considering that allopolyploids combine
effects of genome doubling (polyploidy) together with
genome merger (hybridization) (Estep et al., 2014;
Weiss-Schneeweiss et al., 2013). The parental origins
and evolutionary history of polyploids could be deter-
mined with the combined use of nuclear and organelle
phylogenies. Although the internal transcribed spacer of
the ribosomal genes (ITS) is widely used, its high copy
number and concerted evolution make it inadequate for
this purpose (�Alvarez & Wendel, 2003).
Earlier attempts to resolve relationships within other

lineages of Paspaleae using chloroplast and nuclear
markers (such as ITS and ETS), produced poorly sup-
ported phylogenies (Scataglini, Zuloaga, Giussani,
Denham, & Morrone, 2014) or unresolved intergeneric
relationships (Mathews, Spangler, Mason-Gamer, &
Kellogg, 2002). More than 80% of grass species have
undergone polyploidy some time during their evolutionary
history (Stebbins, 1985); therefore, a failure to account for
polyploidy may be one important reason for the difficulty
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of resolving phylogenetic relationships in grasses (Estep
et al., 2014). Since chloroplasts are mostly uniparentally
inherited, they cannot recover reticulations caused by allo-
polyploids; only nuclear sequence data have the power to
provide this information (Kellogg, 2016).
A phylogenetic study taking into account polyploidy,

based on several individuals per species, and a low-copy
nuclear gene (LCNG) is still lacking in Paspaleae sub-
tribes, which severely restricts evolutionary studies in
these taxa. Due to the fact that polyploidy and reticulate
evolution are common in grasses and diploids/polyploids
have been registered for species included in
Otachyriinae, new data from LCNG will provide import-
ant new insights about the history of the Otachyriinae.
The purpose of the present study was to reconstruct

the evolutionary history of the Otachyriinae, with a
focus on possible polyploidization events. We used a
phylogenetic approach to obtain insights from chloro-
plast NADH dehydrogenase subunit F (ndhF) and
nuclear Aberrant Panicle Organization 1 (apo1) markers,
as a framework to detect potential events of reticulate
evolution within the subtribe. We also point out incon-
gruences between gene trees that allowed us to explore
the relationships between diploid and polyploid taxa.
Moreover, we provide diagnostic morphological charac-
ters for the genera recognized in our comprehensive spe-
cies-level phylogeny derived from a combined analysis
of ndhF and apo1 markers, and propose a revised gen-
eric classification of the Otachyriinae. The molecular
sampling in this study improves our understanding of
the affinities within all major clades, and clarifies the
taxonomic affiliations of Panicum species with historic-
ally ambiguous placements.

Materials and methods
Taxon sampling
The data matrix included 57 accessions; nine outgroup
species and 48 specimen vouchers representing all genera
of the Otachyriinae, i.e., Anthaenanthia, Hymenachne,
Otachyrium, Plagiantha, Rugoloa, and Steinchisma, the
incertae sedis species of Panicum sect. Laxa (P. conden-
satum, P. harleyi Salariato, Morrone & Zuloaga, P. lep-
tachne D€oll, P. longum, and P. stagnatile Hitchc. &
Chase) and the ungrouped species Panicum grande.
Vouchers are listed in Appendix S1, see online supple-
mental material, which is available from the article’s
Taylor & Francis Online page at http://dx.doi.org/xx.
xxxx/xxxxxxxx.xxxx.xxxxxx).
DNA sequencing and processing. Total genomic

DNA was extracted from silica-dried leaves using a
modified CTAB protocol (Doyle & Doyle, 1987). For

herbarium specimens, DNA was isolated using the
DNeasy Plant Mini Kit (Qiagen, Hilden, Germany)
following the manufacturer’s recommendations.
The chloroplast marker ndhF gene was amplified and

sequenced in four steps using the following primers
specified by Olmstead and Sweere (1994) and Aliscioni
et al. (2003): 5F-536R, 536F-972R, 972F-1666R, and
1666F-3R. The PCR reactions for the chloroplast marker
were performed as described in Acosta et al. (2014).
The nuclear apo1 gene was amplified using the pri-

mers specified by Estep et al. (2012) subcloned in a
pGEM-T Easy Vector and sequenced. The apo1 primers
occasionally amplify multiple loci as a single band, so a
second set of primers (F2: 5’-ACC TCC CCT TCT
TYG CCT - 3' and R2: 5’- GCC ACG TCG AAC ACV
AGM A - 3') were designed for nested PCR using the
same thermocycler conditions for greater specificity.
The PCR reactions were performed in 25 mL final vol-
umes with 50–100 ng of template DNA, 0.2 mM of each
primer, 25 mM dNTP, 5mM MgCl2 1� buffer and 0.3
units of Taq polymerase provided by Invitrogen Life
Technologies. For most of the species, PCR was carried
out using the following parameters: one cycle of 94 �C
for 5min, 39 cycles of 94 �C for 30 s, 55 �C for 1min,
and 72 �C for 1min 30 s, and a final extension cycle of
72 �C for 10min. The PCR products were gel purified
using the gel purification kit of PB-L (Buenos Aires,
Argentina) and ligated into Promega (Madison,
Wisconsin) pGEM-T Easy vectors following the manu-
facturer’s protocols. Ligations were transformed in
DH5a competent cells. After heat-shocking the cells for
2minutes at 42 �C, 1ml LB medium was added to the
transformation and cultures were allowed to stabilize in
a shaker at 37 �C for 2 hours. The cultures were then
plated on LB-agar plates (containing Sigma-Aldrich
(Steinheim, Germany) Ampicillin, Promega (Madison,
Wisconsin) X-gal and Promega IPTG for blue/white
screening) and incubated at 37 �C overnight. Between
five and 10 white colonies from each transformation
were selected. Selected colonies were PCR-amplified
using Pegasus taq polymerase (PB-L, Buenos Aires,
Argentina) and the vector primers M13F and M13R to
confirm the presence of the insert. Plasmids were iso-
lated for positive clones using the purification plasmid
kit (PB-L, Buenos Aires, Argentina). Manufacturer’s
protocols were followed for all steps. At least five posi-
tive clones for each PCR product were sequenced in
both directions. Sequencing reactions using the T7
(forward) and M13-pUC (reverse) universal primers
were performed by Macrogen using the ABI PRISM
BigDye terminator cycle sequencing kits with AmpliTaq
DNA polymerase (Applied Biosystems, Seoul, Korea).
Chromatogram files were trimmed of vector and low
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quality sequences and reverse and forward sequences
for each clone were assembled and edited using the pro-
gram MEGA v.6 (Tamura, Stecher, Peterson, Filipski, &
Kumar, 2013). All good quality sequences for each
marker were then aligned using ClustalX v2 (Larkin
et al., 2007) under the default options.

Data matrix assembly
The previously published DNA matrix of the chloroplast
ndhF marker (Acosta et al., 2014) was completed with
sequences of three new added species (P. longum, P.
condensatum, and P. grande) and sequences for 21 new
voucher accessions (Appendix S1, see supplemental
material online).
The initial dataset for the apo1 nuclear locus included

196 sequences in total. Automated methods included in
the Recombination Detection Program RDP4 v4.36
(Martin, Murrell, Golden, Khoosal, & Muhire, 2015)
were used, in order to account for recombination events,
to identify the presence of chimerical sequences.
Although the complete apo1 gene matrix did not include
recombinant sequences, this dataset contained numerous
redundant clones. To reduce the number of redundant
sequences to one per paralogue per locus, a preliminary
phylogenetic analysis, with all clones of all taxa, was
conducted in RAxML (Stamatakis, Hoover, &
Rougemont, 2008). Based on the maximum likelihood
preliminary analysis, clones that formed a clade and that
differed by fewer than five nucleotides were inferred to
represent a single locus and were combined into a single
majority-rule consensus sequence using the perl script
clone_reducer (github.com/mrmckain) as described in
Estep et al. (2014). Clones that did not meet these crite-
ria were kept separate through subsequent analyses. The
final dataset contained 98 sequences.
Voucher specimen and its corresponding GenBank

accession numbers for ndhF and apo1 sequences used
in the phylogenetic analyses (described below) are listed
in Appendix S1 (see supplemental material online). All
aligned matrices are available online from TreeBase
(Study Accession URL: http://purl.org/phylo/treebase/
phylows/study/TB2:S23129).

Phylogenetic analyses
The chloroplast ndhF marker and the nuclear marker
apo1 were analysed separately first using Parsimony
(MP), Maximum likelihood (ML) and Bayesian
inference (BI). In these analyses gaps were treated as
missing data.
For MP analysis, tree searches were generated in

TNT v1.1 (Goloboff, Farris, & Nixon, 2008) using

heuristic searches with 1,000 random addition sequen-
ces, tree bisection and reconnection (TBR) branch swap-
ping, and holding 10 trees per replicate. Generated trees
were then submitted to a new round of TBR branch
swapping to completion. The non-parametric bootstrap
of Felsenstein (1985), with 1,000 replicates, was used to
assess branch support.
Analyses BI and ML were performed using the

CIPRES Science Gateway V.3.3 (Miller, Pfeiffer, &
Schwartz, 2010). The best-fit model of nucleotide sub-
stitution for each marker was identified using the
Akaike information criterion (AIC) implemented in
jModeltest 2.1.3 (Darriba, Taboada, Doallo, & Posada,
2012) (ndhF: GTRþG, apo1: GTRþ IþG).
The ML analyses were conducted in RAxML v8.2.4

(Stamatakis, 2014) using non-parametric bootstrap (BS)
analysis and searches for the best-scoring ML tree in a
single run (Stamatakis et al., 2008). We performed
1,000 rapid bootstrap inferences and, thereafter, a thor-
ough ML search under the GTRGAMMA (ndhF) and
the GTRGAMMAI (apo1) models.
Additionally we tested the monophyly of species and

genera associated to their current generic classification
on plastid and nuclear trees using the SH test
(Shimodaira & Hasegawa, 1999) implemented in
RAxML v8.2.4 (Stamatakis, 2014). Searches of con-
strained topologies were conducted in RAxML with
1,000 replicates and the models used above, and the sig-
nificance of differences between the best ML uncon-
strained and constrained trees was determined using
10,000 BS replicates and rejecting the hypothesis
when P< 0.01.
The BI was carried out with MrBayes v.3.2.1

(Ronquist et al., 2012) implementing two parallel runs
of four simultaneous Markov chains for 10 million gen-
erations, sampling every 1,000 generations and using
the default parameters. Convergence of the runs was
assessed by checking the status of parameters in Tracer
v.1.5 (Rambaut & Drummond, 2007) to ensure the sta-
tionarity of each run. Likelihoods of the trees produced
by each run were analyzed graphically using Tracer
v.1.5 (Rambaut & Drummond, 2007) and, after discard-
ing the initial 2,500 trees of each run as burn-in (25%),
the remaining trees were summarized in a Maximum
clade credibility tree (MCCT) including the posterior
probabilities (PP) as branch support estimates.

Inference of allopolyploids
The positions of different apo1 copies in the nuclear
gene tree obtained were used for inference of parental
progenitors of polyploids species. If sequences from a
polyploid species grouped within different clades, this
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was interpreted as an indication for allopolyploidy,
while autopolyploidy was inferred if all sequences of a
polyploid were in a single clade (Brassac & Blattner,
2015; Estep et al., 2014; Kellogg, 2016). For statistical
support, the SH test (described above) was used to
assess the monophyly of apo1 gene copies for each allo-
polyploid species inferred. Also, chloroplasts are inher-
ited maternally in most angiosperms (Reboud & Zeyl,
1994), so phylogenies obtained by cpDNA markers have
been used for determining a maternal parent of a poly-
ploid (Brassac & Blattner, 2015; Nishikawa, Salomon,
Komatsuda, von Bothmer, & Kadowaki, 2002). Thus,
putative male and female crosses resulting in allopoly-
ploid taxa within Otachyriinae were inferred comparing
the ndhF phylogeny with the phylogeny obtained from
the apo1 dataset. Chromosome counts presently known
for Otachyriinae species used to argue about the ploidy
level of each taxon (see Discussion section) are sum-
marized in Table S1 (see supplemental material online).

Phylogenetic analyses of the
combined dataset
To take into account the allopolyploid taxa, for com-
bined analyses including both datasets, a pruned apo1
gene matrix was constructed by reducing it to a set of
sequences comparable with the ndhF dataset. For each
allopolyploid taxa identified, we selected the apo1
sequences that were most similar in position to the
ndhF phylogeny. This biases the results in favour of
compatibility of trees but these analyses allowed us to
analyse possible incongruences between gene trees
excluding the allopolyploidization events. Topological
discordance among gene trees due to incomplete lineage
sorting, and possibly other phenomena can cause concat-
enation analyses to fail (P�erez-Escobar, Balbuena, &
Gottschling, 2016; Salichos, Stamatakis, & Rokas,
2014). To avoid this, a coalescent-based estimation of
the species tree, implemented in BEAST (Larget, Kotha,
Dewey, & An�e, 2010) and Bayesian Concordance
Analysis, implemented in BUCKy (An�e, Larget, Baum,
Smith, & Rokas, 2007), were done. Then, after discard-
ing the incongruent sequences due to allopolyploid taxa
and assuming that all topological discordance between
the cpDNA dataset and the pruned nuclear dataset is
caused by incomplete lineage sorting (ILS), a coales-
cent-based estimation of the species tree was performed
using BEAST 1.8.3 (Drummond, Suchard, Xie, &
Rambaut, 2012). We applied the lognormal relaxed
clock model, the piecewise linear with constant root
population function and the Birth-Death speciation
model, supported as the best tree prior using Bayes fac-
tor values calculated with the marginal likelihood

estimates of the path sampling and stepping-stone sam-
pling as proposed in Condamine, Nagalingum, Marshall,
and Morlon (2015). We conducted four independent 100
million generation runs, sampled every 10,000 genera-
tions. Tracer v1.6 was used to check for stabilization of
overall likelihood. After discarding the first 25 million
generations as burn-in, the four runs were combined and
summarized in a Maximum clade credibility tree
(MCCT) with the LogCombiner 1.8 and TreeAnnotator
1.8 programs distributed with the BEAST package.
Bayesian concordance analysis (BCA) was conducted

using BUCKy 1.4.4 (Larget et al., 2010). As BUCKy
requires a single sequence to represent each marker-indi-
vidual combination, we created two input files from the
pruned nuclear dataset to include in the BCA two differ-
ent apo1 sequences for those specimen vouchers with
more than one apo1 copy retrieved. Thus, we included
in each input file the more congruent and more conflict-
ing apo1 gene copy with respect to the ndhF phylogeny
(hereafter nuclear input file a and b respectively). We
created individual gene trees in MrBayes for both
nuclear input files under the same model and parameters
described above. Gene trees from MrBayes were used
as input for the BUCKy analysis. We used the sub-pro-
gram mbsum to summarize gene tree distributions gen-
erated for each locus in MrBayes and to perform BCA.
The output of mbsum was subsequently used for the
subprogram bucky to create a primary concordance tree
with concordance factors for clades. We implemented
one cold and three heated chains, using different values
of a (0.1, 1, 5, 10, 20, 50, and 100) to model a range of
prior probabilities on the number of concordance trees.
We report concordance factors for the default value
of 1.
To illustrate incongruences between the individual

gene trees, a network graph was generated using
SplitsTree version 4.14 (Huson & Bryant, 2006). For
this, a filtered supernetwork was constructed from the
1,000 Bayesian posterior trees per each nuclear and
plastid dataset, and filtering the splits to show only
those present in a minimum of 35% input trees.

Results
Phylogenetic analyses of cpDNA and
nucDNA datasets
Individual gene trees for the plastid DNA marker ndhF
and the nuclear gene apo1 are presented in Figs 1 and 2
respectively. Strict consensus tree from MP and MCCT
from BI recovered similar topologies showing the same
strongly supported clades, so only the BI trees are pre-
sented here for each marker, however posterior
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probabilities (PP) and parsimony bootstrap support
(BS) values obtained under BI and MP respectively
are reported.
The resulting plastid matrix alignment for 57 voucher

specimens was 2068 bp long, of which 156 bp were par-
simony informative. The MP analyses resulted in 20
most parsimonious trees, 291 steps long with CI ¼ 0.62

and RI ¼ 0.87 (Kluge, 1989; Kluge & Farris, 1969).
The topology of the plastid tree (Fig. 1) agrees well
with the plastid trees presented in Acosta et al. (2014).
The MP and BI analyses resolved the monophyly of the
Otachyriinae subtribe with strong support (PP¼ 1; BS¼
100). The Anthaenantia genus is monophyletic (PP¼ 1;
BS¼ 100), and resolved as sister to the remaining
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Fig. 1. Maximum clade credibility tree (MCCT) from 15,002 trees generated by Bayesian inference with MrBayes for the
Otachyriinae subtribe using the chloroplast ndhF dataset. Branch colours indicate Bayesian posterior probability (PP) with red
highest, brown lowest. Numbers above branches represent PP values (only PP above 0.75 are reported). Numbers below branches
represent parsimony Bootstrap support (only BS values for the major clades discussed are reported). Blue stars indicate Panicum taxa
transferred to Hymenachne (see taxonomic considerations section). For interpretation of the references to colour in this figure legend,
the reader is referred to the electronic version of this article.
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genera of the subtribe. Rugoloa also was resolved as
monophyletic (PP¼ 1; BS¼ 100). Regarding
Hymenachne, this genus is non-monophyletic and two
sister clades were resolved with strong support in both
topologies: Old world (OW) and New world (NW)
clades. The Hymenachne OW clade (PP¼ 1; BS¼ 100)

includes the cosmopolitan H. amplexicaulis (Rudge)
Nees along with other Old world taxa H. aurita (J. Presl
ex Nees) Balansa, H. felliana (B.K. Simon) Zuloaga,
and H. pseudo-interrupta M€ull. Hal. The Hymenachne
NW clade (PP¼ 0.97; BS¼ 94) includes the following
American taxa: H. pernambucense (Spreng.) Zuloaga,
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Fig. 2. Maximum clade credibility tree (MCCT) from 15,002 trees generated by Bayesian inference with MrBayes for the
Otachyriinae subtribe using the nuclear apo1 dataset. Branch colours indicate Bayesian posterior probability (PP) with red highest,
brown lowest. Numbers above branches represent PP values (only PP above 0.75 are reported). Numbers below branches represent
parsimony Bootstrap support (only BS values for the major clades discussed are reported). Letters indicate different consensus copies
of the apo1 gene for each voucher specimen. Yellow star indicates the Hymenachne–Rugoloa (HR) clade, with the branches leading
to the subclades compressed. For interpretation of the references to colour in this figure legend, the reader is referred to the
electronic version of this article.
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H. hemitomon (Schult.) C.C. Hsu, H. donacifolia (Raddi)
Chase, H. grumosa (Nees) Zuloaga along with Panicum
incertae sedis species: P. leptachne, P. harleyi, and P.
stagnatile. Based on our new plastid gene tree, P. con-
densatum, P. grande, and P. longum, are included in the
Otachyriinae subtribe within the Hymenachne NW
clade. Plagiantha, Otachyrium, and Steinchisma, rem-
nant genera of the subtribe, were grouped with high sup-
port (PP¼ 1; BS¼ 93). This analysis also showed that
Steinchisma is monophyletic (PP¼ 1; BS¼ 100), and
Plagiantha and Otachyrium are sisters of Steinchisma.
The position of the genus Otachyrium is resolved as
paraphyletic, with the genus Steinchisma embedded.
The dataset of the nuclear apo1 locus was reduced to

98 sequences after the preliminary ML analysis (196
sequences). The resulting apo1 matrix was 849 bp long,
of which 169 were parsimony informative. The MP
analyses resulted in 1470 most parsimonious trees, 486
steps long with CI ¼ 0.55 and RI ¼ 0.85 (Kluge, 1989;
Kluge & Farris, 1969). In the nuclear gene tree (Fig. 2),
the Otachyriinae subtribe was resolved as a highly sup-
ported monophyletic group (PP¼ 0.97; BS¼ 75).
All species of Anthaenanthia were grouped in a

strongly supported clade (PP¼ 1; BS¼ 100) indicating
that the genus is monophyletic and was resolved as the
sister group of the rest of Otachyriinae species. Also,
the North American species of Anthaenantia (i.e., A.
rufa (Elliot) Schult., A. villosa (Michx.) P. Beauv., and
A. texana Kral) were grouped as monophyletic (PP¼ 1;
BS¼ 96), notwithstanding different copies being
retrieved for these accessions, and were resolved as a
sister group of the South American species A. lanata
(Kunt) Benth.
The genera Plagiantha, Otachyrium, and Steinchisma

form a highly supported clade (PP¼ 1; BS¼ 95; POS
clade; Fig. 2). Within the POS clade, Otachyrium was
resolved as paraphyletic. All sequences of O. piligerum
Send. & Soderstr., O. seminudum Hack. ex Send. &
Soderstr., O. succisum (Swallen) Send. & Soderstr. and
O. versicolor (D€oll) Henrard were grouped in a highly
supported lineage (PP¼ 1; BS¼ 90), separated from the
clade that groups O. aquaticum Send. & Soderstr., O.
grandiflorum Send. & Soderstr. and O. pterygodium
(Trin.) Pilg. sequences. Furthermore, the monotypic
genus Plagiantha was entangled among the Otachyrium
species. Additionally, sequences of species of
Steinchisma were grouped with high support (PP¼ 1;
BS¼ 100), with the exception of Steinchisma laxum
(Sw.) Zuloaga. Sequences of S. laxum fell into two dif-
ferent clades, one containing sequences from all acces-
sions of the rest of Steinchisma species (Fig. 2),
whereas the second copy of S. laxum was grouped
beside Rugoloa species (Fig. 3).

In the apo1 gene tree, the Hymenachne, Panicum
'incertae sedis', and Rugoloa species were grouped in a
moderately supported clade (the HR clade hereafter,
PP¼ 0.75; BS¼ 62; Figs 2 and 3). Within the HR clade
several polyploid events may have occurred and,
although relationships within the HR clade were not
fully resolved, three highly supported subclades are
identified: (1) the Rugoloa subclade (PP¼ 1; BS¼ 96),
where at least one copy for all species belonging to this
genus were grouped together with one genome of the
polyploid S. laxum (described above); (2) the
Hymenachne new world (NW) subclade (PP¼ 1; BS¼
92), with species of Hymenachne and Panicum 'incertae
sedis' natives to America and sequences of some clones
of the polyploid H. felliana (see below); (3) the native
Old world (OW) Hymenachne species form a well-sup-
ported group (PP¼ 1; BS¼ 100) together with the
cosmopolitan H. amplexicaulis, although the only apo1
gene copy retrieved for the South American H. donaci-
folia was included in this subclade.
With regard to Rugoloa species, two clearly distinct

apo1 sequences were retrieved for R. hylaeica (Mez)
Zuloaga and R. polygonata (Schrad.) Zuloaga; of these,
one copy of both species were grouped with R. pilosa
(Sw.) Zuloaga (called Rugoloa subclade hereafter). The
other sequence of R. hylaeica and R. polygonata were
resolved as sister to the Hymenachne OW subclade,
within the HR clade.
The apo1 sequence of Panicum condensatum, one

copy of P. grande (apo1 copy A) and all sequences
retrieved for P. longum were included within the
Hymenachne NW clade (Fig. 3). However, the apo1
sequence copy B retrieved for P. grande was placed
outside the Hymenachne NW subclade beside
Hymenachne hemitomon apo1 copy B (PP¼ 0.99; BS¼
99). Furthermore, the Hymenachne hemitomon þ
Panicum grande subclade appeared twice in the tree
within the HR clade: (1) in the Hymenachne NW sub-
clade, and (2) sister to the Rugoloa subclade (although
poorly supported; Fig. 3).
The different apo1 copies retrieved for Panicum har-

leyi and P. leptachne were not recovered as monophy-
letic within the Hymenachne NW subclade (Fig. 3).
Forcing the monophyly of P. harleyi and P. leptachne
apo1 sequences did not significantly decrease the likeli-
hood (SH test, difference of log-likelihood ¼ �4.586
and �2.581 respectively; P> 0.05).
The two apo1 copies of Hymenachne pernambucense

were recovered in different subclades inside the HR
clade: (1) one copy was grouped in a distinct subclade
together with H. grumosa (PP¼ 1; BS¼ 100) and
formed a sister group of the Rugoloa polygonata þ R.
hylaeica þ Hymenachne OW subclade, (2) the second
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copy was included in the Hymenachne NW subclade
with high support (PP¼ 1; BS¼ 100).
The old world Hymenachne species (H. pseudointer-

rupta, H. aurita, and H. felliana), the cosmopolitan spe-
cies H. amplexicaulis and the South American species
H. donacifolia were grouped with high support in the
Hymenachne OW subclade (Fig. 3). Forcing H. donaci-
folia to be included in the Hymenachne NW subclade in
the nuclear phylogeny led to a decrease of likelihood
(SH test, difference of log-likelihoods¼ �79.12, SD¼
16.16, P< 0.01), as did forcing it to be sister to
H. amplexicaulis in the chloroplast phylogeny (SH test,
difference of log-likelihoods¼ �54.73, SD¼ 17.14,
P< 0.01). Furthermore, two copies of the apo1 were
retrieved for the Australian species H. felliana: one
copy was placed inside the Hymenachne OW subclade
whereas the second copy fell into the Hymenachne NW
subclade together with the South American species of
Hymenachne and Panicum 'incertae sedis' included in
this study (Fig. 3).
Additionally, we tested whether we could reject

monophyly of the putative polyploids (Steinchisma
laxum, Rugoloa hylaeica, R. polygonata, Hymenachne
felliana, H. hemitomon, H. pernambucense, and
Panicum grande) by forcing all sequences from a given

species together using SH test. Forcing the monophyly
of S. laxum, R. hylaeica, R. polygonata, H. felliana, and
H. pernambucense was significantly worse than the ML
tree (P< 0.01), as was the monophyly of H. hemitomon
and P. grande (P< 0.05).
Also, the cpDNA and nucDNA tree resolved

Otachyrium as paraphyletic. However, the SH test failed
to reject the hypothesis of monophyly in both chloro-
plast and nuclear datasets (difference of log-likelihood
¼ �4.57 and �4.26 respectively; P> 0.05).

Phylogenetic analyses of the
combined datasets
The results of the coalescent-based estimation of the
species tree and the primary concordance tree produced
by BUCKy (hereafter BUCKy phylogeny) are presented
in Fig. 4 and Fig. S1 (see supplemental material online).
The BCA for both nuclear input files a and b with
BUCKy retrieves a unique topology irrespective of the
different a priori levels of incongruence (a varying from
0.1 to 100); also, varying the concordance prior had no
effect on concordance factor (CF) values, so only the
BUCKy phylogeny obtained with the nuclear input
file a and ndhF dataset are shown (Fig. S1, see
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Fig. 3. Detailed species relationships within the Hymenachne–Rugoloa (HR) clade obtained with Bayesian inference for the
Otachyriinae subtribe using the nuclear apo1 dataset. Branch colours indicate Bayesian posterior probability (PP) with red highest,
brown lowest. Numbers above branches represent PP values (only PP above 0.75 are reported). Numbers below branches represent
parsimony Bootstrap support (only BS values for the major clades discussed are reported). Blue stars indicate Panicum taxa
transferred to Hymenachne (see taxonomic considerations section). Letters indicate different consensus copies of the apo1 gene for
each voucher specimen. Blue taxa accession indicates the apo1 gene copy considered as evidence of allopolyploidization. For
interpretation of the references to colour in this figure legend, the reader is referred to the electronic version of this article.
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supplemental material online). Both results, coalescence-
based and the BCA, consistently support the monophyly
of Otachyriinae (PP¼ 1; CF¼ 1 respectively). Within
the Otachyriinae, several main clades were retrieved as
monophyletic. First, the monophyletic Anthaenantia
clade was resolved as the sister group of the other gen-
era in the subtribe, grouped in a clade with PP¼ 1;
CF¼ 1. Species of Rugoloa were recovered as mono-
phyletic with high support values (PP¼ 1; CF¼ 0.99),
and the Hymenachne OW clade and Hymenachne NW

clade were both recovered as monophyletic with high
PP and CF. The main sources of conflict between both
trees were generated largely by the phylogenetic rela-
tionships among the Hymenachne OW and NW sub-
clades and Rugoloa. Relationships among these three
subclades were resolved in the BUCKy phylogeny as in
the plastid tree but in the species tree the Hymenachne
OW was resolved as sister to Rugoloa. Although the
topologies differ slightly in both trees, the support val-
ues for the relationships among the affected clades are
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Fig. 4. Maximum clade credibility species tree (MCCT) estimated from nuclear (apo1) and chloroplast (ndhF) DNA regions using
the multispecies coalescent method implemented in BEAST. Branch colours indicate Bayesian posterior probability (PP) with red
highest, brown lowest. Numbers above branches represent PP values (only PP above 0.75 are reported). Blue stars indicate Panicum
taxa transferred to Hymenachne genus (see taxonomic considerations section). Taxa in blue showed phylogenetic signature of
polyploidy in the nuclear gene tree and are considered to have an allopolyploid origin. Names in red indicate the inferred position of
male parental genome for allopolyploids taxa. Black arrows indicate the putative male parental diploid lineages contributing to
allopolyploids. For interpretation of the references to colour in this figure legend, the reader is referred to the electronic version of
this article.
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low (PP <0.70 and CF <0.5). Another clade with high
support was the clade that grouped the genera
Plagiantha, Otachyrium, and Steinchisma (POS clade;
PP¼ 1; CF ¼ 1). Both trees show differences in the
position of P. tenella Renvoize, O. pterygodium, O.
aquaticum, and O. grandiflorum because of their low
support values (PP< 0.75 and CF < 0.5). However,
within this clade, the genus Steinchisma was recovered
as monophyletic with high support in the species tree
and BUCKy phylogeny (PP¼ 1; CF¼ 1).

Taxonomic considerations
Hymenachne bresolinii (L.B. Sm. & Wassh.) Zuloaga,
comb. nov. Panicum bresolinii L.B. Sm. & Wassh.,
Bradea 2(35): 245, Fig. 2, A–D. 1978. Dallwatsonia
bresolinii (L.B. Sm. & Wassh.) J.R. Grande,
Phytoneuron 2014(22): 3. 2014. Type: Brazil. Santa
Catarina: Florian�opolis, Morro Costa da Lagaô, 19 Apr
1967, R. Klein & A. Bresolin 7360 (holotype, US-
2536896; isotypes, FLOR, HBR!).

Hymenachne condensata (Bertol.) Chase, J. Wash.
Acad. Sci. 13(9): 177. 1923. Panicum condensatum
Bertol., Opusc. Sci. 3: 408. 1819. Dallwatsonia conden-
sata (Bertol.) J.R. Grande, Phytoneuron 2014(22): 3.
2014. Type: Brazil. Rio de Janeiro: Habitat in provincia
di Rio de Janeiro Brasiliae, G. Raddi s.n. (holotype,
BOLO; isotypes, FI!, K!, PI!, US-80598!, fragment).

Panicum auriculatum Willd. var. fasciculosum D€o, in C.
Martius, Fl. Bras. 2 (2): 238. 1877. Panicum januarium
Mez, in Engler, Bot. Jahrb. Syst. 56, Beibl. 125: 4.
1921. Type: Brazil. Rio de Janeiro: Rio de Janeiro, C.
Gaudichaud 288 (isotypes, P, US 80476, W).

Hymenachne grande (Hitchc. & Chase) Zuloaga, comb.
nov. Panicum grande Hitchc. & Chase, Contr. U.S.
Natl. Herb. 17(6): 529, fig. 143. 1915. Aconisia grandis
(Hitchc. & Chase) J.R. Grande, Phytoneuron 2014(22):
2. 2014. Type: Panama. Canal Zone: collected in the
water of a swamp along the margin of Gatun Lake, 15
Dec 1911, A. S. Hitchcock 9178 (holotype, US-693329!,
US-693330!, US-693331!; isotypes, F!, G!, ISC!, K!,
LL!, MO-848738!, NY!, P!, SI!, W!).

Panicum myrianthum Mez, Bot. Jahrb. Syst. 56, Beibl.
125: 3. 1921, nom. illeg. hom., not Panicum miryan-
thum Buse, 1854. Type: Suriname. Without locality, F.
W. Hostmann 434 (B!, lectotype here designated; isolec-
totypes, K!, US-974637!).

Hymenachne harleyi (Salariato, Morrone & Zuloaga)
Zuloaga, comb. nov. Panicum harleyi Salariato,
Morrone & Zuloaga, Syst. Bot. 36(1): 55, fig. 4. 2011.
Type: BRAZIL. Bahia. Rio de Contas, ca. 5 km da

cidade, em direç~ao ao Pico das Almas, 13�3205800S,
41�5100300W, 1,107m, 1 Aug 2006, R. M. Harley 55486
(holotype: HUEFS!).

Hymenachne leptachne (D€oll) Zuloaga, comb. nov.
Panicum leptachne D€oll, Fl. Bras. 2(2). 195. 1877.
Dallwatsonia leptachne (D€oll) J.R. Grande, Phytoneuron
2014(22): 3. 2014. Type: Brazil. Minas Gerais. In mon-
tibus, J.F. Widgren s.n. (holotype, S-R-3980; isotype,
S13-12967).

Panicum pilosum Sw. var. polychaetum Hackel,
ErgebN. Bot. Exp. S€udbras. 1: 9. 1906. TYPE. Brazil.
S~ao Paulo: prope Rio Grande inter Santos et Urbem S~ao
Paulo, 1902, 750-800m, M. Wacket s.n. (holotype, W,
fragment US 2907505).

Hymenachne longa (Hichc. & Chase) Zuloaga, comb.
nov. Panicum longum Hitchc. & Chase, Contr. U.S.
Natl. Herb. 15: 111, fig. 106. 1910. Panicum pilosum
Sw. var. macranthum Scribn., Circ. Div. Agrostol.
U.S.D.A. 19: 1. 1900. Dallwatsonia longa (Hitchc. &
Chase) J.R. Grande, Phytoneuron 2014(22): 4. 2014.
Type: Mexico. Veracruz: gravelly banks near Jalapa,
1250m, 21 May 1899, C. G. Pringle 8195 (holotype,
US!; isotypes, AC 00320517!, B_10_0248978!, BM
000938687!, BR 0000006882785!, CM 0223!, ENCB
003259!, G 00099663!, 00099664!, GH 00024120!,
GOET 006776!, ISC-v -0000575!, K 000309152!,
MO103444!, P 00740963!, 00740964!, PH 00018682!,
VR!, VT 027968!, W 19000002981!).

Hymenachne stagnatile (Hitchc. & Chase) Zuloaga,
comb. nov. Panicum stagnatile Hitchc. & Chase, Contr.
U.S. Natl. Herb. 17(6): 528, fig. 141. 1915. Dallwatsonia
stagnatilis (Hitchc. & Chase) J.R. Grande, Phytoneuron
2014(22): 4. 2014. Type: Panama. Canal Zone. Frijoles,
collected in water of swamp, 12 Oct 1911, A. S.
Hitchcock 8388 (holotype, US 00148027!; isotypes, BAA
00002415!, BM 000938691!, BR 0000006886684!, DAO
000465684!, F 00468896F!, G 00099802!, ISC-v-
0000580!, ISC-v-0000581!, K 000309299!, LIL 000088!,
LL 00370128!, MO-105081!, 105082!, NY 00381772!,
MVFA 0000459!, P 00740800!, PH 000187728!, RM
0000339! W 19220009735!).

Discussion
This study marks the first use of nuclear markers for
phylogenetic analysis in tribe Paspaleae. The apo1 gene
showed enough variability to be phylogenetically
informative in the species included in the present study.
Also, due to the fact that this nuclear marker is a single
copy in diploid species (Estep et al., 2012), it allowed
us to analyse patterns of polyploidy in the Otachyriinae
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subtribe, which could not be done using chloroplast
markers alone. The Otachyriinae subtribe was recovered
as monophyletic in all analysis with high support,
although the small number of outgroups in the nuclear
dataset does not make this a particularly rigorous test.
Within the subtribe some major clades were identified
by the apo1 analysis, agreeing with those identified in
previous studies.
Monophyly of Anthaenantia is supported by both the

apo1 and the ndhF analyses presented here. The genus
is grouped with high support as sister to the other gen-
era within the Otachyriinae. Anthaenantia is clearly rec-
ognized by its contracted inflorescence, with pilose,
densely arranged spikelets, the lower glume absent, the
upper anthecium cartilaginous, and the upper lemma not
enclosing the apex of the upper palea. Phylogenetic
analyses based on both plastid and nuclear genes indi-
cate that A. lanata, the only South American species of
Anthaenanthia, is sister to the rest of the North and
Central American species A. rufa, A. texana, and A. vil-
losa, the latter being more closely related phylogenetic-
ally. It is noteworthy to mention that A. lanata has been
reported as a diploid (Davidse & Pohl, 1972) or tetra-
ploid (Hidalgo et al., 2007). Hidalgo et al. (2007) sug-
gested that, based on cytogenetics and reproductive
studies, the tetraploid cytotype of A. lanata originated
by autoduplication of the diploid cytotype. This assump-
tion agrees with our nuclear dataset: although two cop-
ies of A. lanata were differentiated with high support,
all copies from different accessions of this species were
recovered as monophyletic, suggesting that the dominant
mechanism for increased chromosome numbers in A.
lanata is autopolyploidization.
Rugoloa pilosa, R. hylaeica, and R. polygonata were

resolved in a clade as sister to the Hymenachne OW
subclade in the plastid phylogeny. Chromosome counts
in Rugoloa indicate that R. pilosa is diploid (Davidse &
Pohl, 1978), while R. hylaeica and R. polygonata are
tetraploids (Bouton et al., 1981; Pohl & Davidse, 1971).
In the apo1 phylogeny these species were grouped in
two distinct subclades included within the HR clade,
thus the nuclear phylogeny reveals some possible reticu-
lation events for this genus. One copy of the apo1 gene
in the polyploids R. hylaeica and R. polygonata matched
those alleles found in the diploid R. pilosa. However,
the other copies of R. hylaeica and R. polygonata were
retrieved as sister to the OW subclade of Hymenachne.
These results support the hypothesis of an allopolyploid
origin of Rugoloa polyploid species from genetically
differentiated diploid ancestors of Rugoloa pilosa and
some taxa related to the Hymenachne OW lineage.
Hymenachne species from the old world are grouped

in the nuclear phylogeny as in the plastid phylogeny.

However, it is necessary to highlight the position of H.
felliana (two copies in different subclades) and H. dona-
cifolia (only one copy retrieved but resolved in the OW
subclade). Although no chromosome counts were
reported for H. felliana both copies for this species were
lumped in different subclades. Based on our results we
could hypothesize an allopolyploid origin for H. felli-
ana, resulting from a cross between a female and male
parents related to the Hymneachne OW and NW clade
respectively. Also, the single apo1 copy of the South
American H. donacifolia was included in the OW sub-
clade. Since H. donacifolia has been reported as a tetra-
ploid (Pohl & Davidse, 1971) and considering that only
one accession of this species was amplified, it is quite
possible that our PCR-based approach may not have
uncovered all paralogues for this South American spe-
cies. Combining the nuclear and plastid phylogeny, and
assuming maternal chloroplast inheritance, we could
infer that H. donacifolia is an allopolyploid, resulting
from a cross between a male parent related to the
cosmopolitan H. amplexicaulis (reported as diploid by
Pohl & Davidse, 1971) and a female parent related to
some species of the Hymenachne NW subclade, prob-
ably closely related to P. harleyi (as suggested by the
cpDNA phylogeny). Nevertheless further support for
this hypothesis is still required.
Hymenachne grumosa and H. pernambucense, native

species from South America, were reported as tetra-
ploids (Bouton et al., 1981; N�u~nez, 1952). Both are
closely related species, sharing several exomorphologi-
cal and anatomical features, and it has been argued that
'in some cases specimens are difficult to assign to one
or the other species' (Zuloaga et al., 1992, p. 806). This
morphological relationship between H. pernambucense
and H. grumosa is supported by our results, since both
species were grouped in a distinct highly supported sub-
clade in the plastid and nuclear phylogenies. The plastid
phylogeny shows H. pernambucense and H. grumosa
included in the Hymenachne NW clade; on the other
hand, both taxa are retrieved in the nuclear phylogeny
in a weak supported subclade, sister to the OW subclade
of Hymenachne within the HR clade. The incongruence
between the plastid and nuclear inferred phylogenies for
H. pernambucense and H. grumosa thus appears as
symptomatic of incomplete lineage sorting or possible
reticulate evolution. In spite of the mentioned incongru-
ence between cpDNA and nucDNA gene trees, the
second copy of the apo1 gene retrieved from H. per-
nambucense was included in the NW subclade as was
the case in the cpDNA phylogeny. Therefore, it is pos-
sible that H. pernambucense and H. grumosa are species
of an allopolyploid origin, a status that must be con-
firmed in further studies.
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Molecular data showed that newly obtained sequences
of Panicum 'incertae sedis' species are included in the
Otachyriinae subtribe. Both nuclear and chloroplast
data-sets show that the new species added in the present
work, P. longum, P. condensatum, and P. grande are
related to Hymenachne, which is in agreement with pre-
vious morphological studies (Zuloaga et al., 1992;
Zuloaga & Soderstrom, 1985). All apo1 sequences of
P. longum and P. condensatum were recovered as
monophyletic and included in the Hymenachne NW sub-
clade; patterns of polyploidizations were not observed
for these species. In contrast, at least two different cop-
ies were found in H. hemitomon, P. grande, P. harleyi,
and P. leptachne, all these taxa grouped within the NW
subclade. Even though no chromosome counts are avail-
able for these species, our molecular results suggest that
they might be polyploids. The SH test did not reject the
monophyly of the different apo1 copies of P. harleyi
and P. leptachne, a fact that suggests that allopolyploid-
ization is an unlikely event in these species.
Nevertheless, the second copy of the apo1 gene for P.
grande and H. hemitomon were grouped as sister to the
Rugoloa subclade. These results support the hypothesis
of an allopolyploid origin for these species, with the
male parent taxa related to the Rugoloa lineage.
Plagiantha, Otachyrium, and Steichisma constitute a

clade in all molecular analyses. All three genera share a
distinctive hardened palea and, based on this morpho-
logical synapomorphy, Plagiantha and Steinchisma were
placed as synonyms of Otachyrium (Kellogg, 2015). On
the contrary, Soreng et al. (2017) accept these tree gen-
era as distinct taxa. Based on our apo1 gene results,
Steinchisma is monophyletic and derived from a para-
phyletic Otachyrium, a result that is in agreement with
the previous plastid phylogeny (Acosta et al., 2014).
Although Otachyrium was resolved as paraphyletic, the
SH test failed to reject the hypothesis of monophyly of
this genus (chloroplast and nuclear dataset with
P> 0.05). Shared ancestry of Otachyrium species and
the distinct strongly supported clades formed by the
multiple samples analysed of Steinchisma species in
chloroplast, nuclear, and combined analyses (Figs 1, 2,
and 4 respectively) reinforce their acceptance as distinct
taxa. Results of combined analyses, together with the
distinctive morphological features of Otachyrium,
Plagiantha, and Steinchisma (discussed below), supports
their distinction as different genera.
Most chromosome counts of species included in the

POS clade are diploid (see Table S1)Q2 , which is most
likely the reason for no major conflicts between the
nuclear and chloroplast topologies. Exceptions are
Steinchisma spathellosa (D€oll) Renvoize and S. laxum,
reported as hexaploid (Bouton et al., 1981; Dubcovsky,

Morrone, & Zuloaga, 1991) and tetraploid (Davidse &
Pohl, 1978) respectively. All sequences retrieved for
S. spathellosa were included into the Steinchisma clade
without phylogenetic signature of allopolyploidy with
other genera within Otachyriinae. The apo1 gene tree
enabled us to identify an allopolyploidization event in
S. laxum, since this polyploid species appears in the
nuclear phylogeny in two different clades. The putative
maternal genome of S. laxum falls into the highly sup-
ported Steinchisma clade, as in previous chloroplast
analyses (Acosta et al., 2014), while the other genome
of this species is grouped together with species of
Rugoloa within the HR clade. Zuloaga et al. (1992)
found several morphological affinities among S. laxum
(¼Panicum laxum) and Rugoloa species (described as
Panicum pilosum, P. hylaeicum, and P. polygonatum).
Also, in the same work these authors stated that speci-
mens of S. laxum (¼P. laxum) have intermediate charac-
teristics in relation to the ones present in species of
Steinchisma. Intermediate morphological traits in allopo-
lyploids have been observed in other grasses, such as
the genus Bouteloua (Siqueiros-Delgado, Fisher, &
Columbus, 2017). Our results indicate an allopolyploid
origin for S. laxum, with the female parent related to the
Steinchisma lineage and the male parent related to the
Rugoloa pilosa lineage.
Although some levels of incongruence are apparent

between both gene trees, all major conflicts were due to
the presence of allopolyploid species. After these allopo-
lyploid events were identified, the coalescent-based spe-
cies tree, Bayesian concordance analysis, and the super
network analysis (carried out with the pruned nuclear
dataset and the cpDNA dataset), revealed that some lev-
els of incongruence occurred mainly in the relationships
among the clades comprising Hymenachne–Rugoloa and
incertae sedis species of Panicum (Figs 3,4 and supple-
mental material online Fig. S1). Overall, the network
analysis revealed a general tree-like divergence history
of the Otachyriinae with local episodes of reticulate evo-
lution (Fig. S2, see supplemental material online). Most
relationships (- clades) identified by Acosta et al. (2014)
using only plastid sequences, are found in the nuclear
gene trees of this study, clades that were recovered by
the filtered supernetwork and both coalescent and con-
cordance methods.

Implications for taxonomy and classification
Within subtribe Otachyriinae, generic relationships were
well resolved by chloroplast data. Based on our results,
many of those clades are supported by plastid, nuclear,
and combined analyses. These include the monophyly of
Anthaenantia, the POS clade, and the monophyly of
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Steinchisma. Also, there is some degree of congruence
between the lineages identified by the molecular analy-
ses and the generic delimitations of earlier authors. For
example Rugoloa and Anthaenantia are monophyletic in
both gene trees and are here accepted as previously
circumscribed.
Regarding the POS clade, Plagiantha, Otachyrium,

and Steinchisma, Kellogg (2015) merged Steinchisma
and Plagiantha into Otachyrium. One of the central con-
troversies in contemporary taxonomy and systematics
revolves around whether to accept or to reject paraphy-
letic taxa. There are false premises in the arguments for
the recognition of paraphyletic taxa in botany, and it is
possible that for this reason Kellogg (2015) synony-
mized Steinchisma and Plagiantha into Otachyrium,
since Otachyrium was previously recovered as a para-
phyletic taxon (Acosta et al., 2014). In the present work
monophyly of Otachyrium was not recovered in the
nuclear gene tree, species tree, and BUCKy phylogeny.

Nevertheless, the SH test did not unambiguously reject
the hypothesis of monophyly of the genus and
Steinchisma is recovered as monophyletic in all analyses.
Furthermore, these genera are easily differentiated by

diagnostic characters. While Otachyrium, Plagiantha,
and Steinchisma share an expanded lower palea, species
of Otachyrium have both glumes shorter than the spike-
let, thus leaving the upper anthecium exposed, and the
upper anthecium is indurate, smooth and shining, the
upper lemma dark at maturity; additionally, spikelets of
Otachyrium are solitary and arranged loosely in open
and lax inflorescences (Fig. 5; Sendulsky & Soderstrom,
1984). Plagiantha and Steinchisma differ from
Otachyrium by having the spikelets appressed on the
branches of the inflorescence, with the upper glume as
long as, or nearly so, the length of the spikelet, with the
upper anthecium cartilaginous, covered with compound
papillae that are uniformly distributed over the lemma
and palea; Plagiantha departs from Steinchisma by
being a C3 genus, with spikelets obliquely arranged on
the pedicels, and lower lemma 2–4-nerved (vs. inter-
mediate C3-C4 species in Steinchisma, with spikelets not
obliquely arranged, and lower lemma 3–5(–7) nerved).
Results obtained in the molecular analyses, together
with the described morphological differences, lead us to
maintain both Plagiantha and Steinchisma at the generic
level following the generic circumscription summarized
by Acosta et al. (2014), and followed by Soreng et al.
(2015, 2017).
The genus Hymenachne and the remnant species of

Panicum sect. Laxa are in need of a re-circumscription.
As suggested by the nuclear phylogeny, polyploidy
played a significant role in the evolution of the
Otachyriinae and phylogenetic analyses show that the
history of Hymenachne and remnant species of
'Panicum sect. Laxa' species is complex, with these taxa
falling into two main subclades, the NW and OW.
Although it might be feasible to split these two sub-
clades in different genera, the absence of morphological
characters to separate them makes this decision prema-
ture. Our nuclear dataset suggests that events of allopo-
lyploidization might explain the morphological variation
found in species such as H. felliana, H. grumosa, H.
pernambucense, and H. donacifolia. Allopolyploids
arose by fertilization of two unreduced gametes or by
genome doubling after fertilization of two reduced
gametes, sometimes with intermediate morphological
traits (Glover, Redestig, & Dessimoz, 2016; Ramsey &
Schemske, 1998). The existence of these intermediate
morphological traits makes taxonomy more challenging.
Based on several morphological similarities, Zuloaga
and Soderstrom (1985) indicated that species of
Panicum sect. Laxa could be congeneric with
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Fig. 5. Otachyriinae species. (5.1) Otachyrium versicolor
(Acosta 510, SI), spikelets; (5.2) Otachyrium versicolor
(Acosta 510, SI), inflorescence. (5.3) Steinchisma hians
(Zanotti 357, SI), inflorescence. (5.4) Steinchisma sphathellosa
(Zanotti 493, SI), spikelets. Photographs from SI (www.
floraargentina.edu.ar):(5.1–5.2) by J. Acosta; (5.3–5.4) by
C. Zanotti.
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Hymenachne. In subsequent works, several species
belonging to sect. Laxa were transferred to Hymenachne
based on morphological affinities and molecular results,
i.e., H. grumosa and H. pernambucense (Aliscioni et al.,
2003), H. aurita, H. felliana, and H. hemitomon (Acosta
et al., 2014). Based on our molecular results, and due to
the fact that Hymenachne and Panicum 'incertae sedis'
species included in the present work share several mor-
phological characters, such as spikelets arranged in
unilateral racemes, spikelets with the lower glume short,
3-nerved, upper glume and lower lemma subequal,
5-nerved, lower palea reduced or absent, lower flower
absent, and upper anthecium membranous, we propose
to include the remnant 'incertae sedis' species of
Panicum sect. Laxa in Hymenachne (for a current
delimitation of Panicum s. str. see Zuloaga, Salariato, &
Scataglini, 2018), i.e., P. bresolinii, P. condensatum, P.
harleyi, P. leptachne, P. longum, and P. stagnatile.
Additionally, Panicum grande, a previously

ungrouped C3 species of Panicum (Aliscioni et al.,
2003; Zuloaga et al., 1992) is also here treated within
Hymenachne, based on our molecular results and mor-
phological similarities, including spikelets arranged in
congested branches, glabrous and with a lower glume 1/
2 to 4/5 the spikelet length. Grande Allende (2014)
placed P. grande in the new genus Aconisia, without
establishing diagnostic characters for this new taxon.
Similarly, this author recognized, and subsequently
transferred species of Panicum sect. Laxa, to the
Australian monotypic genus Dallwatsonia, a decision
based on characters that 'may be considered diagnostic
include hollow culms, second spikelets disposed in two
parallel rows along the branches of the panicle, and
upper anthecium pointed, membranous to more or less
indurate, with conspicuous, basally thickened prickles
toward the apex, and with the apex covered by the
lemma' (Grande Allende, 2014, p. 4). However, these
characters are present in different genera of the
Otachyriinae and characters of Dallwatsonia felliana
B.K. Simon particularly agree with the definition of
Hymenachne; consequently Dallwatsonia was consid-
ered a synonym of Hymenachne (Acosta et al., 2014),
while species transferred to this genus by Grande
Allende (2014) were already placed in Hymenachne,
i.e., D. aurita (J. Presl ex Nees) J.R. Grande, D. felliana
B.K. Simon (Acosta et al., 2014), in Rugoloa, D. hylae-
ica (Mez) J.R. Grande, D. pilosa (Sw.) J.R. Grande, and
D. polygonata (Schrad.) J.R. Grande (Acosta et al.,
2014), or in the genus Steinchisma, i.e., D. stevensiana
(Hitchc. & Chase) J.R. Grande (Acosta et al., 2014).
Other species of Dallwatsonia, i.e., D. bresolinii (L.B.
Sm. & Wassh.) J.R. Grande, D. condensata (Bertol.)
J.R. Grande, D. leptachne (D€oll) J.R. Grande, D. longa

(Hitchc. & Chase) J.R. Grande, and D. stagnatilis
(Hitchc. & Chase) J.R. Grande are classified, on the
basis of molecular and morphological characters, under
the genus Hymenachne (see taxonomic considera-
tions below).
The present study includes the most extensive taxon

sampling done so far in the subtribe Otachyriinae with
data from plastid and nuclear regions that have been
demonstrated to be useful in elucidating phylogenetic
relationships at different taxonomic levels, clarifying
the taxonomic affiliations of Panicum species with his-
torically ambiguous placements. Further clarification of
the nature of the reticulate evolutionary processes
responsible for the complicated phylogenetic patterns
will require additional studies. Our study has identified
several promising topics for future studies since genetic
allopolyploidy and autopolyploidy was documented
using the characteristic pattern of double-labelled gene
trees. Polyploidy is recognized as an important mech-
anism of plant diversification in grasses and could
have profound effects on subsequent lineage evolution
in the Otachyriinae subtribe, for instance in the evolu-
tion of photosynthetic pathways that is well docu-
mented in the group (Acosta et al., 2014). Our
molecular evidence indicate that at least 40% of spe-
cies within Otachyriinae show phylogenetic signature
of polyploidy (16 taxa appear double-labelled in the
nuclear gene trees) and support the allopolyploid origin
of at least 9 taxa: Steinchisma laxum, Rugoloa hylaeica
(both species reported as proto-kranz by Brown,
Bouton et al., 1983; Brown, Rigsby, & Akin, 1983;
Sage et al., 2014), Rugoloa polygonata and the C3 spe-
cies Hymenachne felliana, H. grumosa, H. hemitomon,
H. donacifolia, H. pernambucense, and P. grande.
Furthermore, our results confirm that the C4 taxon
Anthaenantia is unambiguously monophyletic and show
that Anthaenantia lanata is an autopolyploid.
Autopolyploidization might have allowed the photosyn-
thetic diversification in other grasses subtribes, such as
Neurachninae (Christin et al., 2012), and this
hypothesis should not be dismissed for future studies
about photosynthetic diversifications for the
Otachyriinae subtribe.
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