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A B S T R A C T

We present a Relativistic Screened Hydrogenic Model (RSHM) where the screening parameters depend
on the variables n l j, ,( ) and the parameters Z N,( ). These screening parameters were derived theoret-
ically in a neat form with no use of experimental values nor numerical values from self-consistent codes.
The results of the model compare favorably with those obtained by using more sophisticated ap-
proaches. For the interested reader, a copy of our code can be requested from the corresponding author.

© 2015 Published by Elsevier B.V.

1. Introduction

In Atomic Physics, the established method to obtain the level struc-
tures and other important observables is based on the central field,
independent particle method, generally called Hartree–Fock model (for
the non-relativistic case) or Dirac–Hartree–Fock (for the relativistic
counterparty). For both cases there exist well documented computer
programs and advanced books from which to learn the details of the
involved theory. For the non-relativistic (or quasi-relativistic) treat-
ment, the classic books are by Cowan [1] and Froese Fischer [2]. For the
relativistic theory, the canonical text is by Grant [3]. Other modern books
are by Johnson [4] and Rudzikas [5]. As regard to the software, we can
cite the Quasi-Relativistic suite of programs by Cowan, called rcn36, rcn2
and rcg11 [6] that use the Configuration Interaction method as well as
the full Relativistic GRASP, based on the MCDHF methodology [3].
Another widely used program in the last years is the FAC by Dr. Gu [7].

The above cited methods use the self-consistent approach to find
the radial wavefunctions P rnlj ( ); therefore, when it is necessary to
calculate a huge number of levels of atoms immersed in dense
plasmas, probably when these vary in a wide range of density and
temperature, it is necessary to find more direct methods, even if
less precise and detailed.

Precisely, the screened hydrogenic model (SHM) is widely em-
ployed for the modeling of astrophysical and laboratory plasmas.
Particularly, in the latest years, with the increasing interest in the
field of warm and hot, dense matter regimes, several works dealing

with the SHM have been published. On one side, such works deal
with the calculation of the screening parameters snlj (or the snl for
the non-relativistic case) such that the electrons of the sub-shell
nlj( ) feel a screened charge Z snlj− . On the other side, the SHM is

applied to the study of plasma emisitivity, for which it is neces-
sary to calculate a great number of elementary atomic processes
(transition probability, cross sections, etc.). Attached to the concept
of SHM is the one of the Z−1 expansion for the energy. For the non-
relativistic case, this expansion was made by Layzer [8], stating, from
the perturbation theory that
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with E0 and E1 exactly known.
For the relativistic case, the expansion was made by Layzer and

Bahcall [9]; for completeness, we include the result here. Devel-
oping in terms of ε α≡ ( )Z 2 , then
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It is easy to see in case (1) that, truncating the expansion to 2nd
order
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In Eq. (3) the concept of screening clearly appears; wnl is the
number of electrons in the n l,( ) shell (orbital occupancies).

Other ways to arrive to a SHM were provided by a series of papers
by M. Kregar, notably References 10 and 11. Starting from the virial
model w as a model potential energy operator
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w Wi i i i p N= = − ∇ ( )∑ ∑r F r r r0, ,… (4)

with W q q rp i j ij= ( )∑∑1 2 , and splitting the matrix element in two
terms, the author gives a simple recipe to obtain the external screen-
ing parameters gij and the internal ones f ji for each orbital pair
i j,( ) , with i ≤ j (see below).

Many works about the calculation of the snl (or the snlj ) have
been published during the years, and the topic is still of interest
[12–15]. In the latter Reference, the snlj is obtained by using a Genetic
Algorithm from a huge database of experimental levels and/or cal-
culated ones with the FAC code [7]. Mendoza et al. [15], as well as
other authors, assume constant values for the snlj . In this way, any
possible dependence of the screening parameters with the atomic
number Z, the total number of electrons N, or the atomic configu-
ration is disregarded.

We present here an alternative approach, where the snlj is derived
theoretically in a neat form (i.e., no fitting to experimental/calculated
data are required). The screening parameters obtained with this
method are dependent on Z and the atomic configuration, charac-
terized by the set of occupancies wk{ }.

The purpose of our work is to heuristically generalize the Kregar’s
model to the relativistic case and to propose values for gij

rel and f ji
rel ;

in this way we can obtain, for example, the X-ray transitions di-
rectly for each sub-shell. On the other hand, our method provides
a certain theoretical justification for the values obtained by Mendoza
et al. after a least squares fit of many theoretically calculated
levels.

2. Theory

In principle, we refer to the non-relativistic treatment; the gen-
eralization to the relativistic case is direct and simple. As it is known
by the Slater–Condon theory, the average Coulomb energy of elec-
tron pairs is, when measured in Ht 1 27 2116Ht eV≡( ). [1]
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for non-equivalent electrons, it takes the form
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The coefficients gk and fk are obtained in terms of the 3 j symbols−
[1]. The formulas for the relativistic case are obtained from the pre-
vious ones making simple replacements [4,5,16].

From the works of M. Kregar we reach two fundamental results
[10]: 1) from certain asumptions and the virial theorem, it is dem-
onstrated that a Screened Hydrogenic Model is possible, 2)
disregarding for a while the exchange term, from the previous equa-
tions we have

ij r ij F ijij
− = ( )1 0 (8)
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where qi is the charge distribution of an electron in the ith orbital.
Kregar introduced two effective one-body operators 1 ri and

1 rj such that

F ij g r f rij i ji j
0 1 1( )= + ;

gij and f ji are, respectively, the partial external and internal
screening parameters. Within the validity of the SHM, 1 = 2r Z ni i i

and 1 2r Z nj j j= , therefore

F ij g Z n f Z nij i i ji j j
0 2 2( )= + .

This is equivalent to say that (with the above mentioned as-
sumptions), the interaction energy of the electron pair i and j (the
jth electron being equally or more strongly bound than the ith elec-
tron) can be written as

ij r ij g i r i f j r jij ij i ji j
− = +1 1 1 (10)

so that the two-body potential energy operator 1 rij is replaced by
the sum of effective one-body operators

1 r g r f rij ij i ji j= + (11)

(see References 10 and 11 for the details).
From equations (8) and (10), and being dq P r dri i= ( ) 2 , we arrive

to the explicit expressions for gij and f ji:
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when i = j, then g f kij ji ii= ≡ ; Zi and Zj are the effective charges. It is
good to take into account, in the two previous equations, that
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Therefore, ignoring the exchange interaction and the intershell
effects (but see below the next paragraph), the effective charge felt
by each electron in the i shell is given by

Z Z w f w g w k Z si j ji
j i

j ij
j i
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Since, in turns, the partial screening parameters are deter-
mined in terms of the effective charges, an iterative procedure must
be used for their determination. This procedure is short and simple;
we can start from Zi = Zj = Z or from initial values according to the
rules of Clementi and Raimondi [17] or other SHM models.

Now, taking into account the exchange interaction and intershell
effects, we use Eqs. (6) and (7) to define the correction coefficients
εij and εii as
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Therefore, after obtaining the Zi values according to the itera-
tive procedure as said above, we re-define

g g f fij ij ij ji ji ij* * .→ −( ) → −( )1 1ε εand

From now on, we will denote, for simplicity gij and f ji instead
of gij* and f ji*.

Taking into account that the relativistic expressions can be written
vis-a-vis to the non-relativistic ones (see, for example, References
4 and 16), we propose in this work to use analogous relationships
but using the notion of sub-shells, arranged in the speedometer
order

1 2 2 2 51 2 1 2 1 2 3 2 1 2
1 2 3 4 17s s p p sq q q q q… … (17)

and the relativistic wavefunctions obtained by solving the Dirac equa-
tion for the H atom [3,18].

2.1. The wavefunctions

The relativistic wavefunctions were taken from the book
by Mizushima [18], only modified to meet the normaliza-

tion condition in the form ∫ ( ) + ( )( )∞
0

2 2F r G r dr = 1 and not

∫ ( ) + ( )( )∞
0

2 2 2F r G r r dr = 1 used in that book.
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then the wavefunctions can be written in the form
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for the large and small components, respectively. Please take into
account that other books use the same letters (uppercase and/or
lowercase) with the reverse meaning. The coefficients A QFi 1( ) and
A QGi 1( ) can be found in Reference 18.

3. The screening parameters

The screening parameters follow from Equations (12) and (13)
but replacing, adequately, dq P r dri i= ( ) 2 by

dq F r G r dr dq F r G r dri i i j j j= ( ) + ( )( ) = ( ) + ( )( )2 2 2 2and . (20)

A very important fact is that the small component not always
can be neglected; especially for the 1 1 2s and 2 1 2s orbitals as well
as for high Z values, their use is mandatory. Then, the relativistic
expressions for gij and f ji can be put analytically, as can be viewed
in Appendix B.

In Eqs. (12) and (13) it is necessary to calculate the integral

I r
dq
r

i
j

jri
( )=

∞

∫ (21)

and later to evaluate the integral

I r dqi i( )
∞

∫0
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This implies to calculate integrals of the type

x ax b dxn exp −( )
∞

∫ρ

with non-integer n (due to the non-integer value of λ, Eqs. (18) and
(19)); the result can be expressed in terms of the Whittaker func-
tions WM

W
n n a

b
M

2
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2
, , ;
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⎝
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⎞
⎠
⎟⎟⎟ρ

related with the Kummer functions (or confluent hypergeomet-
ric) KM. Both of them can be expressed in easy form, in terms of
polynomials and exponentials, only when n is an integer; other-
wise, the results are infinite convergent series. For an “once-off”
calculation of the parameters (see section 3.2), the series is evalu-
ated numerically, because the series is convergent. On the other hand,
for an “in-line” calculation (see section 3.1), we can solve the inte-
gral (22) in an approximate, but accurate enough, analytical form.
We explain this in Appendix A.1 The calculations show that, using
the integration of the convergent series or the above simplified ex-
pression, the resulting screening parameters differ by less than 0.001
for small gij parameters; for larger values of the gij ’s and for
the f ji’s, the error is even lower. We have calculated 576 values
(table with 24 × 24 elements) and in only three cases the abso-
lute differences are greater: Δf s s4 1 0 0015, .= , Δf s s5 1 0 0030, .= and
Δf s s6 1 0 0066, .= . But, because these f ji are f ji � 1, the relative differ-
ences are 0.16%, 0.32% and 0.69%. As another example, the relative
differences for the total energies in the isoelectronic sequences of
Cu and Zn are less than 0.02%.

3.1. The iterative evaluation of the parameters

The screening parameters are evaluated iteratively from Eq.
(14); as a consequence, there are dependences of the type
g g Z wij ij k= { }( ), , f f Z wji ji k= { }( ), and, therefore, s s Z wi i k= { }( ), .
Take, for example, the simplest case: g ks s s s1 1 1 1, ,= . The calculation for
the neutral elements, with Z ranging from 2 to 86 as well as for the
isoelectronic sequences g He likes s1 1, −( ) and g Ne likes s1 1, −( ) gives very
similar values. However, when we treat the parameters f s s2 1, for neu-
trals, the values are similar but clearly different from the cases
f Be likes s2 1, −( ) and f Ne likes s2 1, −( ), etc. Therefore, in our approach,
there is no simple way to fit f s s2 1, in terms of Z N,( ). The electronic
configuration notably influences the values of g Z Nij ,( ) and f Z Nts ,( )!
Then, it is impossible, in principle, to present our gij and f ji values
in a table as if they were constants (but, see the next subsection).
As examples, the behavior of g s s1 1, and of f s s2 1, for the isoelec-
tronic sequence of Be is shown in Figs 1 and 2. Anyway, the values
obtained with our analytic approach are, in general, in accordance

1 We acknowledge the recommendations of the reviewers.
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with the values from Mendoza et al. [15]. For the interested reader,
a copy (a non-optimized one to date!) of our code can be re-
quested from the corresponding author.

3.2. The construction of a table of constants from the iterative
process

Even if the most accurate way to take into account the behav-
ior of gij and f ji is by performing the full iterative cycle for the
corresponding values of Z and {wk}, for some practical purposes the
use of constant values could be useful. In order to construct a table
with “universal” constant screening parameters, we considered as
maximal configuration the one corresponding to Rn

1 2 2 2 5 6 6 61 2 1 2 1 2 3 2 1 2
2

1 2
2

3 2
41 2 3 4 17s s p p s s p pq q q q q… … .

This configuration comprises 24 sub-shells, filled according to
the “natural” order, which is more appropriate to ionized systems.2

It is expected that the use of the screening parameters calcu-
lated for this configuration and Z = 86 will lead, for instance, to
innacuracies when dealing with lighter atoms. In order to over-
come this problem, we proceeded in the following way: First, we
considered neutral Rn and constructed a 24 × 24 table containing
the screening parameters obtained after the convergence of the it-
erative cycle. Next, we repeated the calculation for neutral Xe, with
configuration 1 21 2

2
1 2
2s s … 5 51 2

2
3 2
4p p , and a total of 17 sub-shells. We

replaced the inner 17 × 17 cells of the original table by this new
values. The procedure was repeated for Kr (12 sub-shells), Ar (7),
Ne (4) and He (1). The scheme looks as follows:

1 2 2 2 3 3 3 6
1
2

1 2 1 2 1 2 3 2 1 2 1 2 3 2 3 2

1 2

s s p p s p p p
s He Ne Ne Ne Ar Ar Ar Rn
s

… …
… …

11 2

1 2

3 2

2
2

Ne Ne Ne Ne Ar Ar Ar Rn
p Ne Ne Ne Ne Ar Ar Ar Rn
p Ne Ne Ne Ne Ar A

… …
… …

rr Ar Rn
s Ar Ar Ar Ar Ar Ar Ar Rn
p Ar Ar Ar Ar Ar Ar Ar Rn
p Ar

… …
… …
… …

3
3
3

1 2

1 2

3 2 AAr Ar Ar Ar Ar Ar Rn
Rn
Rn

p Rn Rn Rn Rn Rn Rn R

… …
… … … … … … … … … …
… … … … … … … … … …

6 3 2 nn Rn Rn Rn

.

The array so constructed is presented in Table 1. Later on, for
each Z an empirical correction factor f Zcorr ( ) of the order unity is
applied: f Z Zcorr ( ) = − × −1 0006 1 8759 10 4. . . Although we do not
present the results for neutrals (the worse case for the SHM), the
comparison between the numbers provided by our approach and
other ones (Cowan’s code [6] and Rodrigues et al. [19]) indicates
that the differences are negligible.

3.3. Energy formula

Once snlj is evaluated, the energy calculation is immediate,
because it follows an expression of the form [18]

W
Ht

E E
E

w
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n Z
i

i

i i i i
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− + −
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⎭
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1 2

1

1
i

m

(23)

where Ht indicates that the energy is measured in Hartree’s
units 1 27 2116Ht eV≡( ). ; furthermore, E m c keV0 0

2 512= ≈ and
α ≈ 1 137 036. . Developing Eq. (23) in power series of αZ, we have,
for each subshell n j,( )

W
Ht

Z
n

Z
n

n
j

F n j Z F n j Z≈ − −
+

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− ( ) − ( ) …

1
2 8

4
1 2

3
2

2

2 4

4 6
6

8
8α

, , (24)

It is important to note that other interactions as Breit and QED
ones, add other powers of Z to Eq. (24) (see Eq. (2)).

4. Results

In Table 1 we present the table of fixed gij and f ji partial screen-
ing constants. Although our method gives very good values for the
total binding energy for the neutrals, we do not present them in
this paper. Other results, more useful for the community at which
this paper is intended, are shown.

In order to see the hydrogenic filling of the shells going from the
neutrals to the ions, in Table 2 we show the binding energies for
the Xe isoelectronic sequence. For example, for the Tb11+ ion (for
which there are no experimental values) it is supposed, according
to the NIST webpage [20], that the ground configuration is the

2 For neutrals or low ionization degrees, the shells should be filled according to
the Madelung rules; this fact is not important for our present purposes.

0 20 40 60 80 100
0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045
Relativistic
Non-Relativistic

g 1s
2s

Z

Fig. 1. The behavior of g Zs s1 2, ( ) for the isoelectronic sequence of Be. The triangles
indicate the relativistic values whereas the circles the non-relativistic ones.

0 20 40 60 80 100
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0,70
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0,72

0,73

0,74

0,75

0,76
Relativistic
Non-Relativistic

f 2s
1s

Z

Fig. 2. The behavior of f Zs s2 1, ( ) for the isoelectronic sequence of Be. The triangles
indicate the relativistic values whereas the circles the non-relativistic ones.
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“natural” 4 56 2f s and not 5 52 6s p as in the neutrals and poorly ionized
atoms (Madelung rules).

In Table 3 we compare our results for the X ray− energies for
the selected transitions of some elements

1 2 2 2 5 1 2 2 2 51 2
1

1 2
2

1 2
2

3 2
4

1 2
2

1 2
2

1 2
1

1 2
2

3 2
4

1 2
2s s p p s s s p p s… … … …−

Table 1
The fixed partial gij and f ji screening constants obtained after the iterative cycles.

1s1/2 2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2 4s1/2 4p1/2 4p3/2

1s1/2 0.31252 0.01419 0.00304 0.00301 0.00325 0.00023 0.00023 0.00002 0.00002 0.00090 0.00003 0.00003
2s1/2 0.75494 0.30084 0.3754 0.37458 0.02937 0.0329 0.03251 0.01681 0.01643 0.00604 0.00497 0.00487
2p1/2 0.9382 0.2147 0.36341 0.34478 0.02601 0.02478 0.02547 0.00978 0.00998 0.00611 0.0034 0.00339
2p3/2 0.93808 0.21547 0.34681 0.35163 0.0262 0.0261 0.02519 0.01099 0.01047 0.00624 0.00367 0.00354
3s1/2 0.85861 0.67471 0.72401 0.72326 0.2989 0.21551 0.21268 0.38875 0.38682 0.03793 0.03056 0.03032
3p1/2 0.97306 0.75977 0.7836 0.81608 0.35019 0.32348 0.3038 0.36303 0.38115 0.03822 0.02925 0.03013
3p3/2 0.97286 0.76132 0.81871 0.80071 0.35361 0.31074 0.31266 0.38677 0.37441 0.03884 0.03074 0.02998
3d3/2 0.99879 0.89141 0.89977 0.93473 0.25144 0.28048 0.28852 0.37421 0.37571 0.04043 0.03475 0.0348
3d5/2 0.99879 0.89184 0.94164 0.91374 0.25337 0.29827 0.28287 0.3812 0.37572 0.04066 0.03521 0.0348
4s1/2 0.914 0.81267 0.83394 0.83235 0.64387 0.67039 0.66853 0.68954 0.68885 0.29827 0.1616 0.15959
4p1/2 0.98423 0.90608 0.91468 0.93224 0.72916 0.71618 0.74128 0.74337 0.74933 0.39912 0.31156 0.29243
4p3/2 0.98365 0.90694 0.93526 0.92285 0.72995 0.74347 0.72866 0.75001 0.7461 0.4017 0.2988 0.30091
4d3/2 0.99884 0.95892 0.95497 0.97419 0.70255 0.72361 0.72494 0.7682 0.78418 0.34915 0.3351 0.3464
4d5/2 0.99884 0.95882 0.97856 0.96173 0.70427 0.73484 0.72217 0.78947 0.77359 0.35342 0.36316 0.33896
4f5/2 0.99988 0.99531 0.99508 0.99772 0.87269 0.88135 0.87954 0.89907 0.93115 0.29009 0.31201 0.28852
4f7/2 0.99988 0.99531 0.99816 0.99618 0.87471 0.90747 0.86934 0.93865 0.90554 0.29464 0.32098 0.29094
5s1/2 0.94128 0.86491 0.87941 0.87665 0.76319 0.77859 0.77629 0.79742 0.79633 0.61558 0.63029 0.62756
5p1/2 0.98814 0.94286 0.94753 0.9578 0.81728 0.81103 0.82391 0.8348 0.83746 0.67676 0.65844 0.67887
5p3/2 0.98802 0.94339 0.96184 0.95105 0.81755 0.8261 0.8168 0.83891 0.83573 0.67737 0.68167 0.66823
5d3/2 0.99898 0.98572 0.9763 0.99056 0.87435 0.89051 0.8805 0.91205 0.91845 0.70502 0.71145 0.70634
5d5/2 0.99898 0.9847 0.993 0.98086 0.87648 0.8995 0.87905 0.92472 0.91247 0.70697 0.71931 0.70529
6s1/2 0.96204 0.8983 0.91227 0.90508 0.82973 0.84472 0.83742 0.85749 0.85506 0.73413 0.74778 0.7415
6p1/2 0.99021 0.96985 0.97045 0.97462 0.86961 0.86843 0.8726 0.88993 0.88945 0.7754 0.77074 0.77672
6p3/2 0.99021 0.97017 0.98122 0.96924 0.87031 0.87985 0.86807 0.89379 0.88906 0.77675 0.78475 0.7718

4d3/2 4d5/2 4f5/2 4f7/2 5s1/2 5p1/2 5p3/2 5d3/2 5d5/2 6s1/2 6p1/2 6p3/2

1s1/2 0.00000 0.00000 0.00000 0.00000 0.00035 0.00001 0.00001 0.00000 0.00000 0.00014 0.00000 0.00000
2s1/2 0.00245 0.00233 0.00017 0.00016 0.00238 0.00172 0.00167 0.00025 0.00023 0.00112 0.00055 0.00050
2p1/2 0.00138 0.00134 0.00008 0.00007 0.00252 0.00114 0.00112 0.00013 0.00012 0.00117 0.00034 0.00031
2p3/2 0.0017 0.0016 0.00017 0.00015 0.00263 0.00133 0.00128 0.00024 0.00022 0.00133 0.00053 0.00048
3s1/2 0.06129 0.06059 0.02981 0.02844 0.0123 0.01133 0.01127 0.01219 0.01179 0.00495 0.00503 0.00496
3p1/2 0.05745 0.0574 0.02283 0.02233 0.01245 0.01117 0.01131 0.01036 0.01006 0.00471 0.00482 0.00479
3p3/2 0.06045 0.05929 0.03172 0.02986 0.01279 0.01161 0.01144 0.01277 0.0123 0.00528 0.0053 0.00519
3d3/2 0.04911 0.04939 0.01667 0.0165 0.012 0.01212 0.01206 0.00841 0.00816 0.00448 0.00491 0.0048
3d5/2 0.05135 0.04959 0.01934 0.01784 0.01215 0.01231 0.01217 0.00921 0.00876 0.00466 0.00514 0.005
4s1/2 0.26809 0.26442 0.3742 0.36996 0.04787 0.04107 0.04085 0.0487 0.04794 0.01779 0.01625 0.016
4p1/2 0.26106 0.27574 0.36468 0.3651 0.05128 0.04146 0.04265 0.04756 0.04727 0.0177 0.01573 0.01572
4p3/2 0.28646 0.2732 0.39196 0.38508 0.05239 0.04361 0.04265 0.05158 0.05055 0.01895 0.01711 0.01671
4d3/2 0.33032 0.32941 0.37271 0.38119 0.06215 0.05101 0.05113 0.0496 0.05007 0.01831 0.01671 0.01647
4d5/2 0.33796 0.33158 0.39379 0.3799 0.06277 0.05192 0.0513 0.05185 0.05035 0.01875 0.01721 0.01685
4f5/2 0.32482 0.3264 0.39049 0.39093 0.06939 0.0707 0.06878 0.06018 0.05981 0.01925 0.01746 0.01723
4f7/2 0.34136 0.32346 0.40398 0.39198 0.07023 0.07172 0.06943 0.06118 0.06014 0.01948 0.01768 0.0174
5s1/2 0.62389 0.62253 0.63261 0.63082 0.29798 0.17257 0.17053 0.17577 0.17228 0.05809 0.05061 0.05001
5p1/2 0.66614 0.67143 0.64951 0.64982 0.37635 0.30634 0.28732 0.18214 0.19244 0.06386 0.05243 0.0535
5p3/2 0.67269 0.66837 0.65528 0.65243 0.37883 0.29363 0.29575 0.20454 0.193 0.06565 0.05548 0.05396
5d3/2 0.70675 0.7202 0.71665 0.71969 0.44143 0.40104 0.41735 0.31357 0.31099 0.09193 0.07348 0.07313
5d5/2 0.72491 0.71079 0.72286 0.71789 0.44598 0.43741 0.40698 0.32244 0.31476 0.09325 0.07511 0.07365
6s1/2 0.75594 0.75374 0.76442 0.76333 0.591 0.5991 0.59523 0.56022 0.55795 0.29786 0.18039 0.17622
6p1/2 0.78558 0.78693 0.79598 0.79634 0.64238 0.62093 0.63788 0.60148 0.60561 0.36239 0.3036 0.28135
6p3/2 0.79053 0.78618 0.79839 0.79658 0.64395 0.64283 0.62928 0.60884 0.60402 0.3673 0.29422 0.29303

Table 2
The isoelectronic sequence of Xe with the configurations filled according to the NIST
webpage [20]; −E HtSHM are our values whereas −E HtCowan indicates the values ob-
tained using the Cowan code without the Breit and correlation calculations.

Z Zc Configuration −ESHM/Ht −ECowan/Ht |ΔE (%)|

58 5 [Kr] 4d105s25p6 8812.4 8847.7 0.40
59 6 [Kr] 4d105s25p6 9183.5 9221.7 0.41
60 7 [Kr] 4d105s25p6 9563.3 9604.6 0.43
61 8 [Kr] 4d104f35s25p3 9951.4 9996.1 0.45
62 9 [Kr] 4d104f45s25p2 10,349.2 10,397.5 0.46
63 10 [Kr] 4d104f55s25p1 10,756.4 10,808.3 0.48
64 11 [Kr] 4d104f55s25p 11,173.3 11,228.6 0.49

Table 3
X-ray energies (in eV) for the transitions Kα3, Kα2 and Kα1 for the noble gases. Eour

are our values, whereas Eexp are from Reference 21 and EM are the values obtained
with the screening constants of Mendoza et al. [15].

Z Line Eour EM Eexp |ΔE (%)|our-exp |ΔE (%)|M-exp

10 Kα3 825.5 822.9 817.7 0.85 0.64
10 Kα2 857.7 856 849.1 0.94 0.81
10 Kα1 857.7 856.2 849.2 0.94 0.81
18 Kα3 2886.3 2890 2880.1 0.21 0.35
18 Kα2 2967.5 2960 2955.6 0.40 0.15
18 Kα1 2968.7 2975 2957.7 0.37 0.58
36 Kα3 12412.2 12460 12402.6 0.07 0.46
36 Kα2 12617.5 12614 12598.0 0.15 0.13
36 Kα1 12658.7 12689 12649.0 0.08 0.32
54 Kα3 29170.6 29321 29112.8 0.20 0.71
54 Kα2 29527.1 29554 29458.0 0.23 0.33
54 Kα1 29794.8 29884 29799 0.01 0.29
86 Kα3 80639.6 Not available 80351.3 0.36 NA
86 Kα2 81381.1 Not available 81070.7 0.38 NA
86 Kα1 83730.6 Not available 83788.6 0.07 NA
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etc., and compare with the tables in the book by Zschornack [21].
In general, our approach produces better accordance with the ex-
perimental values than the aproach of Mendoza et al. for Kα1 and
Kα3 whereas for the Kα2 the values of Mendoza et al. are a little
better.

In Tables 4 to 7 we compare our values with several results from
the paper of C. C. Smith [14]; the observed values as well as the other
theoretical results are from that paper: 1) in Table 4 the total ground
state energies of some Na like− ions (in atomic units) are shown,
2) in Table 5 we show the ionization energies of the bound elec-
trons in ground state of some Ne like− ions (in atomic units), 3) in
Table 6 are the wavelengths Å( ) of transitions from the ground state
of Ne like− Fe Fe16+( ), and 4) in Table 7 we show the transitions en-
ergies (Ryd) from the ground state of Ni like− Xe Xe26+( ).

In Fig. 3, the relative error of the ionization energies of the Zn
isoelectronic sequence obtained with our method is shown; they
are compared with the Quasi-Relativistic Hartree–Fock values [1]
as well as the results calculated with the screening constants of
Mendoza et al. [15]. In Fig. 4 we show the relative error of the energy
of the 4 4s p configuration of Zn isoelectronic sequence compared
with the experimental values [22].

4.1. The effects of the finite sized nucleus

It is possible that some of the small discrepancies between
our results and the values of Reference 21 may be due to the

Table 4
Total ground state energies of Na-like ions (in atomic units). The values from DAVID
and GRASP codes, as well as the results of Rubiano et al. and Smith are from the
paper of C. C. Smith [14].

Z DAVID Rubiano et al. GRASP Smith This work

18 512.1 504.5 513.3 513.3 511.8
26 1164.5 1150.3 1166.4 1166.3 1164.0
54 5684.2 5652.0 5689.2 5682.0 5686.2
79 13,119 13,069 13077 13,092 13,096

Table 5
Ionization energies of the bound electrons in ground state Ne-like ions (in atomic
units). The values from DAVID and GRASP codes, as well as the results of Rubiano
et al. and Smith are from the paper of C. C. Smith [14].

Z Orbital DAVID Rubiano et al. GRASP Smith This work

16 1s 92.43 92.85 95.46 95.66 95.24
2s 11.87 12.00 12.65 12.65 12.54
2p− 9.92 9.68 10.32 10.19 10.22
2p+ 9.88 9.63 10.27 10.15 10.11

26 1s 277.58 287.08 283.08 283.46 282.53
2s 49.80 50.02 51.13 51.19 50.89
2p− 45.92 45.70 46.66 46.67 46.28
2p+ 45.44 45.24 46.18 46.24 46.02

66 1s 2136.90 2138.00 2153.60 2151.51 2150.09
2s 485.67 485.96 490.14 485.39 485.69
2p− 472.34 471.94 475.23 472.18 471.90
2p+ 471.76 441.52 444.62 443.07 443.40

Table 6
Wavelengths Å( ) of transitions from the ground state of Ne-like Fe. All transitions
are to the ground state. The observed values, as well as the results of Smith and
Faussurier are from the paper of C. C. Smith [14].

Upper level Observed Smith Faussurier This work

2s2p53p3/2 13.825 13.84 13.92 13.92
2s2p53p1/2 13.889 13.87 13.94 13.94
2s2p53d3/2 15.009 15.22 15.23 15.41
2s2p53s1/2 16.772 16.95 16.76 17.11

Table 7
Transitions energies (Ryd) from the ground state of Ni-like Xe. The observed values,
as well as the results of Smith and Faussurier are from the paper of C. C. Smith [14].

Upper level Observed Smith Faussurier This work

3 3 44 5d d s− + 43.475 41.64 45.86 43.94
3 3 43 6d d s− + 44.448 42.62 46.58 44.49
3 3 43 6

1 2d d p− + 48.405 47.82 49.62 49.63
3 3 44 5

3 2d d p− + 48.817 47.58 48.44 49.64
3 3 43 6

3 2d d p− + 49.726 48.54 50.16 50.17
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Fig. 3. Relative error of the ionization energies of the Zn isoelectronic sequence as
compared with the Quasi-Relativistic Hartree–Fock values [1]: squares indicate our
work, circles indicate the values calculated with the screening constants of Mendoza
et al. [15].
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Fig. 4. Relative error of the energy of the 4s4p configuration of Zn isoelectronic se-
quence compared with experimental values [22].
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non-punctuality of the nucleus (as well as for the screening for the
ions of high Z). This effect is important for the electrons ns1 2 and
np1 2 because, from the normalization condition

F G dr
F G

r
r drj j

j j2 2
2 2

2
2

4
4 1+( ) =

+
=∫ ∫ π

π ,

the spherically averaged electron probability density distribution
of one electron in the sub-shell j (in units of electrons a0

3 )

ρ
πj

j jF G
r

=
+2 2

24

is non-null for the above mentioned electrons. The evaluation of
this effect is beyond the aim of the present work.

4.2. The self-energy radiative correction

As another example of the validity of the Zi obtained with our
approach, we calculate the self-energy radiative correction E Znlj

s e− ( )
according to the paper by Curtis [23]; adding up the contributions
of each sub-shell:

E Z
R Z

n
F Znlj

s e nlj
nlj

− ( )= ( )∑2 3 4

3

α
π

(25)

where R is the Rydberg unit � 13 6058. eV( ) and F Znlj ( ) is the reduced
splitting factor, whose explicit expressions can be found in the above
cited paper. In Table 8 we show the values of Eq. (25) compared with
the values of Rodrigues et al. [19]; as we can see, the agreement is
excellent. Evidently, the more bound electrons, with higher Zeff

values, are very well described by the SHM and, therefore, due to
the Zeff

4 dependence, greatly contribute to the total E Znlj
s e− ( ) . However,

in this paper, we do not include these corrections, because other
ones, such as the magnetic Breit retardation, are more difficult to
model within the SHM.

4.3. Correlation energy

In the self-consistent methods (Hartree–Fock and related ones)
correlations among the positions of the various electrons are only
partially taken into account through the action of the Pauli exclu-
sion principle. The additional binding energy is defined as the
“correlation energy” Ec [1]:

E E E Ec av av
HF

rel= − +( )exp .

There is an empirical observation due to E. Clementi [24] that
in N electron− atoms

e
E E E

N
Ry electronc

av av
HF

rel=
− +( )

≅ −
exp

. ;0 08

that correction can be added very easily and, therefore, is made in
the tables.

5. Conclusions

We have presented a relativistic SHM where the screening pa-
rameters depend on the variables n l j, ,( ) and the parameters
Z wk, { }( ). The model was derived theoretically in a neat form with

no use of experimental values nor numerical values from self-
consistent codes. In general, the values for the external and internal
parameters, gij and f ji respectively, follow the trends given by Smith
[14] and by Mendoza et al. [15], the latter using a genetic algo-
rithm technique. The dependence on Z wk, { }( ) takes into account
the presence of the other electrons. From the iterative cycles for
Z = 2 4 10 12 18 20 36 38 54 56, , , , , , , , , and 86, we were able to make a
table of gij and f ji constants.

The calculation of: 1) the binding energies for the neutrals (not
presented in this paper), 2) isoelectronic sequences, 3) X-ray tran-
sitions and 4) the self-energy radiative correction is in accordance
with the results of CI − QRHF [1] and MCDHF [19,25], when the mag-
netic and retardation Breit effects and other QED corrections are not
taken into account. It is interesting to check that the self-energy ra-
diative correction can be very well calculated within our approach
but not the Breit corrections (at least at this stage). We expect that
in a near future we can add to our model the Breit and other QED
corrections as well as the non-punctuality of the nucleus, using some
nuclear-matter distribution.

In comparison with other works presenting Relativistic Screened
Hydrogenic Models (see References 14 and 15), we can say that, in
average, all produce very similar results between them as well as
with Hartree–Fock or Dirac–Fock numerical codes.

The motivation to present this work is that we do not use ex-
perimental values nor MCDF calculations (as in the case of Reference
15); neither we introduce any empirical parametrization as, for
example, the factor χij used by Smith to calculate �Gij

k [14]. Our work
is based on the use of the virial w (see Eq. (4)) as a model for the
potential energy [10,11], and the decomposition of the two-body
matrix element in two terms: ij r ij g i r i f j r jij ij i ji j

− = +1 1 1 . So,
a specific hydrogenic model results, with no residual interaction
between electrons. Somehow, our generalization of the Kregar ap-
proach, jointly with the generalization of the exchange and subshell
corrections, provides a theoretical and practical framework to the
Relativistic Screened Hydrogenic Model.
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Appendix A: approximate analytic solution for some integrals

As expressed in the main text, in order to calculate “in-line”
screening constants we must calculate

dq
dq
r

j
i

irj0

∞ ∞

∫ ∫

and, therefore, solve integrals of the type

I x ax b dxmρ
ρ

( )= −( )
∞

∫ exp (26)

with non-integer n. When n is an integer, the result of the integra-
tion can be put in simple terms:

I e m b a
b a

k
a b m

k
k

k

m

ρ ρρ( )= ( )
( )− +

−

=
∑!

!
,1

0

(27)

Table 8
Hydrogenic self-energy (in eV). The comparison is between the values of Ro-
drigues et al. [19] and those employing the approach by Curtis, with our effective
charges Zi.

Ion Rodrigues et al. Curtis approach |ΔE (%)|

Li-like (Z = 15) 1.38 1.25 0.906
Z = 55 116.90 112.12 0.957
Z = 95 886.48 923.46 1.042
Na-like (Z = 15) 1.50 1.25 0.833
Z = 55 131.16 121.32 0.924
Z = 95 1052.00 1046.85 0.995
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such that the posterior integral

dq Iρ ρ( ) ( )
∞

∫0
(28)

can be solved analytically.
On the other hand, for non-integer n, the integral (26) is ex-

pressed in terms of the Whittaker W n n a bM 2 1 2, ;+( )( )ρ functions
with non-integer arguments; they involve an infinite series expan-
sion in non-integer powers of the variable. Therefore, in order to
find a finite expansion with integer powers of ρ, suitable to solve
integrals of the type (28) we made a weighted average of I ρ( ) . If
m[ ] is the truncated part of m, and so with m +[ ]1 , the linear

average is given by

I e m b a m m
b a

k

m

a b m
k

k

k

m

ρ ρρ( )= +( )( ) +[ ]−( )
( )⎧

⎨
⎪⎪

⎩⎪⎪

+

− +
−

=

[ ]

∑Γ 1 11

0 !

−−[ ]( )
( ) ⎫

⎬
⎪⎪

⎭⎪⎪

−

=

+[ ]

∑m
b a

k

k
k

k

m

!
;ρ

0

1

(29)

gathering the terms of the sums up to m[ ], it remains the term with
k m= +[ ]1 out of the summa:

I e m b a
m m
m

b
a

a b m
m

ρ ρ( )= +( )( )
−[ ]( )

[ ]+( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

− +
− [ ]+( )

Γ 1
1

1
1

!
ρρ

ρ

m

k
k

k

m b a
k

[ ]+

−

=

[ ]

⎧
⎨
⎪⎪

⎩⎪⎪

+
( ) ⎫

⎬
⎪⎪

⎭⎪⎪
∑

1

0 !
. (30)

With this result, we can evaluate the integral (28) as before.
At the end of the calculations, using the integration of the con-

vergent series or the above simplified expression, the resulting
screening parameters differ by less than 0.0001.

Appendix B: the analytic calculation of gij (and f ji)

With expression (12) (and, mutatis mutandis (13)) and the an-
alytic solution of the integrals, as viewed above, we have

I r
dq
r

F r G r
r

dr

A Q A Q A Q

j
i

ir

i i

r

F F G

j j

i i i

( )= =
( ) + ( )

= ( ) ( )+ (

∞ ∞

∫ ∫
2 2

1 2 1)) ( )( )

×

=

′

=

′

− + + −
∞

∑∑

∫

A Q

e r dr

G
Q

n

Q

n

Z r N Q Q

r

i

ii

i i i

j

2
2 01 0

2 1 2 2 1λ ; (31)

applying the result (30) to the last integral, the r.h.s. of Eq. (31) results

I r A Q A Q A Q A Q e mj F F G G
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with, as above, m Q Q i= + + −1 2 2 1λ . By solving now the integral
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where, now, m Q Qi i= + + −3 4 2 1λ .
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