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Abstract. In this work we use a numeric method based on a combined discretization and 
simultaneous dynamic optimization approach to solve a system consisting of partial 
differential and algebraic equations. The spatial derivatives are discretized by finite 
differences while the resulting DAE (Differential-Algebraic Equations) optimization problem 
is transformed into a large-scale NLP (Nonlinear Programming) problem through collocation 
over finite elements. This method is implemented in a computer package resident in a remote 
computer located at the Department of Chemical Engineering Carnegie Mellon University, 
which is accessed via a high-speed internet connection (Internet 2) from a client computer at 
the Centro Regional de Investigaciones Basicas y Aplicadas Bahia Blanca (CRIBABB). 

We have applied this strategy to the resolution of the dynamic optimization model of a gas - 
gas heat exchanger, which is part of a larger model under development. The goal is to 
minimize the transient between two set points of an outlet stream temperature. The dynamic 
model provides profiles of controlled and manipulated variables which are in agreement with 
available data, and the remote optimization system performed very well.  
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1 INTRODUCTION 

Natural Gas Liquids processing plants provide feedstock, mainly ethane and propane, for 
production of olefins and other petrochemicals. In our country, there are several natural gas 
processing plants, two of which currently provide raw material for the most important 
petrochemical complex in the country, located next to Bahía Blanca. 

The extraction of ethane and heavier hydrocarbons from natural gas can be efficiently 
performed through turboexpansion processes. The separation is carried out at high pressure 
and cryogenic conditions. However, cryogenic processes involve intensive material and energy 
integration, complex process flowsheet, small driving forces for flow and heat exchange, tight 
operational requirements and very high product purities. These attributes place them on the 
complex side of the spectrum of potential simulation, optimization and control applications. 
During the last two decades, much research and development work has been devoted to the 
determination of more efficient expansion processes and their optimal operating conditions. 
Bandoni et al.1 have developed a methodology based on an energy analysis in the cryogenic 
sector for the selection of natural gas processing plant designs. Diaz et al.2 have solved the 
debottlenecking problem of an ethane extraction plant as a Mixed Integer Nonlinear 
Programming (MINLP) model. They have shown that significant improvement in the plant 
operation and economics could be achieved by simultaneously considering minor structural 
modifications. Diaz et al.3 have studied the detailed design of a turboexpansion plant for a wide 
range of natural gas mixtures by means of an MINLP strategy integrated to rigorous process 
and costs models. They have also analyzed similar process technologies that can be used to 
obtain propane as the main product and re-inject ethane to pipeline. More recently, Diaz et al.4 
have studied dynamic behavior of main units in the plant, in particular the cryogenic high-
pressure demethanizing column, through a simultaneous approach to solve the DAE 
optimization problem. As part of this project we are now modeling cryogenic heat exchangers 
in the NGL processing plant. The complete model will comprise heat exchangers, a high-
pressure separator, a turboexpander and a demethanizing column. 

2 OPTIMIZATION ALGORITHM 

Dynamic simulation problems are increasingly used to model control and scheduling of 
batch processes; startup, transient and shutdown analysis; safety studies and evaluation of 
control schemes. A few authors have addressed dynamic simulation of complex cryogenic 
processes.  

However, dynamic optimization of entire plants has not been addressed until the last 
decade, mainly due to the lack of reliable large-scale dynamic optimization algorithms5. 
Dynamic optimization problems for chemical processes can be modeled as a differential-
algebraic equations (DAE) system. 

DAE optimization problems can be solved using a variational approach6 or by applying a 
Nonlinear Programming (NLP) solver to the DAE model. The variational approach is good for 
problems without bounds. However, if the problem has active constraints, it is very difficult to 
determine the correct switching structure and suitable initial guesses for state and adjoint 
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variables. There are two types of methods that apply NLP solvers: sequential and 
simultaneous. In the first strategy, the control variables are parameterized using a finite set of 
control parameters. The objective and constraint functions are evaluated for a given set of 
parameters by integration of the dynamic model using a DAE solver. The sensitivities with 
respect to the parameters are obtained from the same DAE solver and a small optimization 
problem is solved in the space of the parameters. Vassiliadis7 and Cervantes and Biegler8 
present a thorough review on these methods. 

Simultaneous approaches solve the DAE system together with the optimization problem. 
Both state and control variables are discretized and the original DAE optimization model is 
transformed into a large-scale NLP problem that may require special solution strategies. 
Simultaneous approaches have advantages for problems with path constraints and for systems 
where instabilities can occur for a range of inputs. In addition, the simultaneous approach 
solves the DAE system only once, at the optimal point, and therefore can avoid intermediate 
solutions that may not exist or may require excessive computational effort.  

The large-scale NLP problems that arise from the full discretization of the DAE system are 
usually solved using Sequential Quadratic Programming (SQP) methods. These methods can 
be classified into full-space and reduced space approaches. Full-space methods take advantage 
of the DAE optimization problem structure and the sparsity of the model and they are very 
efficient for problems with many degrees of freedom9,10 as the optimality conditions can be 
easily stored and factored. Characteristics of these methods are that second derivatives of the 
objective function and constraints are usually required, and special precautions are necessary to 
ensure convergence properties. 

The DAE system is discretized using collocation on finite elements. The variables are then 
partitioned into dependent and independent variables in each element. A Newton step for the 
dependent variables is obtained by solving small square systems of equations for each element. 
The step for the discretized independent variables is obtained by solving a QP for all the 
elements. 

The general formulation of the DAE optimization problem is as follows: 
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where Φ is a scalar objective function; f is the right hand side of differential equations 
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constraints; h are algebraic equation constraints, hs are additional point conditions at times ts; z 
are differential state variables; zo are the initial values of z; y are algebraic state variables; u are 
control variables; p are time independent variables and tf is the final time. This system presents 
initial condition and point conditions at time ts. 

The differential-algebraic equation optimization problem is transformed into a nonlinear 
programming (NLP) problem by collocation on finite elements11,12,13. The resulting large-scale 
NLP will be solved with a reduced space interior point algorithm, incorporating recent 
advances in the interior point strategy that includes adjusting and adding finite elements in the 
simultaneous approach14,15. 

3 OCC METHODOLOGY 

With the development of superior model-based control strategies and more efficient 
numerical solvers, dynamic optimization has become a viable tool for process systems 
engineering. A number of modeling systems, including commercial tools, have also increased 
the awareness and activity in dynamic simulation and optimization based on first principles 
models. As a result, very large optimization models can be formulated that represent complex 
process systems. 

The representation and solution of the differential-algebraic equation (DAE) model is a key 
part of this formulation. The relative merits of these strategies are discussed in Biegler et al.14, 
and there are active research efforts in the refinement of these strategies.  

In the past decade, NLP tools have advanced rapidly for real-time optimization. Currently, 
it is not uncommon to formulate and solve NLP problems with 105 variables and constraints. 
Moreover, the availability of second derivates in same platforms allows more sophisticated 
methods to be used. Jockenhövel et al.16 classify these methods into the following categories: 
active set versus barrier methods to handle bounds and inequality constraints, providing second 
order information and exploiting problem structure through full space or reduced space 
methods and line search and trust region methods to enforce global convergence. The 
environment includes automatic differentiation facilities to construct Jacobian and Hessian 
information from DAE model, a rich choice of discretization schemes for DAE models and 
graphical utilities to observe and assess the performance of the optimization strategy. 

Jockenhövel et al.16 discuss the above features and combine them into a novel dynamic 
optimization package, called OptControlCentre (OCC). OCC implements a simultaneous 
optimization approach for real-time optimization. 

The software platform OptControlCentre (OCC) was developed for the implementation of 
dynamic optimization. Built on a MATLAB framework and using MAPLE for the generation 
of exact derivates, OCC allows its users to perform dynamic optimization of complex problems 
with a powerful graphical user interface. The continuous process model is defined as a set of 
DAEs using a relatively simple syntax in the first stage of OCC. In the second stage, the 
MAPLE-based code generator OCOMA16 transforms the continuous DAE optimization 
problem to an NLP problem through a full discretization of state and control variables. 
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OCOMA then automatically writes the FORTRAN subroutines that contain the NLP 
problem, including symbolic first and second derivatives. In the third stage, these codes are 
then linked with a large-scale reduced Successive Quadratic Programming (rSQP) algorithm 
that solves the NLP problem. OCC allows off-line optimization, and the optimization result can 
be visualized using the graphical interface built with MATLAB tools. 

4 HEAT EXCHANGER 

Among a variety of types of heat exchangers, shell-and-tube heat exchangers are widely 
used in almost all-industrial branches. A number of thermal simulation and design methods 
have been developed for shell-and-tube exchangers operating in steady state. Because of 
various reasons such as start-up or shutdown, heat exchangers often endure transient response. 
Variations of external loads that lead to disturbances of inlet temperatures and flow rates of 
fluid streams and changes of heat transfer conditions also induce a transitory process in heat 
exchangers. 

Knowledge of transient response of shell-and-tube heat exchangers is required for process 
control and optimum operation.  

In this section we examine the procedure for optimizing the transient response of a baffled 
shell-and-tube single-pass counterflow heat exchanger, in which the fluid circulating in the 
tubes is residual gas and the fluid in the shell is natural gas. The shell-and-tube heat exchanger 
illustrated in Figure 1 has one shell pass and one tube pass. The inner stream flows through 
several tubes and the outer stream is confined by a large-diameter vessel. 

 

 
Figure 1: Shell-and-tube heat exchanger 

As shown in Gaddis and Schlunder17, an effective way to model a shell-and-tube heat 
exchanger with baffles is to break it up into several linked subsystem or cells. The number of 
baffles in the shell and the number of tube passes determine the number of cells. Figure 2 
shows the diagram of the multicell model. 
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Figure 2: Multicell model 

5 MODEL DESCRIPTION 

The shell-and-tube heat exchanger is a particular case of a distributed parameter system. 
The fluid temperatures vary not only just along the length of the heat exchanger but also with 
time at each point along the exchanger. This process is modeled by a partial differential 
equation (PDE) system. To solve it, we transform it into an ordinary differential equation 
(ODE) system. We have used the finite difference method to discretize partial derivatives with 
respect to exchanger length. 

The finite difference method begins with the discretization of space such that there is an 
integer number of points in space at which we calculate the field variable. In this way, the 
partial differential equation system becomes an ODE. 

5.1 Differential Equations 

The heat exchanged between the shell-side and tube-side fluids can be found by performing 
an energy balance. 

Energy balance in the tubes: 
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Energy balance in the shell 
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The initial conditions are: 

Hot stream 
at Ts0 

Ts1 Ts2 Ts3 Ts8Ts7Ts6Ts5Ts4

Tt1 Tt2 Tt3 Tt8Tt7Tt6Tt5Tt4

Cold stream 
at Tt0 
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The temperatures of each inlet stream at the initial time are known. The heat exchanger is 
divided into 8 cells of equal length each one. 

5.2 Algebraic Equations 

To formulate a rigorous model we consider that the density of both fluids change with the 
temperature and calculate these as: 
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Compressibility factors are computed as linear functions of temperature that have been 
obtained through phase equilibrium calculations with Soave Redlich Kwong equation of state.  
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We consider that heat capacity is constant along the heat exchanger. The velocity of each 
stream is calculated as: 
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Cell length is calculated as: 

n
Lz =∆  (8)

where n is the number of elements in which the heat exchanger is divided. 

5.3 Objective Function 

The objective is to minimize the offset between the outer stream temperature of natural gas 
and a set point value.  
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The control variable is the inner flow of the cold stream. 
The optimization problem is as follows: 
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6 SIMULATION RESULTS 

The previously described model consists of a system of algebraic-differential equations.  
The solution of the system of Eq.(2) to (9) is obtained with OCC program. This software 

discretized automatically the differential-algebraic system, makes the calculation of first and 
second order derivatives in a symbolic way and then solves the large-scale nonlinear 
programming optimization problem16.  

The number of discretized variables is 1320 and the number of discretized equations is 
1320. The CPU time is 20 minutes in an UltraSparc 250 Workstation. 

Even though final time was 40 minutes, we plot the following figures up to 20 minutes 
because steady state is achieved at this time value. 

Now, we present two scenarios that are possible in this plant. The system is working at 
steady state with a fixed set point temperature that controlled the outer stream of natural gas. 
This set point has to be changed to another value. In the first case we consider that the new set 
point is lower than the current value. In a second case the new set point is greater than this 
value. In both cases we analyze what happens with the inner flow of residual gas (control 
variable). As the outer temperature of residual gas has fixed upper and lower bounds, the 
behavior of this variable is plotted too. 

6.1 Case 1 

Figure 3 shows outer residual gas temperature and flowrate profiles in the first analyzed 
scenario. The optimization variable (u(t)) oscillates and then reaches a new steady state. 
Residual gas outer temperature falls down to the lower bound and keeps this value.  

In Figure 4 it can be seen that both fluids temperature profiles grow along the exchanger. 
They show that the temperature reach a steady state in less than 20 minutes.  

Natural gas outer temperature is the controlled variable. This temperature has to achieve the 
set point value. Figure 5 shows its optimum profile. 
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Figure 3: Temperature and Flow vs. time 
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Figure 4: Optimal fluid temperature profiles in tubes and shell. 
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Figure 5: Natural gas temperature vs. time 

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
1836



 

6.2 Case 2 

In the second scenario a set point value greater than the initial one is considered for outer 
natural gas temperature. Figure 6 shows outer temperature and flowrate optimal profiles. The 
optimization variable oscillates a little before reaching the new steady state value. Residual gas 
outer temperature gets to its upper bound. 

In Figure 7 it can be seen that both fluids temperature profiles increase along the exchanger. 
Finally, Figure 8 shows optimal natural gas outer temperature profile.  
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Figure 6: Optimal Residual gas temperature and Flowrate vs. time 
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Figure 7: Optimal fluids temperature profile in tubes and shell 
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Figure 8: Optimal natural gas temperature vs. time 

7 CONCLUSIONS AND FUTURE WORK 

The developed model allows the prediction of optimal cooling gas flowrate (optimization 
variable) to achieve a set point temperature value in the warm stream (natural gas) in a 
countercurrent gas-gas heat exchanger.  

DAE system with partial derivatives with respect to length and time that constitutes the 
optimization problem set of constraints is first transformed into an ordinary differential 
equation system by discretization by finite differences. The resulting DAE is then discretized by 
collocation on finite elements and transformed into a nonlinear system of equations that gives 
rise to a large-scale nonlinear programming problem. A full space Successive Quadratic 
Programming algorithm is applied to solve it within OCC environment. 

The model is used to analyse the dynamic response of the gas � gas heat exchanger 
evaluating the trend of natural gas outlet temperature due to variations on set point 
temperature. The computational analysis provided numerical values of response times showing 
how the mathematical model is adequate to analyse, in the design approach, the heat exchanger 
dynamic behaviour.  

This work was feasible through the use of high-speed Internet 2 that made possible this 
problem resolution using OCC, from a remote computer. 

A preliminary model for the cryogenic heat exchanger in the NGL plant has been presented. 
In current work, we are modeling a second heat exchanger where natural gas phase change 
takes place. The final model will comprise main units in the cryogenic sector: demmethanizing 
column, heat exchangers, high-pressure separator and turboexpander. 

8 NOMENCLATURE 

A  cross-sectional area, m2 
Asup  surface area per unit length, m2/m 
Cp  heat capacity, MJ/Kmol K 
F  mass flow rate, Kg/min 
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h  heat transfer coefficient, W/(m2K) 
L  length of heat exchanger, m 
M  molecular weight, Kg/Kmol 
n  number of cells 
P  pressure, bar 
R  universal constant of gases, m3 bar/(Kmol K) 
t  time, min 
T  temperature, K 
Tsp  set point temperature, K 
v  velocity, m/min 
z  compressibility factor 
ρ  density, Kg/m3 
∆z  cell length  
 
Subscripts 
t  tube side 
s  shell side 
0  inlet 
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