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Prediction of lateral variations in reservoir properties 
throughout an interpreted seismic horizon using an artificial 
neural network

Abstract
Successful use of an artificial neural network is shown to 

predict lateral variations of seismic velocity, density, thickness, 
and gamma rays associated with sand dune reservoirs identified 
on a previously interpreted seismic horizon. The work is presented 
in two main sections. Section one is a feasibility analysis based 
on synthetic data. A known geologic model is used, performed 
by pseudowells, in which lateral variations in seismic velocity, 
density, and gamma ray values are related to the dunes. The 
synthetic seismic model and the attributes derived are used as 
training input in the neural network. Section two is a real case 
example where the methodology is applied to a real seismic data 
set. Results indicate that using a set of data and attributes restricted 
to a time interval corresponding to a previously interpreted seis-
mic horizon is more efficient than using a whole data cube, involv-
ing a very large volume of data.

Introduction
Neural networks as a particular case of intelligent systems 

have given promising results in many fields, such as modeling, 
time series analysis, and pattern recognition, among others. In 
the field of geophysics, these methods have gained popularity 
during the last decades to solve a variety of problems, as explained 
by van der Baan and Jutten (2000) and Sandham and Leggett 
(2003). In particular, neural networks have proven to be useful 
in reservoir characterization, as shown in An and Moon (1993), 
Sandham and Leggett (2003), and Herrera et al. (2006).

In this work, a solution for the problem of horizontal predic-
tion of properties was carried out through pseudowells and seis-
mic horizons previously interpreted over a 3D seismic cube. The 
main premise of this paper lies in the fact that the process of the 
seismic attributes is performed through the interpreted horizon 
of a synthetic model. This synthetic seismic model was created 
by the convolutional model between the reflection coefficients 
obtained from the velocities and densities and a given seismic 
wavelet.

For both the synthetic and the real case, the artificial neural 
network (ANN) was used for the geophysical characterization of 
sand dune fields. As pointed out by Morse (1994) and Krittian and 
Naides (2006), sand dune deposits are usually clean and well-sorted 
and therefore constitute excellent hydrocarbon reservoirs and car-
rier beds. Well data in these formations provide detailed vertical 
information and may indicate lateral trends, but cannot specify 
intrawell information. Therefore, the determination of lateral 
variations in different geophysical properties combining reflection 
seismic horizons, related attributes, and well data is a problem of 
great interest in hydrocarbon exploration and characterization.
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Feasibility analysis based on synthetic data
In this case, we propose a simple synthetic geologic model 

(Cersósimo et al., 2006) consisting of three horizontal layers, in 
which the middle layer is thin and has lateral variations in seismic 
velocity, density, and natural gamma ray (GR). This heterogeneous 
layer contains the dunes and interdune zones.

The attributes to be used as input in the neural network were 
calculated within a window containing the seismic event associ-
ated with the composite reflection from the thin layer.

In general terms, the synthetic data were obtained using the 
following procedure:

• creation of a seismic velocity cube from a particular velocity 
model, including lateral variations (In this case, the variations 
are related to the presence of a dunes model with a thickness 
of 10 m.)

• derivation of a density cube from velocities
• computation of an acoustic impedance cube
• definition of a zero-phase, 30 Hz Ricker wavelet
• creation of a synthetic seismic amplitude cube, using the 

information from previous steps
• identification and interpretation of the seismic reflector and 

calculation of the seismic attributes to be used in the neural 
network

• creation of a training matrix, with the attributes chosen and 
known GR values at some discrete locations

• application of the training matrix to the entire seismic cube 
to obtain the desired output

The initial velocity cube was designed with geologic crite-
ria, considering three layers. The upper layer of the model, 
from 2000 m to 3000 m deep, is a shale with a velocity of 3200 
m/s. The second layer is a thin bed of marls with intercalated 
clean sandstone dunes, located at depths from 3000 m to 3010 
m with a base velocity of 3100 m/s (corresponding to the marl 
interdune zones). The third layer, from 3010 m to 4000 m has 
a constant velocity of 3300 m/s. A vertical slice of the velocity 
cube is shown in Figure 1, in which the assumed GR values 
for each lithology also are included. In Figure 2, we plot a 
horizontal slice of the synthetic velocity cube generated; the 
yellow cells represent the dunes. Note that each yellow and 
red cell will store the velocity and the density, and each green 
cell will store the velocity, density, and the property to be 
predicted. The green cells in Figure 2 will be the input for the 
training phase.

Once the compressional velocity cube was created, the density 
was obtained using the Gardner equation (Gardner et al., 1974). 
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Then, using the density cube, the velocity cube, the geologic 
model, and the wavelet, the synthetic seismic cube was generated. 
The seismic traces were computed by means of the convolution 
of the reflection coefficients, given by the acoustic impedance 
contrasts of the model and the 30 Hz Ricker wavelet (Figure 3). 
Using the synthetic seismic cube, a horizon related to the layer 
of interest was interpreted (marked with a blue line), in which 
significant lateral amplitude variations associated with the dunes 
can be observed. This horizon represents the center of the target. 
A 30 ms time window centered about the interpreted horizon was 
used for the attribute calculations. This window width was selected 
based on the widths of the well logs and the seismic data. 

Along this interpreted horizon, different attributes were 
defined and calculated, such as spatial coordinates (denoted X, 
Y), RMS amplitude, isochronous map values of an interpreted 
horizon, instantaneous phase, integrated RMS, trace length, 
quadrature, and others.

The ANN used in this work is a back propagation network, 
which is an algorithm for supervised learning. Basically, the al-
gorithm is divided into two phases. A stimulus pattern is applied 
to the input of the network; this propagates from the first layer 
through the upper layers of the network to generate an output. 
The output signal is compared to the desired output, and an error 
signal for each of the outputs is calculated. The error outputs 
propagate backward from the output layer to all the neurons in 
the hidden layer that contribute directly to the output; however, 
neurons of the hidden layer receive only a fraction of the total 
error signal based on the relative contribution that each neuron 
has provided the original output. 

This process is repeated layer by layer, until all neurons in 
the network have received an error signal describing their 
relative contributions to the total error. The importance of this 
process is that, as the network is trained, the neurons in the 
intermediate layers organize themselves so that different neu-
rons learn to recognize different features of the total input 
space. After training, when presented with an arbitrary input 
pattern that is incomplete or contains noise, the neurons in 
the network’s hidden layer will respond with an active output 
if the new entry contains a pattern that resembles that char-
acteristic that individual neurons have learned to recognize 
during the training session (Freeman and Skapura, 1991).

Figure 1. Vertical slice of the velocities of the model at (a) interdune 
zones and (b) dunes.

Figure 2. (a) Horizontal slice of the velocity model corresponding to 
Layer 2. (b) Enlargement of the small area selected in (a). The dunes 
are marked in yellow and the interdune zones in red. The green cells 
are the data used for training the ANN. The numbers denote the 
velocity for each cell in m/s.

Figure 3. Detail of the synthetic seismic data window used for the 
calculation of the seismic attributes throughout the interpreted 
horizon.
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In Figure 4, we illustrate the architecture of the ANN used 
for the present case, in which we specify the seven attributes 
used to generate the input, which were randomly selected. This 
network presented a single hidden layer and a single desired 
output, which, for this case, was the distribution of GR along 
the interpreted horizon.

Regarding the choice of input attributes, it should be pointed 
out that the ANN does not guarantee that the given solution is 
optimal and unique. In fact, it must be tested by different numbers 
of hidden neurons, activation functions, learning rules, etc., until 
a correct solution is obtained. This final solution has to be the most 
consistent with the geology of the area under study. Using this 
criterion, we trained the ANN with a random number of attributes 
and parameters. Thus, the seven attributes shown in Figure 4 were 
selected because they produced the most consistent results.

The GR training data were obtained from the pseudowell 
data of the area (the green cells in Figure 2), with values of 80 
API units for marls/sandstones in the interdunes, 40 API units 
for sands in the dunes, and 100 API units for the upper and 
lower layers. The impact of the velocity variation in the ampli-
tudes of any attribute can be observed, but with the values related 
to the attribute in question. That is, in many cases it is likely 
that attributes reveal the shape of the event to be characterized, 
but what is important is what the ANN scaling will provide as 
a final product.

In Figure 5, we plot the values obtained by the ANN for 
the GR distribution throughout the selected horizon. The close 
match between the spatial pattern of these results and the 
synthetic initial model (Figure 2) shows the good performance 
of the method to predict dune locations. However, the existence 
of some small, dispersed false dunes can be noted, which are 
mainly associated to the selected attribute training set. Using a 
different set of attributes would result in another pattern dis-
tribution, as expected.

Real case
In the previous section, we solved the forward problem to 

generate a set of synthetic data, and then we applied the proposed 
ANN methodology to recover the original model. Here, ap-
plication of the described method is demonstrated with real data 
from a sand dune reservoir in Argentina. In this case, the con-
trol of the results is done through the analysis of spectral de-
composition of seismic data, well-data information, and basic 
seismic interpretations done in the area. In this way, this com-
parison allowed us to conclude that the proposed methodology 
works very well.

As in the previous case, the neural network used was a back 
propagation network. For this particular case, seven randomly 
chosen attributes were used to obtain a desired output of four curves:

• acoustic impedance
• gamma ray
• density
• thickness

The architecture of this neural network used with real data is 
shown in Figure 6. These attributes were calculated along a horizon 

around the area of interest and within a search window of 8 ms. 
The time window was chosen according to the thickness in time 
over the well logs associated with the dune reservoir. Figure 7 shows 
the spectral decomposition process on the real seismic data, cor-
responding to 32 Hz, in which it is possible to see the geologic 
trend in the area of interest. The dunes are associated to the elongated 
white amplitude zones along the east-west direction.

ANN training was performed with known data from eight 
wells with real log data, which are not marked in the figures due 
to confidentiality reasons. The area of analysis is about 50 km2, 

Figure 4. Architecture of the applied neural network indicating some 
of the attributes used for the synthetic data example.

Figure 5. Final product of the neural network showing the horizontal 
distribution of GR. Note the very good correlation between the GR 
results and the synthetic model in Figure 2.

Figure 6. Back propagation architecture for the real data.
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the stacking bin size is 25 by 25 m, and the vertical data were 
sampled at 2 ms. The horizontal distances between wells are about 
500 and 1000 m.

The logs used are gamma ray, thickness, velocity (calculated 
from sonic logs), and density. The data to train the ANN from the 
well data are coming from the average value in the time window 
of the log associated with the reservoir. The amplitude of the at-
tributes to be used in the training process were extracted from the 
average of the four seismic attribute traces nearest the well and 
from the seismic time windows also related to the reservoir.

Using an average of the log information around the reser-
voir zone, and an average of the attributes around of the seismic 
zone associated with the reservoir, gave us the opportunity to 
attenuate the frequency differences between the high-frequency 
log and the low frequency of the seismic data. With this in 
mind, we are associating each amplitude of the attribute with 
each log property.

Results
Figure 8a shows the P-impedance calculated by the ANN, 

in which the main trend of the dunes can be observed. The dunes 
are associated with the medium impedance represented by the 
yellow shapes.

In Figure 8b, we show that the neural network could dis-
criminate, with very good detail, the density of the dunes. Observe 
that the lower densities in this picture can be used to delineate 
the sand dunes.

Figure 8c shows the pseudo GR results from the ANN. The 
low GR values are associated with the clean sands in this area, 
and the higher values are associated with shale bodies. The previ-
ous analysis was verified with the wells in the area. In this case, 
the GR response indicated that the green, red, and white areas 
represent clean sand bodies with good petrophysical conditions 
for hydrocarbon entrapment.

Finally, in Figure 8d we display the predicted thicknesses, in 
which we observe that the spatial variations are consistent with the 
other outputs obtained by the ANN. As in previous figures, the 
dunes lie in the east-west direction, having thicknesses below 28 m.

At the northeast of each figure, grid-shaped variations can 
be observed; these are caused by some seismic noise and footprint 
in the area. To the south, it is possible to see a flat event; this is 
a possible change in lithology and thickness.

Conclusions
In this work, we showed the feasibility of using a back 

propagation ANN to detect lateral variations in seismic attributes 
and parameters associated with sand dune reservoirs located on 
a previously interpreted seismic horizon.

From the present analysis, we conclude that the ANN gave 
excellent results for density, GR, and thicknesses, showing areas 
with good petrophysical conditions. These areas were corrobo-
rated with well data. For synthetic data, the method was suc-
cessful to discriminate the lateral variations, which made it 
possible to delineate the dunes, even for thicknesses well below 
the vertical seismic resolution. Although the number of well 
data for the training of the network is critical to the final results 
of these processes, it was observed that the geographic distribu-
tion of input data is fundamental to get a response consistent 
with the geologic model. It is highly recommended to perform 
a feasibility analysis, such as the one presented with synthetic 
data, before the application of these kind of procedures.

We remark that the described procedure is novel and, to our 
knowledge, has not been implemented in this way before. It allows 
us to combine dispersed well log information and different at-
tributes taken within selected data windows associated with the 
seismic horizon of interest, instead of using the whole seismic 
cube. Our results with synthetic and real data allow us to suggest 
that the proposed ANN procedure may be a useful tool for res-
ervoir characterization and delineation. 
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Figure 7. Spectral decomposition applied to the real seismic data. The 
dunes are represented by the white amplitude response. The picture 
corresponds to a horizontal slice at 32 Hz.

Figure 8. Results obtained using the ANN on real data: (a) P-imped-
ance, (b) density, (c) gamma ray, and (d) tridimensional image of dune 
thicknesses.

D
ow

nl
oa

de
d 

06
/2

7/
16

 to
 1

63
.1

0.
46

.2
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



March 2016     T H E  L E A D I N G E D G E      269

References
An, P., and W. Moon, 1993, Reservoir characterization using feed-

forward neural networks: 63rd Annual International Meeting, 
SEG, Expanded Abstracts, 258–262, http://dx.doi.org/10.1190/ 
1.1822454.

Cersósimo, S., C. Ravazzoli, and R. García-Martínez, 2006, Iden-
tification of velocity variations in a seismic cube using neural 
networks. In IFIP International Federation for Information 
Processing, Volume 218, Professional Practice in Artificial Intel-
ligence, eds. J. Debenham, (Boston: Springer), 11–19.

Freeman, J. A., and D. M. Skapura, 1991, Neural Networks: Algorithms, 
Applications, and Programming Techniques: Addison-Wesley.

Gardner, G., L. Gardner, and R. Gregory, 1974, Formation velocity 
and density –the diagnostic basics for stratigraphic traps: Geophys-
ics, 39, no. 6, 770–780, http://dx.doi.org/10.1190/1.1440465.

Herrera, V. M., B. Russell, and A. Flores, 2006, Neural networks 
in reservoir characterization: The Leading Edge, 25, no. 4, 
402–411, http://dx.doi.org/10.1190/1.2193208.

Krittian A. and Naides C., 2006, Caracterización petrofísica del 
miembro Troncoso Inferior en el yacimiento Puesto Hernández, 
Neuquén, Argentina: Petrotecnia, April 2006, 90–105.

Morse, D. G., 1994, L. B. Magoon and W. G. Dow, eds., Siliciclas-
tic reservoir rocks, in the petroleum system – from, source to trap: 
AAPG Memoir 60, Chapter 6, 121–139.

Sandham W. and Leggett, Eds., 2003, Geophysical applications of 
artificial neural networks and fuzzy logic: Springer Science Busi-
ness Media.

van der Baan, M., and C. Jutten, 2000, Neural networks in geo-
physical applications: Geophysics, 65, no. 4, 1032–1047, http://
dx.doi.org/10.1190/1.1444797.

D
ow

nl
oa

de
d 

06
/2

7/
16

 to
 1

63
.1

0.
46

.2
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/


