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ABSTRACT

A fast chromatographic methodology is presented for the analysis of three synthetic dyes in non-alcoholic
beverages: amaranth (E123), sunset yellow FCF(E110) and tartrazine (E102). Seven soft drinks (purchased
from a local supermarket) were homogenized, filtered and injected into the chromatographic system.
Second order data were obtained by a rapid LC separation and DAD detection. A comparative study of
the performance of two second order algorithms (MCR-ALS and U-PLS/RBL) applied to model the data,
is presented. Interestingly, the data present time shift between different chromatograms and cannot be
conveniently corrected to determine the above-mentioned dyes in beverage samples. This fact originates
the lack of trilinearity that cannot be conveniently pre-processed and can hardly be modelled by using
U-PLS/RBL algorithm. On the contrary, MCR-ALS has shown to be an excellent tool for modelling this
kind of data allowing to reach acceptable figures of merit. Recovery values ranged between 97% and
105% when analyzing artificial and real samples were indicative of the good performance of the method.
In contrast with the complete separation, which consumes 10 mL of methanol and 3 mL of 0.08 mol L-!
ammonium acetate, the proposed fast chromatography method requires only 0.46 mL of methanol and
1.54 mL of 0.08 mol L-! ammonium acetate. Consequently, analysis time could be reduced up to 14.2% of
the necessary time to perform the complete separation allowing saving both solvents and time, which

are related to a reduction of both the costs per analysis and environmental impact.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The use of second order multivariate algorithms has been shown
to play a critical role in several analytical fields, as can be gathered
from a literature survey in relevant analytical, chemometrics and
applied journals[1,2]. One of the ways to obtain second order data is
by coupling two “hyphenated” first order instruments, as in tandem
high performance liquid chromatography-diode array detector
(HPLC-DAD), gas chromatography-mass spectrometry (GC-MS),
GC-GC, MS-MS, etc. measurements. Specifically, an important
number of reports have been presented focusing on the resolu-
tion of really complex samples by using liquid chromatography
[3] and exploiting the second order advantage [4]. In this field,
important issues such as reduction in the time of analysis and con-
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sequently costs and amount of contaminant solvents should be
considered.

Alarge number of algorithms can be cited among the approaches
involving the second order advantage: generalized rank anni-
hilation (GRAM) [5], direct trilinear decomposition (DTLD) [6],
self-weighted alternating trilinear decomposition (SWATLD) [7],
alternating penalty trilinear decomposition (APTLD) [8], parallel
factor analysis (PARAFAC) [9], multivariate curve resolution alter-
nating least squares (MCR-ALS) [10-12], and the most recently
implemented bilinear least squares (BLLS) [13], unfolded par-
tial least squares/residual bilinearization (U-PLS/RBL) [14,15] and
artificial neural networks followed by residual bilinearization
(ANN/RBL) [16].

In chromatography, the retention factor (k) is the degree
of retention of the sample component in the column. In most
chromatographic analysis, analytes elute with retention factors
between 1 and 20 allowing their complete separation. A peak with
k equal to 0 is a component that does not interact with the sta-
tionary phase and elutes in the void volume [17]. If analytes are in
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their ionized form, k will be significantly lower than the one that
would be obtained if they were in their neutral form [17]. A value
of k lower than 1 does not result in a differential migration of the
component and originates dissimilarities in both time of elution
and peak shapes, leading to data without the property of trilin-
earity, and making necessary the use MCR-ALS (which can solve
this type of problems by resorting to the mathematical resource of
matrix augmentation) or alternatives such as PARAFAC2, a variant
of PARAFAC allowing for distinct time profiles in each experimental
sample [18]. However, when data are conveniently pre-treated in
order to alleviate the above-mentioned problems, good results can
be obtained by using PARAFAC or RBL based algorithms [19,20].

Synthetic dyes are usually added to foodstuffs and soft drinks
not only to improve appearance, colour and texture but also to
maintain the natural colour during process or storage. Synthetic
dyes show several advantages compared with natural dyes such
as high stability to light, oxygen and pH, colour uniformity, low
microbiological contamination and relatively lower production
costs [21]. However, many of them may exhibit adverse health
effects (allergy, respiratory problems, thyroid tumours, chromo-
somal damage, hyperactivity, abdominal pain, etc.) [22].

On the other hand, in some cases the use of food dyes is also
indicative of foodstuff adulteration such as in their addition to fruit
juices. Thus, the use of synthetic dyes is strictly controlled by laws,
regulations and acceptable daily intake (ADI) values [23]. These
regulations frame the role of the analytical chemist who has to
test for the levels of dyes added to food. Amaranth (E123), sunset
yellow FCF (E110) and tartrazine (E102) are among the synthetic
dyes mainly used in non-alcoholic beverages and the ADI values
are between 0 and 0.5 mg kg~ for amaranth (A), 0-2.5mgkg~! for
sunset yellow (SY) and 0-7.5mgkg~! for tartrazine (T) [23].

Some problems found in artificial colour determination are
related to the variety of dyes mixtures and the potential interfer-
ences present in the commercial samples. Therefore, the analyses
have traditionally been focused on separation methods. The ana-
lytical methods frequently used for the determination of amaranth,
sunset yellow and tartrazine include thin layer chromatography
(TLC) [24,25], capillary electrophoresis (CE) [26,27], and mainly
high performance liquid chromatography (HPLC) [28,29]. How-
ever, some disadvantages arise from these methods, such as usage
of toxic solvents, spending of time, and the need of sample pre-
treatments. Chemometric modelling was used to overcome the lack
of specificity due to spectra overlapping for the direct UV-vis spec-
trophotometric determination, representing a rapid, simple, and
cheap method for the determination of these colourants [30,31].
Very recently, a spectrophotometric method employing the mul-
tivariate curve resolution alternating least squares algorithm was
presented by our group [32].

In this work we present a comparative study of the performance
of two algorithms: MCR-ALS and U-PLS/RBL on data obtained by
a rapid LC separation and DAD detection, which present time
shift between different chromatograms and cannot be conveniently
corrected, to determine the above-mentioned dyes in beverage
samples.

2. Theory
2.1. MCR-ALS

A data set can be considered trilinear when the resolved profiles
of the same component in different data matrices for a particular
direction (C or ST) have the same shape [33]. MCR-ALS is capable of
dealing with data sets deviating from trilinearity. Instead of form-
ing a three-dimensional data array, the latter is unfolded along the
mode which is suspected of breaking the trilinear structure, i.e.

if a matrix-to-matrix variation of profiles occurs along the column
direction, a column-wise augmented matrix is created. The bilinear
decomposition of the augmented matrix D is performed according
to the expression:

D=CxS +E (1)

where the rows of D contain the absorption spectra measured as a
function of time, the columns of C contain the time profiles of the
compounds involved in the process, the columns of S their related
spectra, and E is a matrix of residuals not fitted by the model.
Appropriate dimensions of D, C, S and E are thus K x (1+1) xJ,
Kx(1+I)xF, JxF and Kx(1+I)x], respectively (I=number of
training samples, J=number of digitized wavelengths, F=number
of factors extracted and K=number of elution times). Decompo-
sition of D is achieved by iterative least squares minimization of
[|E|| under suitable constraining conditions, i.e. nonnegativity in
spectral profiles, unimodality and nonnegativity in concentration
profiles.

In the present context, it is necessary to point out that MCR-ALS
requires initialization with system parameters as close as possible
to the final results. In the column-wise augmentation mode, the
species spectra are required, as obtained from either pure analyte
standards or from the analysis of the purest spectra.

2.2. U-PLS/RBL

The U-PLS algorithm has a calibration step, which employs con-
centration information (without including data for the unknown
sample). First, the I calibration data matrices X, ; (size J x K, where
J and K are the number of channels in each dimension) are vector-
ized (unfolded) and a usual U-PLS model is calibrated with these
data and the vector of calibration concentrations y (N. x 1, where
N¢ is the number of calibration samples). This provides a set of
loadings P and weight loadings W (both of size JK x A, where A is
the number of latent factors), as well as regression coefficients v
(size A x 1). The parameter A can be selected by techniques such as
leave-one-out cross-validation [34] or by the randomization test
proposed by Farber and co-workers [35]. If no unexpected interfer-
ences occur in the test sample, v can be employed to estimate the
analyte concentration:

Yu=1tv (2)

where t, is the test sample score, obtained by projection of the
unfolded data for the test sample X, onto the space of the A latent
factors:

ty = (W'P) ' Wvec(Xy) 3)

When unexpected constituents occur in Xy, then the sample
scores given by Eq. (3) are not suitable for analyte prediction using
Eq. (2). In this case, the residuals of the U-PLS prediction step, rep-
resented by sp in Eq. (4), will be abnormally large in comparison
with the typical instrumental noise, which can be easily assessed
by replicate measurements:

sp = llepll/(JK — A)'/2
= IIvec(Xy) — POWTP) ' Wvec(X, )II/(K — A)"/
= |Ivec(Xy) — Pty||/(JK — A)!/? )

where ||-|| indicates the Euclidean norm.

If the test sample contains unexpected components, the sit-
uation can be handled by a separate procedure called residual
bilinearization, which is based on singular value decomposition
(SVD) modelling of the interferent effects [14,15]. RBL aims at min-
imizing the norm of the residual vector e,, computed while fitting
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Table 1

Composition and prediction of the ternary mixtures used for calibration and validation.

Sample Tartrazine (mgL~") Amaranth (mgL~!) Sunset yellow (mgL-1)
Nom. MCR? RBLP Nom. MCR? RBL? Nom. MCR? RBL?

1 5.89 6.13 5.85 220 2.20 2.05 12.09 11.95 12.31
2 2.61 2.26 2.80 1.05 1.15 1.07 32.91 33.80 34.43
3 5.89 5.81 5.44 1.05 1.11 1.05 12.09 12.50 12.89
4 2.61 2.56 2.48 2.20 224 2.25 3291 33.87 34.31
5 4.25 4.09 4.53 0.65 0.74 0.67 22.50 22.80 22.75
6 2.61 2.72 2.38 2.20 2.20 2.14 12.09 12.00 11.72
7 1.50 1.39 1.58 1.63 1.67 1.56 22.50 23.08 23.94
8 4.25 4.46 4.43 1.63 1.64 1.62 5.00 5.58 5.84
9 4.25 447 4.32 2.60 2.70 2.78 22.50 23.37 23.75
10 5.89 5.92 6.26 2.20 222 2.17 3291 34.09 34.45
11 5.89 5.64 5.96 1.05 1.16 1.03 3291 33.87 34.38
12 2.61 2.60 2.66 1.05 1.12 1.13 12.09 12.27 13.78
13 7.00 7.11 6.96 1.63 1.68 1.66 22.50 23.17 24.43
14 4.25 421 4.20 1.63 1.69 1.66 22.50 22.66 24.36
15 4.25 4.00 3.98 1.63 1.69 1.61 40.00 41.09 44.29
Mean recovery (%)° - 98.8(5.1) 100.3(5.3) - 104.4(4.1) 100.4(3.9) - 102.7(2.9) 106.3(5.0)
REP (%)4 - 4.1 4.9 - 3.9 4.4 - 3.1 7.5
a2 MCR-ALS: three factors (regions: see the text).
b U-PLS/RBL: five latent variables for each analyte (regions: see the text).
¢ Between parenthesis the standard deviation.

. 1/2
d Relative error of prediction, REP = @ %Z(cm — Cpred )Z , where I is the number of samples, cact and cpeq are the actual and predicted concentrations, and ¢ is the

1

mean concentration.

the sample data to the sum of the relevant contributions to the
sample signal. For a single unexpected component:

vec(Xu) = Pty + vec[gunxbunx(€unx )T] + ey (5)

where bynx and cunx are the left and right eigenvectors of E, and
Zunx is a scaling factor:

(8unx, Punx, Cunx) = SVD1(Ep) (6)

where E; is the J x K matrix obtained after reshaping the JKx 1
ep vector of Eq. (4), and SVD; indicates taking the first principal
component.

During this RBL procedure, P is kept constant at the calibration
values and t is varied until ||ey|| is minimized. The minimization
can be carried out using either a Gauss—-Newton (GN) procedure or
an alternating algorithm, in both cases starting with t, from Eq. (2).
Once ||ey|| is minimized in Eq. (5), the analyte concentrations are
provided by Eq. (2), by introducing the final t, vector found by the
RBL procedure.

The number of interferents Nynx can be assessed by comparing
the final residuals s, with the instrumental noise level:

Su = l1€ull/UJK — (N + Nynx)] '/ (7)

where e, is from Eq. (5). Typically, a plot of s, computed for trial
number of components will show decreasing values, starting at sp
when the number of components is equal to A (the number of latent
variables used to described the calibration data), until it stabilizes at
a value compatible with the experimental noise, allowing to locate
the correct number of components. It should be noticed that for
Nunx > 1, the profiles provided by the SVD analysis of E, unfortu-
nately no longer resemble the true interferent profiles, due to the
fact that the principal components are restricted to be orthonormal.

It should be taken into account that adding more latent vari-
ables than the number of chemical compounds when applying RBL
methods could somehow compensate for the lack of trilinearity
[19].

3. Experimental
3.1. Reagents and solutions

All solutions were prepared daily. Analytical reagent-grade
chemicals and milli-Q water were used. Amaranth, sunset yellow
FCF and tartrazine 0.10mol L~ stock solutions (all from Aldrich)
were prepared in milli-Q water. Standard solutions and mixtures of
dyes were freshly prepared by appropriated dilution of stock solu-
tions with milli-Q water. Methanol and ammonium acetate were
obtained from Sintorgan (Buenos Aires, Argentina) and Cicarelli
(San Lorenzo, Argentina), respectively.

3.2. Apparatus and software

Both chromatographic procedures were carried out using five
modules (degasser, pump, injection valve, autosampler and DAD
detector) of an Agilent 1100 Series instrument (Agilent Technolo-
gies, Waldbronn, Germany). The measurements were done on a
5 wm ZORBAX Eclipse XDB-C18 column (4.6 mm x 150 mm).

The MCR-ALS algorithm was downloaded from the mul-
tivariate curve resolution web page: http://www.ub.edu/mcr/
welcome.html. A useful interface for data input and parameter
setting was employed for U-PLS/RBL implementation written by
Olivieri et al. [36]. Both algorithms were implemented in MATLAB
7.1 [37].

3.3. Procedure

3.3.1. Calibration standards and mixtures of dyes

Standard calibration solutions of the analytes (five standards
for each dye) were prepared in the concentration ranges between
0.05 and 3.00mg L~! for amaranth, 1.00 and 45.00 mg L~ for sunset
yellow and 0.50 and 8.00mgL-! for tartrazine. On the other hand,
15 ternary mixtures of the three analytes were prepared according
to a central composite design in order to evaluate the prediction
error of the chemometric algorithms (see Table 1).
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Prediction on real samples by application of the reference HPLC method and the proposed fast chromatography coupled to both MCR-ALS and U-PLS/RBL.

Sample Tartrazine (mgL~") Amaranth (mgL-!) Sunset yellow (mgL-1)

HPLC? MCRP RBL® HPLC? MCRP RBL® HPLC? MCRP RBL®
1 - - - 0.22 0.23 0.28 30.65 30.46 30.81
2 - - - 0.14 0.16 0.18 15.61 16.05 15.70
3 3.12 2.87 2.60 0.13 0.13 0.14 6.02 5.81 5.12
4 2.29 2.02 2.01 0.77 0.70 0.60 6.33 6.80 4.90
5 0.81 0.75 0.84 - - - 14.55 14.75 13.20
6 0.94 0.87 117 - - - 14.37 14.80 12.50
7 1.40 1.69 1.62 0.11 0.11 0.12 2.34 2.93 2.98
Mean recovery (%)! - 97.2(13.3) 103.0(16.7) - 101.9(8.5) 110.1(20.5) - 105.1(9.5) 95.5(16.3)
REP (%)® - 10.5 14.8 - 10.1 25.5 - 3.0 8.6

2 HPLC method taken as reference (see Ref. [21]).

b MCR-ALS: factors and regions depending on the sample.

¢ U-PLS/RBL: five latent variables for each analyte (regions: see the text).

d Between parenthesis the standard deviation.
i

. - 2
¢ Relative error of prediction, REP = 1% | 1 E (Cact — Cpred)

1/2

1
mean concentration.

3.3.2. Beverage samples

The analyzed samples were seven soft drinks that were pur-
chased from a local supermarket. Samples were homogenized,
filtered through 0.45 wm membranes and injected into the chro-
matographic system.

3.3.3. Reference method

The reference procedure was adapted for the one proposed by
Pereira Alves et al. [21]. Chromatograms were recorded at room
temperature, using a mixture of (methanol:ammonium acetate
0.08 mol L~1) (23:77) as mobile phase flowing at 1 mLmin~! with
ultraviolet detection at 454, 484 and 550 nm for tartrazine, sun-
set yellow and amaranth, respectively. In these conditions, the
total analysis time for each chromatogram was 13 min. The results
obtained for all the analyzed samples are depicted in Table 2.

3.3.4. Fast chromatographic method

With the aim of developing a faster methodology than that
proposed in the literature [21], the composition of the mobile
phase was totally inverted, i.e. (methanol:ammonium acetate
0.08 mol L~1) (77:23). All other chromatographic conditions were
maintained as in the reference methodology.

4. Results and discussion
4.1. General concerns

Fig. 1 shows the complete chromatographic separation of the
three dyes and other components in a beverage sample (sample
number 4 in Table 2) by using the method proposed by Pereira
Alves et al. [21]. As can be seen, the complete separation between
the analytes and interferents is achieved in 13 min. At least three
interferents appear at elution time ranges of 1.0-1.5min and
3.5-4.5 min.

A faster chromatographic run would be preferred because sol-
vents and time savings are related to a reduction of both the costs
per analysis and environmental impact. The analysis time can be
significantly reduced by changing the composition of the mobile
phase. This fact produces overlapping peaks, originating data which
can be conveniently processed by using multivariate algorithms in
order to achieve selectivity by mathematical means.

Fig. 2 shows the landscape obtained for a ternary mixture
(number 1 of Table 1) when the chromatographic separation is per-
formed in 1.85 min (each 0.41s) and recorded with a diode array

, where I is the number of samples, cacr and cpeq are the actual and predicted concentrations, and ¢ is the

detector in the region of 440-570nm (each 2nm), i.e. a matrix
of 100 x 66 points per sample. This figure also shows both the
time and spectra profiles of the three dyes. Time elution profiles
were recorded at the corresponding maximum wavelength for each
compound (i.e. T: 450 nm, SY: 490 nm and A: 530 nm). As can be
observed, a severe overlapping exists for the three compounds
making impossible the use of univariate calibration. Interestingly,
the elution profile corresponding to sunset yellow is extremely mis-
shapen. This situation can be understood by the fact that besides
the retention factors for all the dyes are zero; SY is also present in
the samples in the highest concentration levels.

Another item that should be considered is the presence of unex-
pected components in real beverage samples as was commented
above when analyzing Fig. 1, making necessary to exploit the sec-
ond order advantage [4]. Fig. 3 shows the elution profiles recorded
at A=440nm, corresponding to a ternary mixture (number 1 in
Table 1) and to a real sample (number 5 in Table 2). As can be
appreciated in this figure, unexpected compounds appear, espe-
cially between 1.4 and 1.9 min.

Onthe other hand, a visual inspection of Fig. 4, in which the chro-
matograms corresponding to the 15 ternary mixtures (see Table 1)
recorded at A=440nm are showed, could lead to the conclusion

sY
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©
£
[=]
3
< 5-

A J
0 T ; r . T .
0 2 4 6 8 10 12

Time (min)

Fig. 1. Complete chromatographic separation (13 min) of the three dyes and other
components in a beverage sample (sample number 4 in Table 2) by using the method
proposed by Pereira Alves et al. (see Ref. [21]).
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Fig. 2. Landscape obtained for a ternary mixture (number 1 of Table 1) when the chromatographic separation is performed in 1.85 min and recorded with a diode array
detector in the region of 440-570 nm. Time and spectral profiles of the three dyes (T: blue line, A: green line and SY: red line). Time elution profiles were recorded at the
corresponding wavelength maximum for each compound (i.e. T: 450 nm, SY: 490 nm and A: 530 nm). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of the article.)

that a remarkable time shift effect is present. This fact is evident whose peaks are strongly overlapped. This fact can be better appre-
especially in the range of 1.5-1.6 min. On the contrary, differences ciated in Fig. 5. This figure shows the chromatograms (recorded at
in the region of 1.3-1.4 min cannot be only be ascribed to shift time A =500nm) corresponding to standard solutions of T (8.00mgL~1),
effect, but also to changes in the relative concentration of T and A, A(1.53mgL-')and a mixture of both dyes at those concentrations.

Thus, it would result impossible to align peaks without introduc-

ing error. Consequently, the obvious challenge in this work was the
120 —— . . . : -
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Fig. 3. Chromatograms recorded at X =440 nm, corresponding to a ternary mixture
in blue solid line (number 1 in Table 1) and to a real sample in dashed red line

(number 5 in Table 2). (For interpretation of the references to colour in this figure Fig. 4. Chromatograms corresponding to the 15 ternary mixtures (see Table 1)
legend, the reader is referred to the web version of the article.) recorded at A =440 nm.

Time (min)
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Absorbance (mU)

. n . .
1.28 1.3 1.32 1.34 1.36 1.38 14
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Fig. 5. Chromatograms (recorded at A =500 nm) corresponding to standard solu-
tions of T (8.00mgL~") in blue solid line, A (1.53mgL"!) in red dashed line and a
mixture of both dyes at those concentrations in green circle line. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of the article.)

quantitation of the three dyes in beverages, mainly without signal
pre-treatments.

4.2. Application of second order algorithms

4.2.1. Artificial ternary mixtures

The MCR-ALS algorithm was applied to the simultaneous analy-
sis of the 15 ternary samples (Table 1) by using the pure standards
described in Section 3. Column-wise augmented data matrices (D)
were generated arranging D; matrices corresponding to spectra
recorded during the chromatographic process for standards and
samples.

In the present work, nonnegativity in spectral and concentration
profiles for all analytes and unimodality in concentration profiles
only for tartrazine and amaranth were applied. The most important
issue is that the pure spectra of the compounds should be the same
in all experiments, but the profiles in the different C sub-matrices
need not to share a common shape, as when the trilinearity is lost
(the present case).

Before starting resolution, the determination of the number of
contributions to each D data matrix was carried out by applying sin-
gular value decomposition. After that, the ST-type initial estimates
were built by the selection of purest spectra based on SIMPLISMA
[38]. In some cases, resolution results obtained using these initial
estimations were unsatisfactory. Despite that fact, the optimized
spectral profiles gathered by MCR were stored and used as ini-
tial estimations for subsequent MCR analysis until successful MCR
quality parameters were reached. This strategy proved to be very
effective in cases in which SIMPLISMA was not able to provide
suitable initial information. Results for the validation samples are
presented in Table 1, and as can be appreciated reasonable figures
of merit are obtained.

On the other hand, the number of calibration latent variables
when applying U-PLS/RBL for each analyte was set at 1 because at
the beginning pure standards were used for calibration purposes.
The presence of unexpected components (in this case the other two
dyes) had to be considered to decrease the prediction residuals for
the test samples until they stabilized at a value compatible with the
instrumental noise. The prediction residuals were monitored as a
function of trial values of Nypx for all the samples. When Nypx was
equal to 3, the residual value was comparable with the instrumen-

0.2
0.1 1 ~~ U-PLS/RBL
N\ [ \\
|
0.0 i \
\ \
o 0.1 \ \
g; \\ \
& 02 \
13 0.2 \\ \
ot MCR-ALS \ \
N\
-0.4 N\ ~ /
S~
05 ‘ - . T
0.98 1.00 1.02 1.04 1.06 1.08 1.10
Slope

Fig. 6. Elliptical regions for the global data set for predictions using U-PLS/RBL and
MCR-ALS algorithms on the 15 validation mixtures of Table 1.

tal noise (ca. 0.06 absorbance units in this system). Thus, Nypx =3
was the corresponding correct choice. Evidently, this system would
only need two unexpected components due to the fact that the mix-
tures are composed by three components. But, a third component is
needed probably due to the lack of trilinearity. Results were unac-
ceptable, with relative error of prediction of ca. 40% for the three
dyes.

Consequently, a new strategy was followed for U-PLS/RBL mod-
elling. Ternary samples were used instead of pure standards. In
a recently published work, Cafiada-Cafiada et al. obtained good
results applying a RBL based method (N-PLS/RBL) to LC fluores-
cence data by using a designed mixture of the two analytes for
calibration [19]. In the present work, 15 calibration models were
performed with 14 mixture samples described in Table 1, and pre-
dicting the rest of the samples. This procedure was repeated till the
prediction value for the whole test samples was obtained. In this
case, the number of latent variables estimated by the leave-one-
sample out cross-validation method was equal to 3, and the number
of unexpected components was zero, i.e. no second order advan-
tage was required. As can be appreciated in Table 1, results present
comparable figures of merit with those obtained by MCR-ALS.

To assess the accuracy of the models, the obtained values by
applying both algorithms were compared with the nominal ones
corresponding to the three analytes. For this purpose, the joint sta-
tistical test for the slope and the intercept of the linear regression
between the measured concentration values versus those predicted
was applied. The multivariate model is regarded as being accurate if
the theoretical values of intercept and slope (zero and unity, respec-
tively) are included within the ellipse, which describes the mutual
confidence region. As has been previously suggested, when mul-
tivariate analysis is performed, it is highly convenient to include
experimental data corresponding to all analytes, in order to better
estimate the variance corresponding to the regression discussed
above. This avoids the oversizing of the joint confidence region due
to large experimental random errors and thus the probability of not
detecting the presence of bias [39]. Fig. 6 shows these regions for
predictions of the global data sets using U-PLS/RBL and MCR-ALS
algorithms. As can be seen, both ellipses contain the theoretically
expected value (0) for the intercept (at a confidence level of 95%).
On the other hand, they do not contain the theoretically expected
value (1) for the slope. This fact is indicative of the presence of a pro-
portional error. In addition, the smaller size and the closeness to the
expected value (1) of the ellipse corresponding to MCR-ALS allows
one to conclude about both a higher precision and a lower propor-
tional error of this algorithm when is compared with U-PLS/RBL
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Fig. 7. Chromatograms corresponding to the eight real samples recorded at
A=440nm.

[40]. It should be taken into account that the MCR-ALS models were
built only with pure standards, while for U-PLS/RBL it was neces-
sary to build the models with ternary mixtures. These facts show
once again a higher predictive ability of MCR-ALS in those cases in
which data are not trilinear.

4.2.2. Real samples

The complexity of the real samples can be appreciated in Fig. 7.
These samples were analyzed as was indicated for the 15 validation
samples and the obtained results are displayed in Table 2. As can
be seen, results rendered by U-PLS/RBL (the 15 ternary samples
were used for building the calibration models) are very poor when
the predictions are compared with results obtained by the HPLC
method proposed in the literature, which guarantee the complete
separation of the analytes and interferents (see Fig. 1). This fact
suggests that these data cannot be correctly modelled likely due to
the strong lack of trilinearity of these data. Interestingly, in most
of the samples two or three interferences should be considered to
reach residuals values comparable with the instrumental noise.

On the other hand, Table 2 shows that results proportioned
by MCR-ALS modelling can be considered acceptable when they
are matched with those obtained by the reference method. As an
example of how MCR-ALS was implemented, Fig. 8 A and B shows
both the time and the spectral profiles extracted by the algorithm
when analyzing sample 7 (Table 2), which contains the three dyes
plus an unexpected interference. As can be appreciated, this com-
pound presents a spectrum similar to the one corresponding to
tartrazine, while its time profile coelutes with sunset yellow. The
excellent statistical parameters (percent of lack of fit=3.31 and
percent of variance explained, r2=99.8904) and the reasonable
figures of merit obtained when comparing MCR-ALS results with
those obtained by the HPLC reference method, are indicative of the
acceptable performance of this algorithm when processing such a
complex instrumental data.

Finally, a consideration about solvent and cost saving should be
considered. Firstly, the analysis time can be reduced up to 14.2%
of the necessary time to perform the complete separation. On the
other hand, a complete separation consumes 10.01 mL of methanol
and 2.99 mL of0.08 mol L-! ammonium acetate, while the proposed
fast chromatography method requires only 0.46 mL of methanol
and 1.54mL of 0.08 mol L-! ammonium acetate. The facts support
the use of this kind of methodology, even more if green chemistry
is seriously taken into account.
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Fig. 8. (A) Time profiles extracted by the MCR-ALS algorithm when analyzing sam-
ple 7 (Table 2), which contains the three dyes (T: green circle line, A: red square
line and SY: blue solid line) plus an unexpected interference (triangle cyan line). (B)
Spectral profiles. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of the article.)

5. Conclusions

Reduction in the analysis time for a chromatographic method
should be seriously taken into account considering that solvent
saving is an issue with a strong impact in environment.

LC-DAD data with lack of trilinearity which cannot be conve-
niently pre-processed can hardly be modelled by using U-PLS/RBL
algorithm. On the contrary, MCR-ALS became an excellent tool for
modelling this kind of data allowing to reach acceptable figures of
merit which are indicative of a good performance of the proposed
methodology.
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