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a b s t r a c t

A fast chromatographic methodology is presented for the analysis of three synthetic dyes in non-alcoholic
beverages: amaranth (E123), sunset yellow FCF (E110) and tartrazine (E102). Seven soft drinks (purchased
from a local supermarket) were homogenized, filtered and injected into the chromatographic system.
Second order data were obtained by a rapid LC separation and DAD detection. A comparative study of
the performance of two second order algorithms (MCR-ALS and U-PLS/RBL) applied to model the data,
is presented. Interestingly, the data present time shift between different chromatograms and cannot be
conveniently corrected to determine the above-mentioned dyes in beverage samples. This fact originates
the lack of trilinearity that cannot be conveniently pre-processed and can hardly be modelled by using
U-PLS/RBL algorithm. On the contrary, MCR-ALS has shown to be an excellent tool for modelling this
PLC-DAD
ultivariate curve resolution alternating

east squares
esidual bilinearization

kind of data allowing to reach acceptable figures of merit. Recovery values ranged between 97% and
105% when analyzing artificial and real samples were indicative of the good performance of the method.
In contrast with the complete separation, which consumes 10 mL of methanol and 3 mL of 0.08 mol L−1

ammonium acetate, the proposed fast chromatography method requires only 0.46 mL of methanol and
1.54 mL of 0.08 mol L−1 ammonium acetate. Consequently, analysis time could be reduced up to 14.2% of
the necessary time to perform the complete separation allowing saving both solvents and time, which

of bo
are related to a reduction

. Introduction

The use of second order multivariate algorithms has been shown
o play a critical role in several analytical fields, as can be gathered
rom a literature survey in relevant analytical, chemometrics and
pplied journals [1,2]. One of the ways to obtain second order data is
y coupling two “hyphenated” first order instruments, as in tandem
igh performance liquid chromatography-diode array detector
HPLC-DAD), gas chromatography–mass spectrometry (GC–MS),
C–GC, MS–MS, etc. measurements. Specifically, an important

umber of reports have been presented focusing on the resolu-
ion of really complex samples by using liquid chromatography
3] and exploiting the second order advantage [4]. In this field,
mportant issues such as reduction in the time of analysis and con-

∗ Corresponding authors. Tel.: +54 342 4575205.
E-mail addresses: usband@criba.edu.ar (B.S. Fernández Band),

goico@fbcb.unl.edu.ar (H.C. Goicoechea).

021-9673/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2009.08.077
th the costs per analysis and environmental impact.
© 2009 Elsevier B.V. All rights reserved.

sequently costs and amount of contaminant solvents should be
considered.

A large number of algorithms can be cited among the approaches
involving the second order advantage: generalized rank anni-
hilation (GRAM) [5], direct trilinear decomposition (DTLD) [6],
self-weighted alternating trilinear decomposition (SWATLD) [7],
alternating penalty trilinear decomposition (APTLD) [8], parallel
factor analysis (PARAFAC) [9], multivariate curve resolution alter-
nating least squares (MCR-ALS) [10–12], and the most recently
implemented bilinear least squares (BLLS) [13], unfolded par-
tial least squares/residual bilinearization (U-PLS/RBL) [14,15] and
artificial neural networks followed by residual bilinearization
(ANN/RBL) [16].

In chromatography, the retention factor (k) is the degree

of retention of the sample component in the column. In most
chromatographic analysis, analytes elute with retention factors
between 1 and 20 allowing their complete separation. A peak with
k equal to 0 is a component that does not interact with the sta-
tionary phase and elutes in the void volume [17]. If analytes are in

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:usband@criba.edu.ar
mailto:hgoico@fbcb.unl.edu.ar
dx.doi.org/10.1016/j.chroma.2009.08.077
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heir ionized form, k will be significantly lower than the one that
ould be obtained if they were in their neutral form [17]. A value

f k lower than 1 does not result in a differential migration of the
omponent and originates dissimilarities in both time of elution
nd peak shapes, leading to data without the property of trilin-
arity, and making necessary the use MCR-ALS (which can solve
his type of problems by resorting to the mathematical resource of

atrix augmentation) or alternatives such as PARAFAC2, a variant
f PARAFAC allowing for distinct time profiles in each experimental
ample [18]. However, when data are conveniently pre-treated in
rder to alleviate the above-mentioned problems, good results can
e obtained by using PARAFAC or RBL based algorithms [19,20].

Synthetic dyes are usually added to foodstuffs and soft drinks
ot only to improve appearance, colour and texture but also to
aintain the natural colour during process or storage. Synthetic

yes show several advantages compared with natural dyes such
s high stability to light, oxygen and pH, colour uniformity, low
icrobiological contamination and relatively lower production

osts [21]. However, many of them may exhibit adverse health
ffects (allergy, respiratory problems, thyroid tumours, chromo-
omal damage, hyperactivity, abdominal pain, etc.) [22].

On the other hand, in some cases the use of food dyes is also
ndicative of foodstuff adulteration such as in their addition to fruit
uices. Thus, the use of synthetic dyes is strictly controlled by laws,
egulations and acceptable daily intake (ADI) values [23]. These
egulations frame the role of the analytical chemist who has to
est for the levels of dyes added to food. Amaranth (E123), sunset
ellow FCF (E110) and tartrazine (E102) are among the synthetic
yes mainly used in non-alcoholic beverages and the ADI values
re between 0 and 0.5 mg kg−1 for amaranth (A), 0–2.5 mg kg−1 for
unset yellow (SY) and 0–7.5 mg kg−1 for tartrazine (T) [23].

Some problems found in artificial colour determination are
elated to the variety of dyes mixtures and the potential interfer-
nces present in the commercial samples. Therefore, the analyses
ave traditionally been focused on separation methods. The ana-

ytical methods frequently used for the determination of amaranth,
unset yellow and tartrazine include thin layer chromatography
TLC) [24,25], capillary electrophoresis (CE) [26,27], and mainly
igh performance liquid chromatography (HPLC) [28,29]. How-
ver, some disadvantages arise from these methods, such as usage
f toxic solvents, spending of time, and the need of sample pre-
reatments. Chemometric modelling was used to overcome the lack
f specificity due to spectra overlapping for the direct UV–vis spec-
rophotometric determination, representing a rapid, simple, and
heap method for the determination of these colourants [30,31].
ery recently, a spectrophotometric method employing the mul-

ivariate curve resolution alternating least squares algorithm was
resented by our group [32].

In this work we present a comparative study of the performance
f two algorithms: MCR-ALS and U-PLS/RBL on data obtained by
rapid LC separation and DAD detection, which present time

hift between different chromatograms and cannot be conveniently
orrected, to determine the above-mentioned dyes in beverage
amples.

. Theory

.1. MCR-ALS

A data set can be considered trilinear when the resolved profiles

f the same component in different data matrices for a particular
irection (C or ST) have the same shape [33]. MCR-ALS is capable of
ealing with data sets deviating from trilinearity. Instead of form-

ng a three-dimensional data array, the latter is unfolded along the
ode which is suspected of breaking the trilinear structure, i.e.
. A 1216 (2009) 7063–7070

if a matrix-to-matrix variation of profiles occurs along the column
direction, a column-wise augmented matrix is created. The bilinear
decomposition of the augmented matrix D is performed according
to the expression:

D = C × ST + E (1)

where the rows of D contain the absorption spectra measured as a
function of time, the columns of C contain the time profiles of the
compounds involved in the process, the columns of S their related
spectra, and E is a matrix of residuals not fitted by the model.
Appropriate dimensions of D, C, S and E are thus K × (1 + I) × J,
K × (1 + I) × F, J × F and K × (1 + I) × J, respectively (I = number of
training samples, J = number of digitized wavelengths, F = number
of factors extracted and K = number of elution times). Decompo-
sition of D is achieved by iterative least squares minimization of
||E|| under suitable constraining conditions, i.e. nonnegativity in
spectral profiles, unimodality and nonnegativity in concentration
profiles.

In the present context, it is necessary to point out that MCR-ALS
requires initialization with system parameters as close as possible
to the final results. In the column-wise augmentation mode, the
species spectra are required, as obtained from either pure analyte
standards or from the analysis of the purest spectra.

2.2. U-PLS/RBL

The U-PLS algorithm has a calibration step, which employs con-
centration information (without including data for the unknown
sample). First, the I calibration data matrices Xc,i (size J × K, where
J and K are the number of channels in each dimension) are vector-
ized (unfolded) and a usual U-PLS model is calibrated with these
data and the vector of calibration concentrations y (Nc × 1, where
Nc is the number of calibration samples). This provides a set of
loadings P and weight loadings W (both of size JK × A, where A is
the number of latent factors), as well as regression coefficients v
(size A × 1). The parameter A can be selected by techniques such as
leave-one-out cross-validation [34] or by the randomization test
proposed by Farber and co-workers [35]. If no unexpected interfer-
ences occur in the test sample, v can be employed to estimate the
analyte concentration:

yu = tT
uv (2)

where tu is the test sample score, obtained by projection of the
unfolded data for the test sample Xu onto the space of the A latent
factors:

tu = (WTP)
−1

WTvec(Xu) (3)

When unexpected constituents occur in Xu, then the sample
scores given by Eq. (3) are not suitable for analyte prediction using
Eq. (2). In this case, the residuals of the U-PLS prediction step, rep-
resented by sp in Eq. (4), will be abnormally large in comparison
with the typical instrumental noise, which can be easily assessed
by replicate measurements:

sp = ||ep||/(JK − A)1/2

= ||vec(Xu) − P(WTP)
−1

WTvec(Xu)||/(JK − A)1/2

= ||vec(Xu) − Ptu||/(JK − A)1/2 (4)

where ||·|| indicates the Euclidean norm.

If the test sample contains unexpected components, the sit-

uation can be handled by a separate procedure called residual
bilinearization, which is based on singular value decomposition
(SVD) modelling of the interferent effects [14,15]. RBL aims at min-
imizing the norm of the residual vector eu, computed while fitting
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Table 1
Composition and prediction of the ternary mixtures used for calibration and validation.

Sample Tartrazine (mg L−1) Amaranth (mg L−1) Sunset yellow (mg L−1)

Nom. MCRa RBLb Nom. MCRa RBLb Nom. MCRa RBLb

1 5.89 6.13 5.85 2.20 2.20 2.05 12.09 11.95 12.31
2 2.61 2.26 2.80 1.05 1.15 1.07 32.91 33.80 34.43
3 5.89 5.81 5.44 1.05 1.11 1.05 12.09 12.50 12.89
4 2.61 2.56 2.48 2.20 2.24 2.25 32.91 33.87 34.31
5 4.25 4.09 4.53 0.65 0.74 0.67 22.50 22.80 22.75
6 2.61 2.72 2.38 2.20 2.20 2.14 12.09 12.00 11.72
7 1.50 1.39 1.58 1.63 1.67 1.56 22.50 23.08 23.94
8 4.25 4.46 4.43 1.63 1.64 1.62 5.00 5.58 5.84
9 4.25 4.47 4.32 2.60 2.70 2.78 22.50 23.37 23.75
10 5.89 5.92 6.26 2.20 2.22 2.17 32.91 34.09 34.45
11 5.89 5.64 5.96 1.05 1.16 1.03 32.91 33.87 34.38
12 2.61 2.60 2.66 1.05 1.12 1.13 12.09 12.27 13.78
13 7.00 7.11 6.96 1.63 1.68 1.66 22.50 23.17 24.43
14 4.25 4.21 4.20 1.63 1.69 1.66 22.50 22.66 24.36
15 4.25 4.00 3.98 1.63 1.69 1.61 40.00 41.09 44.29
Mean recovery (%)c – 98.8(5.1) 100.3(5.3) – 104.4(4.1) 100.4(3.9) – 102.7(2.9) 106.3(5.0)
REP (%)d – 4.1 4.9 – 3.9 4.4 – 3.1 7.5

a MCR-ALS: three factors (regions: see the text).
b U-PLS/RBL: five latent variables for each analyte (regions: see the text).
c Between parenthesis the standard deviation.[
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d Relative error of prediction, REP = 100
c̄

1
I

∑
1

(cact − cpred)2 , where I is the

ean concentration.

he sample data to the sum of the relevant contributions to the
ample signal. For a single unexpected component:

ec(Xu) = Ptu + vec[gunxbunx(cunx)T] + eu (5)

here bunx and cunx are the left and right eigenvectors of Ep and
unx is a scaling factor:

gunx, bunx, cunx) = SVD1(Ep) (6)

here Ep is the J × K matrix obtained after reshaping the JK × 1
p vector of Eq. (4), and SVD1 indicates taking the first principal
omponent.

During this RBL procedure, P is kept constant at the calibration
alues and tu is varied until ||eu|| is minimized. The minimization
an be carried out using either a Gauss–Newton (GN) procedure or
n alternating algorithm, in both cases starting with tu from Eq. (2).
nce ||eu|| is minimized in Eq. (5), the analyte concentrations are
rovided by Eq. (2), by introducing the final tu vector found by the
BL procedure.

The number of interferents Nunx can be assessed by comparing
he final residuals su with the instrumental noise level:

u = ||eu||/[JK − (Nc + Nunx)]1/2 (7)

here eu is from Eq. (5). Typically, a plot of su computed for trial
umber of components will show decreasing values, starting at sp

hen the number of components is equal to A (the number of latent
ariables used to described the calibration data), until it stabilizes at

value compatible with the experimental noise, allowing to locate

he correct number of components. It should be noticed that for
unx > 1, the profiles provided by the SVD analysis of Ep unfortu-
ately no longer resemble the true interferent profiles, due to the

act that the principal components are restricted to be orthonormal.
It should be taken into account that adding more latent vari-

bles than the number of chemical compounds when applying RBL
ethods could somehow compensate for the lack of trilinearity

19].
er of samples, cact and cpred are the actual and predicted concentrations, and c̄ is the

3. Experimental

3.1. Reagents and solutions

All solutions were prepared daily. Analytical reagent-grade
chemicals and milli-Q water were used. Amaranth, sunset yellow
FCF and tartrazine 0.10 mol L−1 stock solutions (all from Aldrich)
were prepared in milli-Q water. Standard solutions and mixtures of
dyes were freshly prepared by appropriated dilution of stock solu-
tions with milli-Q water. Methanol and ammonium acetate were
obtained from Sintorgan (Buenos Aires, Argentina) and Cicarelli
(San Lorenzo, Argentina), respectively.

3.2. Apparatus and software

Both chromatographic procedures were carried out using five
modules (degasser, pump, injection valve, autosampler and DAD
detector) of an Agilent 1100 Series instrument (Agilent Technolo-
gies, Waldbronn, Germany). The measurements were done on a
5 �m ZORBAX Eclipse XDB-C18 column (4.6 mm × 150 mm).

The MCR-ALS algorithm was downloaded from the mul-
tivariate curve resolution web page: http://www.ub.edu/mcr/
welcome.html. A useful interface for data input and parameter
setting was employed for U-PLS/RBL implementation written by
Olivieri et al. [36]. Both algorithms were implemented in MATLAB
7.1 [37].

3.3. Procedure

3.3.1. Calibration standards and mixtures of dyes

Standard calibration solutions of the analytes (five standards

for each dye) were prepared in the concentration ranges between
0.05 and 3.00 mg L−1 for amaranth, 1.00 and 45.00 mg L−1 for sunset
yellow and 0.50 and 8.00 mg L−1 for tartrazine. On the other hand,
15 ternary mixtures of the three analytes were prepared according
to a central composite design in order to evaluate the prediction
error of the chemometric algorithms (see Table 1).

http://www.ub.edu/mcr/welcome.html
http://www.ub.edu/mcr/welcome.html
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Table 2
Prediction on real samples by application of the reference HPLC method and the proposed fast chromatography coupled to both MCR-ALS and U-PLS/RBL.

Sample Tartrazine (mg L−1) Amaranth (mg L−1) Sunset yellow (mg L−1)

HPLCa MCRb RBLc HPLCa MCRb RBLc HPLCa MCRb RBLc

1 – – – 0.22 0.23 0.28 30.65 30.46 30.81
2 – – – 0.14 0.16 0.18 15.61 16.05 15.70
3 3.12 2.87 2.60 0.13 0.13 0.14 6.02 5.81 5.12
4 2.29 2.02 2.01 0.77 0.70 0.60 6.33 6.80 4.90
5 0.81 0.75 0.84 – – – 14.55 14.75 13.20
6 0.94 0.87 1.17 – – – 14.37 14.80 12.50
7 1.40 1.69 1.62 0.11 0.11 0.12 2.34 2.93 2.98
Mean recovery (%)d – 97.2(13.3) 103.0(16.7) – 101.9(8.5) 110.1(20.5) – 105.1(9.5) 95.5(16.3)
REP (%)e – 10.5 14.8 – 10.1 25.5 – 3.0 8.6

a HPLC method taken as reference (see Ref. [21]).
b MCR-ALS: factors and regions depending on the sample.
c U-PLS/RBL: five latent variables for each analyte (regions: see the text).
d Between parenthesis the standard deviation.[
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cially between 1.4 and 1.9 min.
On the other hand, a visual inspection of Fig. 4, in which the chro-

matograms corresponding to the 15 ternary mixtures (see Table 1)
recorded at � = 440 nm are showed, could lead to the conclusion
e Relative error of prediction, REP = 100
c̄

1
I

∑
1

(cact − cpred)2 , where I is the

ean concentration.

.3.2. Beverage samples
The analyzed samples were seven soft drinks that were pur-

hased from a local supermarket. Samples were homogenized,
ltered through 0.45 �m membranes and injected into the chro-
atographic system.

.3.3. Reference method
The reference procedure was adapted for the one proposed by

ereira Alves et al. [21]. Chromatograms were recorded at room
emperature, using a mixture of (methanol:ammonium acetate
.08 mol L−1) (23:77) as mobile phase flowing at 1 mL min−1 with
ltraviolet detection at 454, 484 and 550 nm for tartrazine, sun-
et yellow and amaranth, respectively. In these conditions, the
otal analysis time for each chromatogram was 13 min. The results
btained for all the analyzed samples are depicted in Table 2.

.3.4. Fast chromatographic method
With the aim of developing a faster methodology than that

roposed in the literature [21], the composition of the mobile
hase was totally inverted, i.e. (methanol:ammonium acetate
.08 mol L−1) (77:23). All other chromatographic conditions were
aintained as in the reference methodology.

. Results and discussion

.1. General concerns

Fig. 1 shows the complete chromatographic separation of the
hree dyes and other components in a beverage sample (sample
umber 4 in Table 2) by using the method proposed by Pereira
lves et al. [21]. As can be seen, the complete separation between

he analytes and interferents is achieved in 13 min. At least three
nterferents appear at elution time ranges of 1.0–1.5 min and
.5–4.5 min.

A faster chromatographic run would be preferred because sol-
ents and time savings are related to a reduction of both the costs
er analysis and environmental impact. The analysis time can be
ignificantly reduced by changing the composition of the mobile
hase. This fact produces overlapping peaks, originating data which

an be conveniently processed by using multivariate algorithms in
rder to achieve selectivity by mathematical means.

Fig. 2 shows the landscape obtained for a ternary mixture
number 1 of Table 1) when the chromatographic separation is per-
ormed in 1.85 min (each 0.41 s) and recorded with a diode array
er of samples, cact and cpred are the actual and predicted concentrations, and c̄ is the

detector in the region of 440–570 nm (each 2 nm), i.e. a matrix
of 100 × 66 points per sample. This figure also shows both the
time and spectra profiles of the three dyes. Time elution profiles
were recorded at the corresponding maximum wavelength for each
compound (i.e. T: 450 nm, SY: 490 nm and A: 530 nm). As can be
observed, a severe overlapping exists for the three compounds
making impossible the use of univariate calibration. Interestingly,
the elution profile corresponding to sunset yellow is extremely mis-
shapen. This situation can be understood by the fact that besides
the retention factors for all the dyes are zero; SY is also present in
the samples in the highest concentration levels.

Another item that should be considered is the presence of unex-
pected components in real beverage samples as was commented
above when analyzing Fig. 1, making necessary to exploit the sec-
ond order advantage [4]. Fig. 3 shows the elution profiles recorded
at � = 440 nm, corresponding to a ternary mixture (number 1 in
Table 1) and to a real sample (number 5 in Table 2). As can be
appreciated in this figure, unexpected compounds appear, espe-
Fig. 1. Complete chromatographic separation (13 min) of the three dyes and other
components in a beverage sample (sample number 4 in Table 2) by using the method
proposed by Pereira Alves et al. (see Ref. [21]).



M.J. Culzoni et al. / J. Chromatogr. A 1216 (2009) 7063–7070 7067

F chrom
d (T: bl
c and
r

t
e
i
e

F
i
(
l

ig. 2. Landscape obtained for a ternary mixture (number 1 of Table 1) when the
etector in the region of 440–570 nm. Time and spectral profiles of the three dyes
orresponding wavelength maximum for each compound (i.e. T: 450 nm, SY: 490 nm
eader is referred to the web version of the article.)
hat a remarkable time shift effect is present. This fact is evident
specially in the range of 1.5–1.6 min. On the contrary, differences
n the region of 1.3–1.4 min cannot be only be ascribed to shift time
ffect, but also to changes in the relative concentration of T and A,

ig. 3. Chromatograms recorded at � = 440 nm, corresponding to a ternary mixture
n blue solid line (number 1 in Table 1) and to a real sample in dashed red line
number 5 in Table 2). (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of the article.)
atographic separation is performed in 1.85 min and recorded with a diode array
ue line, A: green line and SY: red line). Time elution profiles were recorded at the
A: 530 nm). (For interpretation of the references to colour in this figure legend, the

whose peaks are strongly overlapped. This fact can be better appre-
ciated in Fig. 5. This figure shows the chromatograms (recorded at

� = 500 nm) corresponding to standard solutions of T (8.00 mg L−1),
A (1.53 mg L−1) and a mixture of both dyes at those concentrations.
Thus, it would result impossible to align peaks without introduc-
ing error. Consequently, the obvious challenge in this work was the

Fig. 4. Chromatograms corresponding to the 15 ternary mixtures (see Table 1)
recorded at � = 440 nm.
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Fig. 5. Chromatograms (recorded at � = 500 nm) corresponding to standard solu-
t
m
o
v

q
p

4

4

s
d
w
r
s

p
o
i
i
n
(

c
g
w
[
e
s
t
q
e
s
p
o

w
t
T
d
t
i
f
e

ions of T (8.00 mg L−1) in blue solid line, A (1.53 mg L−1) in red dashed line and a
ixture of both dyes at those concentrations in green circle line. (For interpretation

f the references to colour in this figure legend, the reader is referred to the web
ersion of the article.)

uantitation of the three dyes in beverages, mainly without signal
re-treatments.

.2. Application of second order algorithms

.2.1. Artificial ternary mixtures
The MCR-ALS algorithm was applied to the simultaneous analy-

is of the 15 ternary samples (Table 1) by using the pure standards
escribed in Section 3. Column-wise augmented data matrices (D)
ere generated arranging Di matrices corresponding to spectra

ecorded during the chromatographic process for standards and
amples.

In the present work, nonnegativity in spectral and concentration
rofiles for all analytes and unimodality in concentration profiles
nly for tartrazine and amaranth were applied. The most important
ssue is that the pure spectra of the compounds should be the same
n all experiments, but the profiles in the different C sub-matrices
eed not to share a common shape, as when the trilinearity is lost
the present case).

Before starting resolution, the determination of the number of
ontributions to each D data matrix was carried out by applying sin-
ular value decomposition. After that, the ST-type initial estimates
ere built by the selection of purest spectra based on SIMPLISMA

38]. In some cases, resolution results obtained using these initial
stimations were unsatisfactory. Despite that fact, the optimized
pectral profiles gathered by MCR were stored and used as ini-
ial estimations for subsequent MCR analysis until successful MCR
uality parameters were reached. This strategy proved to be very
ffective in cases in which SIMPLISMA was not able to provide
uitable initial information. Results for the validation samples are
resented in Table 1, and as can be appreciated reasonable figures
f merit are obtained.

On the other hand, the number of calibration latent variables
hen applying U-PLS/RBL for each analyte was set at 1 because at

he beginning pure standards were used for calibration purposes.
he presence of unexpected components (in this case the other two

yes) had to be considered to decrease the prediction residuals for
he test samples until they stabilized at a value compatible with the
nstrumental noise. The prediction residuals were monitored as a
unction of trial values of Nunx for all the samples. When Nunx was
qual to 3, the residual value was comparable with the instrumen-
Fig. 6. Elliptical regions for the global data set for predictions using U-PLS/RBL and
MCR-ALS algorithms on the 15 validation mixtures of Table 1.

tal noise (ca. 0.06 absorbance units in this system). Thus, Nunx = 3
was the corresponding correct choice. Evidently, this system would
only need two unexpected components due to the fact that the mix-
tures are composed by three components. But, a third component is
needed probably due to the lack of trilinearity. Results were unac-
ceptable, with relative error of prediction of ca. 40% for the three
dyes.

Consequently, a new strategy was followed for U-PLS/RBL mod-
elling. Ternary samples were used instead of pure standards. In
a recently published work, Cañada-Cañada et al. obtained good
results applying a RBL based method (N-PLS/RBL) to LC fluores-
cence data by using a designed mixture of the two analytes for
calibration [19]. In the present work, 15 calibration models were
performed with 14 mixture samples described in Table 1, and pre-
dicting the rest of the samples. This procedure was repeated till the
prediction value for the whole test samples was obtained. In this
case, the number of latent variables estimated by the leave-one-
sample out cross-validation method was equal to 3, and the number
of unexpected components was zero, i.e. no second order advan-
tage was required. As can be appreciated in Table 1, results present
comparable figures of merit with those obtained by MCR-ALS.

To assess the accuracy of the models, the obtained values by
applying both algorithms were compared with the nominal ones
corresponding to the three analytes. For this purpose, the joint sta-
tistical test for the slope and the intercept of the linear regression
between the measured concentration values versus those predicted
was applied. The multivariate model is regarded as being accurate if
the theoretical values of intercept and slope (zero and unity, respec-
tively) are included within the ellipse, which describes the mutual
confidence region. As has been previously suggested, when mul-
tivariate analysis is performed, it is highly convenient to include
experimental data corresponding to all analytes, in order to better
estimate the variance corresponding to the regression discussed
above. This avoids the oversizing of the joint confidence region due
to large experimental random errors and thus the probability of not
detecting the presence of bias [39]. Fig. 6 shows these regions for
predictions of the global data sets using U-PLS/RBL and MCR-ALS
algorithms. As can be seen, both ellipses contain the theoretically
expected value (0) for the intercept (at a confidence level of 95%).
On the other hand, they do not contain the theoretically expected
value (1) for the slope. This fact is indicative of the presence of a pro-

portional error. In addition, the smaller size and the closeness to the
expected value (1) of the ellipse corresponding to MCR-ALS allows
one to conclude about both a higher precision and a lower propor-
tional error of this algorithm when is compared with U-PLS/RBL
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Fig. 8. (A) Time profiles extracted by the MCR-ALS algorithm when analyzing sam-
ple 7 (Table 2), which contains the three dyes (T: green circle line, A: red square
ig. 7. Chromatograms corresponding to the eight real samples recorded at
= 440 nm.

40]. It should be taken into account that the MCR-ALS models were
uilt only with pure standards, while for U-PLS/RBL it was neces-
ary to build the models with ternary mixtures. These facts show
nce again a higher predictive ability of MCR-ALS in those cases in
hich data are not trilinear.

.2.2. Real samples
The complexity of the real samples can be appreciated in Fig. 7.

hese samples were analyzed as was indicated for the 15 validation
amples and the obtained results are displayed in Table 2. As can
e seen, results rendered by U-PLS/RBL (the 15 ternary samples
ere used for building the calibration models) are very poor when

he predictions are compared with results obtained by the HPLC
ethod proposed in the literature, which guarantee the complete

eparation of the analytes and interferents (see Fig. 1). This fact
uggests that these data cannot be correctly modelled likely due to
he strong lack of trilinearity of these data. Interestingly, in most
f the samples two or three interferences should be considered to
each residuals values comparable with the instrumental noise.

On the other hand, Table 2 shows that results proportioned
y MCR-ALS modelling can be considered acceptable when they
re matched with those obtained by the reference method. As an
xample of how MCR-ALS was implemented, Fig. 8 A and B shows
oth the time and the spectral profiles extracted by the algorithm
hen analyzing sample 7 (Table 2), which contains the three dyes
lus an unexpected interference. As can be appreciated, this com-
ound presents a spectrum similar to the one corresponding to
artrazine, while its time profile coelutes with sunset yellow. The
xcellent statistical parameters (percent of lack of fit = 3.31 and
ercent of variance explained, r2 = 99.8904) and the reasonable
gures of merit obtained when comparing MCR-ALS results with
hose obtained by the HPLC reference method, are indicative of the
cceptable performance of this algorithm when processing such a
omplex instrumental data.

Finally, a consideration about solvent and cost saving should be
onsidered. Firstly, the analysis time can be reduced up to 14.2%
f the necessary time to perform the complete separation. On the
ther hand, a complete separation consumes 10.01 mL of methanol

nd 2.99 mL of 0.08 mol L−1 ammonium acetate, while the proposed
ast chromatography method requires only 0.46 mL of methanol
nd 1.54 mL of 0.08 mol L−1 ammonium acetate. The facts support
he use of this kind of methodology, even more if green chemistry
s seriously taken into account.
line and SY: blue solid line) plus an unexpected interference (triangle cyan line). (B)
Spectral profiles. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of the article.)

5. Conclusions

Reduction in the analysis time for a chromatographic method
should be seriously taken into account considering that solvent
saving is an issue with a strong impact in environment.

LC-DAD data with lack of trilinearity which cannot be conve-
niently pre-processed can hardly be modelled by using U-PLS/RBL
algorithm. On the contrary, MCR-ALS became an excellent tool for
modelling this kind of data allowing to reach acceptable figures of
merit which are indicative of a good performance of the proposed
methodology.
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