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Abstract
The aim of the current study was to investigate the entomopathogenic capacity of the mold Fusarium verticillioides and the effect
of its mycotoxins fumonisins, on the grain beetle Sitophilus zeamais. We evaluated the capacity of this fungus to infect live
insects, the antifungal activity of constituents of the insect’s epicuticle, and the effect of a fumonisin extract on the fitness of the
insects. We found that F. verticillioides could not penetrate the cuticle of S. zeamais and that the fumonisin extract had no
negative effects on the fitness of the insects. However, the progeny of the insects increased, and the fumonisin extract had
repellent effects. This is the first report about the effects of fumonisins on the relationship between F. verticillioides and
S. zeamais,which may provide useful information about interactions between pathogenic microorganisms and insects, especially
on stored product pests.
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Introduction

Maize (Zea mays), one of the most cultivated cereals world-
wide, is usually stored in grain bins until its commercialization
(Mendoza et al. 2017; OECD-FAO 2018). However, when
storage conditions are not optimal, a large number of biolog-
ical interactions occur, which may cause great economic
losses (Abass et al. 2014; Coyle et al. 2005; Cox 2004;
Tefera et al. 2011). Some of the most important interactions
in grain bins take place between the maize kernels, the insect
Sitophilus zeamais (Coleoptera: Curculionidae), and the
mycotoxicogenic fungus Fusarium verticillioides (Sacc)

Nirenberg (Abebe et al. 2009; Chulze 2010; García-Lara
et al. 2019). Usually, the insect-fungus-maize tritrophic inter-
action is studied as a dual system, focusing mainly on the
insect-kernel and/or fungus-kernel relationships.

Sampietro et al. (2009) studied the relationship between
F. verticillioides and maize kernels mediated by the kernel
pericarp and its wax content, while Usseglio et al. (2018)
reported on the regulatory role of chemical constituents of
the maize kernel epicuticle on the relationship between the
maize kernel and S. zeamais. Nevertheless, the relationship
between S. zeamais and F. verticillioides and the role of the
insect’s cuticle in this interaction are still unknown. Other
interactions between insects and fungi, mediated by the
insect cuticle, have been widely studied. For example,
Pedrini et al. (2009, 2013) investigated the relationship be-
tween the fungus Beauveria bassiana and Triatoma infestans.
In their study, they found that the cuticular hydrocarbons of
this insect increased the fungal virulence because of an in-
crease in the cytochrome P450 enzyme production in the fun-
gus, which oxidized these compounds. This may have allowed
the fungus to overcome the insect’s first protective barrier and
start infection. In addition, several reports have associated the
insecticidal effect of B. bassiana with beauvericin (BEA), the
main mycotoxin produced by this fungus (Al Khoury et al.
2019; Arboleda Valencia et al. 2011; Genthner et al. 1994;).
Although the effect of other mycotoxins on insect behavior
and the entomopathogenic capacity of several fungi have been
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previously studied, to our knowledge there are no reports on
the entomopathogenic capacity of F. verticillioides and the
effects of its mycotoxins fumonisins against S. zeamais.
Fumonisins B (FB) are the principle mycotoxins produced
by F. verticillioides, and their ingestion is associated with
the incidence of several diseases such as cancer and hepatitis
(Theumer et al. 2010; World Health Organization 2018). In
maize, FB represent up to 75% of the metabolites produced by
F. verticillioides,with these mycotoxins being most common-
ly found in maize tissues throughout the world (Marín et al.
2004; Proctor et al. 2006; Sánchez-Rangel et al. 2012;
Thompson and Raizada 2018). In mammals, the toxic effect
of FB is related to the inhibition of ceramide synthetase activ-
ity and consequently, an imbalance in the cell lipid metabo-
lism (IPCS-WHO 2000). Although this mechanism and the
effect of this group of mycotoxins are unknown in inverte-
brates, FB may be important in some biological interactions,
since they could act as a virulence factor by preparing organ-
isms for fungal infection or by promoting its spread (Arias
et al. 2016).

In this context, the aim of our investigations was to study
the relationship between F. verticillioides and S. zeamais by
focusing on the entomopathogenic capacity of the fungus, the
effect of the insect epicuticle against F. verticillioides, and the
role of fumonisins on insect behavior using an FB extract. A
better understanding of this relationship and its chemical mod-
ulators could help achieve a more effective method for the
joint management of S. zeamais and F. verticillioides during
the storage of maize kernels.

Methods and Materials

Biological Material

The Zea mays kernels were obtained from the Manfredi
Experimental Station (INTA, Córdoba, Argentina) and kept
in closed containers at −20 °C. The variety used was Illinois
CV:1767MGRep 2. N° station: 222, harvested in 2014. These
maize kernels contained a basal concentration of fumonisins
of 30.4 ± 6.8 μg/ kg of kernels, representing 3% of the upper
limit established by the FAO to guarantee safe consumption
(4000 μg/ kg) (Van Egmond and Jonker 2004).

A nourseothricin resistant Fusarium verticillioides strain
was used in this investigation, provided by Dr. María Dolores
García Pedrajas of the Subtropical and Mediterranean
Horticulture “La Mayora” Institute (IHSM-UMA-CSIC,
Spain), which was kept at −20 °C until use. The conidia sus-
pension (1 × 106 conidia/ml) was made according to
Dambolena et al. (2008).

Unsexed adults of Sitophilus zeamais (Coleoptera:
Curculionidae) were used in the experiments. These insects

were kept at 28 ± 2 °C and 70 ± 5% relative humidity (RH) in
containers with whole maize kernels without insecticide.

The maize extract enriched in FB (FB extract) used in this
work was a mixture of fumonisins FB1, FB2 and FB3, the
chemical structures of which are shown in Fig. 1 (FB1:
C34H59NO15; FB2 and FB3: C34H59NO14). The use of maize
extract as a source of fumonisins is a widely used strategy in
chronic and subchronic inmunotoxic studies in mammals
(Voss et al. 1990; Marin et al. 2006; Theumer et al. 2008,
2010; Rudyk et al. 2019). Also, the use of FB extracts pro-
duced by liquid fermentation has been commonly used as
subchronic models in plants (Arias et al. 2012, 2016; Otaiza-
González et al. 2020).

Fumonisin Production in Maize Kernel Substrate

In a glass container, 25 g of maize kernels and 8 ml of
distilled water were autoclaved. Then, each container was
inoculated with five 10-mm diameter mycelial discs of a
7 days-old F. verticillioides culture on PDA agar. These
inoculated maize kernels were maintained at 28 ± 2 °C for
28 days to favor mycotoxin production. Subsequently, the
maize kernels were autoclaved and dried at 60 °C to obtain
a powder, from which the mycotoxins were extracted (Voss
et al. 1990). The maize powder was mixed with distilled
water (1:3 w/v) in a plastic container, which was then placed
in an orbital shaker for 2 h at 200 rpm. The supernatant was
centrifuged for 15 min at 5000 rpm and stored at −20 °C
until use.

To determine the concentration of FB, a method described
by Shephard et al. (1990, 1994) was used. Briefly, an aliquot
of the supernatant (0.5 ml) was mixed with 0.5 ml of acetoni-
trile: water (1:1 v/v), and quantification was carried out by
using a Perkin Elmer HPLC. The instrument was equipped
with a fluorescence detector and a C18 analytical reverse
phase column (150 mm × 4.6 mm internal diameter and
5 μm particle size). The mobile phase consisted of methanol
(HPLC grade) and NaH2PO4 0.1M (3:1 v/v) at a pH of 3.35 ±
0.20 and was calibrated using orthophosphoric acid and a flow
rate of the mobile phase of 1.5 mL/min. Each sample was
derivatized by means of a derivatizing solution made of 5 ml
of an aqueous solution of sodium tetraborate (0.1M), 50μL of
2-mercaptoethanol and 1 mL of methanol with 40 mg of o-
phthaldialdehyde (OPA) (Sigma-Aldrich). The samples were
then mixed with 50 μL of the FB solution and 200 μL of
derivatizer for 3.5 min in the dark. Wavelengths used for ex-
citation and emission were 335 nm and 440 nm, respectively,
and quantification was performed by comparing the area of
detected peaks with that obtained with an FB1 analytical stan-
dard (≥90%; Sigma-Aldrich). For the control solution
(0 mg/ml), the same procedure (without inoculation of maize
kernels) was carried out.
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Extraction of the Epicuticle of S. zeamais and
Influence on its Thickness

Epicuticular extraction of S. zeamais adults was carried out
according to Pedrini et al. (2009, 2015) with some modifica-
tions. Three insects were extracted with 2 ml n-hexane for 15 s
to remove the epicuticle; conditions, which had been optimized
in previous investigations to guarantee the survival of the in-
sect. In order to determine the reduction in the epicuticle after
the extraction, confocal photographs were taken with an
Olympus LEXT OLS4000 confocal microscope at the labora-
tory of Electron Microscopy and X-Ray Analysis (LAMARX-
CONICET), Faculty of Mathematics, Astronomy, Physics and
Computing, National University of Córdoba (FAMAF-UNC).
The diameter of the depressions in the epicuticle was processed
with ImageJ (Abramoff et al. 2004); five photographs were
used to obtain the measurements.

Antifungal Activity of S. zeamais Epicuticle Extracts

The in vitro antifungal activity of the epicuticular extracts of
adults of S. zeamais was investigated according to Pizzolitto
et al. (2020). Petri dishes were prepared with PDA agar, and
increasing concentrations of epicuticular n-hexane extract (100,
500, 1000, 5000 μL/L) were added. Each plate was inoculated
with 10 μL of conidial suspension of F. verticillioides (1 × 106

conidia/mL) and placed in an incubator at 28 ± 2 °C. The radial
growthwasmeasured daily, and the growth rate was calculated.
Seven final replicates were performed twice.

Infective Capacity of F. verticillioides

To determine, whether F. verticillioides can penetrate the cu-
ticle of S. zeamais adults, an infective assay was carried out.
First, live insects, control (with epicuticle) and treated insects
(after the extraction process, without epicuticle) were
disinfected twice with an aqueous solution of sodium hypo-
chlorite (4% v/v). The infection process was then performed

using one of two approaches. For one group, 10 S. zeamais
adults of each treatment were submerged in a conidia sus-
pension of F. verticillioides (1 × 106 conidia/ml) for 1 min,
while for the other group 10 insects of each treatment were
placed in contact for 1 min with the mycelium of a 7 days-
old F. verticillioides culture (grown in a petri dish). The
controls were insects submerged in sterile water for 1 min
or placed in a petri dish with PDA agar. After treatment, the
insects were placed in sterile glass petri dishes without food
for 20 days at 28 ± 2 °C. Subsequently, the insects were
freeze-killed, superficially disinfected with aqueous sodi-
um hypochlorite (4% v/v) twice (for half of the insects of
the assay), and placed in petri dishes with PDA agar and
nourseothricin (NTC) (100 mg/ml). To favor development
of the fungus, the insects were crushed using a sterile mor-
tar, and the percentage of infected insects was determined.
This experiment was performed twice, with six final
replicates.

Toxicity of the FB Extract in Contact Bioassays

The contact toxicity of the FB extract was investigated by
two series of experiments. In the first series, 10 adults of
S. zeamais were placed in a petri dish (Ø = 4.5 cm) contain-
ing a filter paper at the base. On the paper, increasing con-
centrations of the FB extract (25.25, 50.50, 126.26 and
252.53 μg/cm2 of filter paper) were added, and the mortal-
ity was recorded at 24, 48, and 72 h (Zaio et al. 2018). In the
second series, 10 insects were anesthetized in a cold envi-
ronment, and 10 μL of FB extract were topically applied at
0.011, 1.79, 17.9 and 1000 μg/insect on the dorsal site of
the abdomen. The mortality was then recorded at 24, 48,
and 72 h after treatment. Both experiments were carried out
twice with five final replicates and 50 experimental individ-
uals per concentration. For the controls of both experi-
ments, the same concentrations were tested using the con-
trol extract (0 mg/ml of FB).

Fig. 1 Chemical structures of
fumonisins. R1 and R2 indicate
the position of substituents in
FB1, FB2, and FB3. Fumonisin
B1: R1 and R2 =OH. Fumonisin
B2: R1 =OH; R2 =H. Fumonisin
B3: R1 =H; R2 =OH
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Feeding Assay

The effect of the maize extract enriched in FB on the feeding
activity of adults of S. zeamais was mesured according to
Usseglio et al. (2018), with some modifications. Ten insects,
previously placed for 48 h in petri dishes with FB extract or
control extract (25.25, 50.50, 126.26 and 252.53 μg/cm2)
were transferred to amber bottles (30 ml) containing 14 maize
kernels without visible damage or fungal infection. After
20 days, the weight loss, grain damage (number of grains with
holes) and insect mortality were determined. In parallel, 20
insects were placed in amber bottles (30 ml) with maize ker-
nels treated with 0.24 μg/ml of each extract, FB or control
(0.02 μg/cm2 of grain or 240 ppm). After 20 days, the same
variables as those described above were determined. Five rep-
licates were performed twice.

Behavioral Assays

Repellent/Attraction Activity Bioassay

The effect of the FB extract on the preference of S. zeamais
adults was determined using half filter paper discs, according
toWagan et al. (2018) with some modifications. A filter paper
was placed in a plastic petri dish (Ø = 4.5 cm). Then, in the
middle of the paper disk, a line was drawn, and different
concentrations of the maize extract enriched in FB (0.02,
0.04, 0.07, 0.13, 0.27, 1.26, 12.63 and 25.25 μg/cm2) were
placed on one half of the discs, while on the other half, the
same concentrations of the control extract were positioned.
Ten adult insects starved for 24 h were released into the petri
dishes, and their choice was recorded 2, 4, 6, and 24 h after the
start of the trial, using a response index (RI) calculated from
the following equation:

RI ¼ T−Cð Þ
Tot

� 100

where T is the number of insects in the treatment, C the num-
ber of insects in the control and Tot is the total number of
insects in the experiment (Phillips et al. 1993). Positive values
of the index indicate attraction whilst negative ones indicate
repellency of the treatment. Independence tests (without my-
cotoxin) were carried out to ensure that there were no posi-
tional effects influencing the choice of the insects (indicated
by a value of p > 0.05).

Walking Activity Bioassay

To evaluate the effect of FB extract on the walking behavior of
adults of S. zeamais, an assay was performed according to
Fussnecker et al. (2006) with some modifications. Briefly, in

a circular arena (Ø = 4.5 cm) the extract enriched with FB
(12.63 μg/cm2) was placed in one half of a filter paper, and
the control extract was placed in the other half. In the center of
this arena one S. zeamais adult, starved for at least 24 h, was
released, and the behavior was filmed over 1200 s. The pa-
rameters evaluated were: permanence time in each treatment,
movement pattern (idle time and travel time) and grooming
time, considering the latter as movement of the palps around
the chewing apparatus. For this experiment, the concentration
that provided the strongest effects in the repellent/attraction
activity bioassay was chosen, and the experiment was per-
formed 20 times with each insect used only once (N = 20).
The arena was changed between replicates. ToxTrac Free
Software was used to analyze the data (Rodriguez et al. 2017).

Progeny Assays

To study the effect of the FB extract on the reproduction or
development of S. zeamais adults, a progeny assay was carried
out according to Usseglio et al. (2018), with some modifica-
tions. First, 40 healthy maize kernels without visible damage
or fungal infection were put in an amber glass bottle (30 ml)
and mixed with 2 ml of FB extract (20 ppm = 0.27 μg/cm2).
This concentration is equivalent to the concentrations used in
other chronic assay models (Arias et al. 2016; Otaiza-
González et al. 2020). In each bottle, 2 adult couples of
S. zeamais were released. The treated insects were placed in
an incubator at 28 ± 2 °C for 60 days, after which the number
of insects, their size, and their mortality rate were determined.
The insect size and the measurements of the thorax, abdomen
and the right 3rd leg were obtained using ImageJ (Abramoff
et al. 2004), and 10 photographs of each body segment were
utilized to obtain the measurements. This experiment was car-
ried out three times with 15 final replicates.

Statistical Analyses

The statistical significance of the data in experiments
concerning the thickness of the Sitophilus zeamais epicuticle
(section 2.3), infective capacity of F. verticillioides (section
2.5), toxicity of FB extract (section 2.6), feeding and progeny
assays (section 2.7 and 2.9, respectively) was evaluated using
an analysis of variance (ANOVA) (p < 0.05). For the behav-
ioral assays (section 2.8.1 and 2.8.2), the statistical differences
were evaluated with a Student’s t- test for paired comparisons
(p < 0.05). The statistical analysis of the antifungal activity of
the S. zeamais epicuticle (section 2.4) was carried out by using
a linear regression to obtain the growth rate, followed by an
ANOVA (p < 0.05) to evaluate the difference in this rate be-
tween treatments. These analyses were carried out with the
statistical software Infostat (Di Rienzo et al. 2010). The as-
sumptions of normality and homogeneity of variance were
tested.
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Results

FB Extract

The final concentration of the fumonisins in the maize extract
was 1.79 mg/ml, while the concentration of the control extract
was 0 mg/ml. The chromatograms are presented in the
Electronic Supplementary Material 1 (ESM. 1). In these chro-
matograms, the presence and the absence of fumonisins in the
FB (ESM. 1, c; d) and control (ESM. 1, b) extracts, respec-
tively, are shown. When the peak areas of the control
chromatogram (0–2 min) were subtracted from those of
the FB extract, the FB peak area represented 40% of the
total.

Thickness of the Epicuticle of Sitophilus zeamais

To determine the modulating effect of the insect epicuticle on
F. verticillioides, surface extracts were prepared using n-hex-
ane. Depressions in the epicuticle increased in size, indicating
a reduction in the epicuticle of S. zeamais after extraction. In
treated insects, the mean diameter of the depression increased
significantly compared to control insects (24.0 ± 2.3 μm and
41.8 ± 4.8 μm, respectively) (p = 0.0103). The extraction
yielded 1.33 ± 0.10 mg of n-hexane soluble epicuticular com-
pounds per insect.

Antifungal Effect of Sitophilus zeamais Epicuticular
Extract

When the effect of the epicuticular extract of S. zeamais on
F. verticillioides growth was tested, no inhibitory effects were
observed. The highest tested concentration of the epicuticular
extract (5000 μL/L) showed a reduction in the growth rate
compared to the control (9.9 ± 0.3 mm/day and 10.0 ±
0.2 mm/day, respectively), but there was no statistically sig-
nificant difference (p = 0.93). In addition, no statistical differ-
ence was found in the lag phase, which was 17.5 ± 3.2 h for
controls and 15.8 ± 4.4 h for the highest concentration tested
(5000 μL/L) (p = 0.9638).

Entomopathogenicity of Fusarium verticillioides

To evaluate the infective capacity of F. verticillioides on
S. zeamais and to determine whether the epicuticle of the
insect had a protective effect against this fungus, the relation-
ship between S. zeamais and F. verticillioides was investigat-
ed in vivo.After 20 days of infection with F. verticillioides, no
insects had died. The percentages of infection recorded for the
two methods tested are shown in Table 1.

The results shown in Table 1 reveal that the conidial
suspension was not an effective agent to cause insect
infection. Moreover, for the method that used the 7-day-

old mycelium, the infection was only superficial since the
insects that had been superficially disinfected did not
show any fungal development inside their bodies. This
result was observed both for insects with or without an
epicuticle, suggesting that F. verticillioides cannot pene-
trate the cuticle of the insect and achieve tissue infection
and fungal dispersion.

Toxic and Antifeedant Effects of FB Extract on
S. zeamais

To determine if the maize extract enriched in FB would show
lethal effects on S. zeamais, assays of contact toxicity were
carried out. Using the contact filter paper test, none of the
tested concentrations caused mortality in S. zeamais at 72 h.
Moreover, when the FB extract was topically applied dorsally,
results were inconsistent between the different repetitions per-
formed. No insect mortality was observed in the control treat-
ments. For 0.011 and 17.9 μg/insect of FB extract, the mor-
tality percentage varied between 2 and 17% (2.5 ± 2.5% and
16.7 ± 6.7%, respectively), while for 1.79 and 1000 μg/insect,
a 0 % mortality was obtained. Thus, these results exclude a
lethal effect of fumonisins on S. zeamais.

Next, the effect of the FB extract on the feeding behavior of
S. zeamaiswas evaluated. When the insects were pre-exposed
(48 h) to the FB extract, the feeding rate (as determined by the
weight loss of the kernels) and the percentage of grain damage
did not show any statistical differences between control and
treated insects (p > 0.05, Table 2). Furthermore, when the ex-
tract enriched with FB was mixed with the maize kernels, no
statistical differences between the feeding rates were observed
either (p > 0.05, data not shown). These results show that
neither pre-exposure to FB extract nor its addition to the
maize kernels affected the feeding behavior of S. zeamais.
For 253.53 μg/cm2, although the weight loss of the kernels
was higher than that of the other treatments, there were no
differences to the control. This same pattern was observed
in the percentage of grain damage in both experiments (p >
0.05), with insect mortality not exceeding 5% in all cases
(control and treatments). These results show that increase of
FB in the insect environment did not affect their feeding
behavior.

Effect of FB Extract on the Behavior of S. zeamais

The aim of these bioassays was to determine the effect of
maize extract enriched in FB on the behavior of S. zeamais.
For the first experiment (repellency/ attraction), using the half
filter paper choice test, there was no defined pattern related to
the effect of the extract. At the four times tested, the interme-
diate concentrations (0.13 and 1.26μg/cm2) did not reveal any
response by the insects (p > 0.05). However, the lowest (0.02
and 0.04 μg/cm2) and the second highest (12.63 μg/cm2)
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concentrations caused repellent effects at 2 h of exposure
(p < 0.05), with the highest response index (−62.9 ± 17.7%)
being obtained at 0.02 μg/cm2. Moreover, at 4 and 6 h, the
concentration of 0.07 μg/cm2 revealed increasing effects, with
response indices of 42.2 ± 9.7% and 47.8 ± 14.5%, respective-
ly. At 24 h, only one of the higher concentrations was tested
(12.63 μg/cm2), which showed a significant repellent effect
(p = 0.0192), with an RI higher (−45.1 ± 14.2%) than that ob-
tained at 2 h.

A similar effect was observed in the walking activity be-
havior, when the beetles were exposed to 12.63 μg/cm2 of FB
extract. In this experiment, the insects were found on the con-
trol side 66.84 ± 7.55% of the time (p = 0.05, Fig. 2). Of indi-
viduals tested, only 4 were observed to be immobile during
the experiment (4.5 ± 3.0% of the experimental time), mainly
in the control sector (49.7 ± 32.8 s on control side vs 3.8 ±
3.8 s on the treatment side) (p < 0.05). On the other hand,
grooming behavior was observed during 4.7 ± 3.1% of the
time (60% of the tested insects). In all, 40.3 ± 15.1% of the
grooming time was spent on the control side, while 19.7 ±
11.7% took place on the treatment side (p < 0.05).

The results obtained in both behavioral bioassays may also
confirm a repellent effect of the maize extract enriched with
fumonisins on S. zeamais.

Effects of FB Extract on Reproduction and
Development of S. zeamais

To determine whether the extract enriched in FB could
affect the reproduction or development of S. zeamais,
progeny assays were performed. The FB extract concen-
tration used to evaluate the chronic effects was 20 ppm
(Arias et al. 2016; Otaiza-González et al. 2020). After
2 months of exposure, the number of emerging insects
from the treatments was significantly higher than that of
the controls (p = 0.039, Fig. 3). In agreement with this
result, a higher number of damaged kernels were found
in treatments with 90% of kernels being damaged (p =
0.0071, Fig. 3).

To evaluate the effect of FB extracts on the develop-
ment of S. zeamais, the size of the progeny of the insects
was determined. Figure 4 shows that the addition of FB
extracts to the environment of developing S. zeamais
(maize kernels) did not cause changes in the size of the
progeny (p > 0.05). Thus, our results indicate that treat-
ment with extracts enriched in FB increased the number
of descendants of S. zeamais by modifying parameters
related to the reproduction numbers, but not those
concerning the development of its progeny.

Table 1 Entomopathogenic
capacity of F. verticillioides
expressed as the percentage of
insects infected after 20 days

Insect condition Infection method Superficial disinfection
after 20 days

Percentage
of Infection (%)

WITH epicuticle (control insects) Mycelium – 100.0 ± 0.0 a

√ 0.0 ± 0.0 b

Conidial suspension – 0.0 ± 0.0 b

√ 0.0 ± 0.0 b

WITHOUT epicuticle (treated insects) Mycelium – 100.0 ± 0.0 a

√ 0.0 ± 0.0 b

Conidial suspension – 0.0 ± 0.0 b

√ 0.0 ± 0.0 b

(√): superficial disinfection. (−): no superficial disinfection. Different letters indicate statistical differences be-
tween treatments for the ANOVA and LSD Fisher posteriori tests (p < 0.05).

Table 2 Effect of FB extract on
S. zeamais alimentation after
20 days

FB extract concentration (μg/cm2) Grain weight loss (g) Grain damage (%)

Control 0.14 ± 0.05a 15.72 ± 2.67A

25.25 0.20 ± 0.02 a 9.52 ± 2.38 A

50.50 0.22 ± 0.01 a 14.29 ± 0.00 A

126.26 0.22 ± 0.02 a 7.14 ± 0.00 A

253.53 0.23 ± 0.02a 14.29 ± 0.00 A

Different letters in the same column indicate statistical differences between treatments for ANOVA and LSD-
Fisher posteriori tests (p < 0.05). Values are expressed as the mean ± the standard error.
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Discussion

Insects and fungi share a long co-evolutionary history, and
their interactions have been widely studied from various
perspectives, including ecological and evolutionary
investigations and aspects of biological pest control. During
recent decades, growing evidence has been observed
concerning the participation of natural chemical compounds
as modulators in these biological interactions. Tasin et al.
(2011, 2012) reported the inhibitory effect of 3-methyl-1-bu-
tanol, emitted by Botrytis cinerea, on the oviposition of
Lobesia botrana. In addition, it has been reported that chem-
ical constituents of the insect cuticle can affect the develop-
ment of the fungus B. bassiana (Forlani et al. 2015; Pedrini
et al. 2013; Schama et al. 2016). Although the role of natural
compounds in the insect-fungus interaction has been explored
in different biological systems, to our knowledge, there are no

studies dealing with chemical modulators in the biological
interaction between F. verticillioides and S. zeamais, despite
the fact that they share the same biological niche.

The results obtained in the present study demonstrate that
the S. zeamais n-hexane extract epicuticle did not inhibit fun-
gal growth. This is in agreement with Kurita and Koike
(1983), who showed that some hydrocarbons, similar to this
insect’s epicuticle extract, did not affect fungal growth.
Moreover, the results obtained in the current investigation also
revealed the inability of F. verticillioides to infect live
S. zeamais. Only a few investigations have focused on the
entomopathogenic capacity of F. verticillioides (Batta 2012;
Patel and Ghetiya 2019; Pelizza et al. 2011;), reporting fungal
infections of dead insects. Thus, the saprophytic nature of
F. verticillioides enhanced fungal growth on decomposing
insect bodies. In contrast, in the present work, the entomo-
pathogenic capacity of F. verticillioides was determined on
living S. zeamais insects. Our results are in agreement with
previous findings, suggesting that fungi with crop spoilage
activity are not necessarily entomopathogenic (Teetor-
Barsch and Roberts 1983). Moreover, the relationship be-
tween Fusarium spp. and beetles has been usually reported
to be mutualistic: the insects benefit from the fungus and col-
laborate with their dispersion (Ferreira-Castro et al. 2012;
Jayaraman and Parihar 1975; Kok et al. 1970; Teetor-Barsch
and Roberts 1983). The predominance of this mutualistic re-
lationship and the inability of F. verticillioides to colonize
S. zeamais, as demonstrated in our study, may be attributed
to the lack of vegetative structures to allow the fungus to
penetrate the insect’s cuticle or to chitin-degrading enzymes.
This could explain why many Fusarium spp. become ectopar-
asites and only cause some gray spots on the cuticle (Teetor-
Barsch and Roberts 1983). In our investigation, we demon-
strate that F. verticillioides develops as an ectoparasite of liv-
ing insects and colonize its body after death.

Fig. 3 Effect of FB extract on the progeny and feeding activities of
S. zeamais. Different letters indicate statistical differences between
treatments for ANOVA and LSD-Fisher posteriori tests (p < 0.05)

Fig. 4 Growth of S. zeamais progeny exposed to FB extracts. Different
letters indicate statistical differences between treatments for ANOVA and
LSD-Fisher posteriori tests (p < 0.05)

Fig. 2 Walking behavior of S. zeamais exposed to FB extract: time
devoted to the exploration of the control and treatment areas. (*)
Indicates a statistical difference for a paired t-Student’s test (p < 0.05)
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The mycotoxin fumonisins are the main secondary metab-
olites produced byF. verticillioides in maize, which maycause
considerable problems due to their toxic effects on mammals
(Theumer et al. 2010; Vila-Donat et al. 2018; Thompson and
Raizada 2018). However, little is known about their role in
natural biological interactions. Although positive correlations
among insect damage, Fusarium verticillioides and FB con-
tent in maize have been previously reported (Madege et al.
2019), there are as yet no studies about the role of FB in the
S. zeamais-F. verticillioides interaction. In the present study,
we used a maize extract enriched in FB to evaluate the role of
the fumonisins in the S. zeamais-F. verticillioides relationship
and observed that the FB extract did neither negatively influ-
ence feeding nor cause mortality of S. zeamais. Despite the
toxic effects of other mycotoxins such as destruxin and
beauvericin againstGalleria mellonella, Spodoptera littoralis,
S. litura, and Tetranychus urticae that have been reported
earlier (Al Khoury et al. 2019; Sowjanya Sree et al. 2008;
Vey et al. 2002), there are no previous studies about the
effect of pure FB or FB extract against any insects.
Nevertheless, recent works on S. frugiperda (Sf9) cell lines
have reported that pure FB trigger the programmed cell
death process (Zhang et al. 2017, 2018). On the other hand,
we demonstrated a repellent effect and progeny induction
caused by the FB extract acting on S. zeamais. The expo-
sure of S. zeamais to FB extract made the insects move to
zones free of toxin, suggesting an escape response to the
toxic compound or a signal indicating the fungal presence
and deterioration of kernels, which may explain the absence
of lethal effects caused by this mycotoxin (Cutler and
Guedes 2017). In addition to the behavioral effects
discussed above, the increase of insect progeny found in
our study may be caused by two factors: 1) an egg laying
stimulation exerted by the addition of the FB extract, or 2) a
shortening in the life cycle of the insects. Zhang et al.
(2017) determined that FB induce an overexpression in
genes related to the hormonal regulation of the insect’s life
cycle in Sf9 cell lines. Complementary research should now
be performed to try to elucidate the mechanism by which
FB cause an increase in the population.

Summing up, it can be hypothesized that F. verticillioides
can still become an ectoparasite of S. zeamais to ensure its
dispersal, with fumonisin FB participating as a chemical mod-
ulator in this relationship. Concerning this, FB could have two
ways of increasing fungal infection: by their ability to augment
the progeny of the insect and also by their repellent effect at
concentrations that can be found in grain bins. To our knowl-
edge, this is the first investigation to report the role of
fumonis ins B as a chemica l modula to rs of the
F. verticillioides-S. zeamais relationship. The findings of the
present investigation suggest that if F. verticillioides contami-
nation is reduced using good management practices (hermetic
conditions of the storage system and reduction of oxygen and

humidity), the amounts of mycotoxins and the size of the
S. zeamais population will be reduced.
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