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Abstract—This paper discusses the investigation of max-
imum-likelihood sequence estimation (MLSE) receivers operating
on intensity-modulated direct-detection optical channels. The
study focuses on long-haul or metro links spanning several hun-
dred kilometers of single-mode fiber with optical amplifiers. The
structure of MLSE-based optical receivers operating in the pres-
ence of dispersion and amplified spontaneous emission (ASE), as
well as shot and thermal noise, are discussed, and a theory of the
error rate of these receivers is developed. Computer simulations
show a close agreement between the predictions of the theory and
simulation results. Some important implementation issues are
also addressed. Optical channels suffer from impairments that set
them apart from other channels, and therefore they need a special
investigation. Among these impairments are the facts that the
optical channel is nonlinear, and noise is often non-Gaussian and
signal dependent. For example, in optically amplified single-mode
fiber links, the dominant source of noise is ASE noise, which after
photodetection is distributed according to a noncentral chi-square
probability density function. In addition, optical fibers suffer from
chromatic and polarization-mode dispersion (PMD). Although the
use of MLSE in optical channels has been discussed in previous
literature, no detailed analysis of optical receivers using this tech-
nique has been reported so far. This motivates the study reported
in this paper.

Index Terms—Channel estimation, chromatic dispersion, elec-
tronic dispersion compensation (EDC), equalization, maximum-
likelihood sequence estimation (MLSE), non-Gaussian noise, po-
larization-mode dispersion (PMD).

1. INTRODUCTION

RADITIONAL optical receivers perform a minimal

amount of signal processing. In most applications today,
channel impairments either are small and left uncompensated
or are compensated using optical techniques. Until recently,
the operations after optical-to-electrical (O/E) conversion have
been limited to clock recovery and data slicing. However,
owing to advances in technology, today it is possible to perform
significantly more elaborate signal processing functions at the
receiver. This could be used to great advantage to compensate
some of the impairments of the optical channel. Electronic
compensation of channel impairments such as chromatic or
polarization-mode dispersion (PMD) improves performance
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and brings enormous flexibility resulting from the opportunity
to apply adaptive signal processing algorithms not practical in
the optical domain.

Electrical signal processing techniques to compensate impair-
ments of the optical channel have been extensively discussed in
the literature. A comprehensive study of these techniques was
done in [1] and [3]. Decision-feedback equalization (DFE) was
proposed in [4] to compensate for modal dispersion in mul-
timode fibers. A discussion of different equalization schemes
applied to fiber optics, including a simulation-based study of
the performance of maximum-likelihood sequence estimation
(MLSE) was done in [2] and references thereof. Another sim-
ulation-based study of MLSE applied to optical channels was
presented in [5]. Implementation of electronic equalization sys-
tems for fiber optics was described in [6] and [2], and refer-
ences thereof. A comparison of the performance of the DFE and
MLSE on single-mode fiber links was done in [7], where it was
shown that the nonlinear nature of the single-mode fiber optic
channel severely limits the performance of the former but poses
no particular problems for the latter.

In this paper, a new theory of the performance of adaptive
MLSE receivers operating on nonlinear channels in the pres-
ence of non-Gaussian signal-dependent noise (of which the
intensity modulation/direct detection optical channel is an ex-
ample) is proposed. This theory builds upon the one introduced
in [8] for the special case of a receiver perfectly matched to the
channel. Here, the theory is extended to the general case where
the channel model available to the receiver does not match the
channel exactly.

Chromatic dispersion is a relatively small impairment in op-
tical links operating at data rates below 10 Gb/s, but it grows
quickly as the data rate increases and becomes serious at 10
Gb/s and beyond. PMD, which occurs as a result of birefrin-
gence in the optical fiber, also becomes important at high data
rates. Birefringence is caused by manufacturing defects and by
stress, vibration, and other mechanical effects on the fiber. A
typical manifestation of PMD is pulse splitting [a single trans-
mitted pulse splits into two components that travel at different
velocities and therefore arrive at the receiver at different times,
causing intersymbol interference, (ISI)]. As a result of its de-
pendence on stress and vibration, as well as on random changes
in the state of polarization of the laser, PMD is nonstationary.
For this reason, adaptive signal processing techniques are ide-
ally suited to PMD compensation.

Several purely optical techniques exist to control dispersion.
One of them is the use of lasers with a wavelength in the re-
gion around 1310 nm, where chromatic dispersion reaches a
minimum. However, in long-haul and metro links, wavelengths

0733-8724/$20.00 © 2005 IEEE



750

in the 1550-nm region, where the fiber attenuation is minimum
and significantly lower than at 1310 nm, are generally preferred.
Chromatic dispersion can also be compensated by the use of dis-
persion compensation fibers (DCFs) [9]. These are fibers where
the slope of the delay versus wavelength curve has an opposite
sign compared with normal fibers. Reels of appropriate lengths
of DCF are placed at certain points in the link to compensate
dispersion. Unfortunately, DCFs also cause significant attenu-
ation, and their length has to be manually adjusted to achieve
proper compensation, so link provisioning becomes expensive
and time consuming. Although other optical techniques to com-
pensate dispersion exist, in general they suffer from the prob-
lems of being costly and requiring manual adjustment. Some
hybrid techniques, where the dispersion compensation is done
optically but the transfer function of the optical compensation
element is adjusted using an electronic error signal, have been
described in the literature [10], [11]. A comparison of optical
and electrical techniques to compensate PMD was done in [6].
A purely electronic solution has the advantage of higher integra-
tion and easier and faster adaptation of the compensation func-
tion. Receiver-based adaptive equalization has been applied for
many years in a wide variety of nonoptical communications sys-
tems. Its application to optical receivers alleviates the need for
DCFs and other costly optical dispersion compensation tech-
niques. It also benefits from the automatic adaptation of the
equalizer, thus eliminating the need for manual adjustment of
optical compensation elements or the need to close the adapta-
tion loop externally.

Because of the unique properties of the optical channel, the
theory presented here departs significantly from previous work
on MLSE receivers. Among the properties that require a new
study are 1) the nonlinear nature of the optical channel and 2)
the fact that the noise is non-Gaussian and signal dependent.
Furthermore, the fact that in general the signal statistics are not
known a priori implies that the problem of channel estimation
is significantly more involved than when the noise is Gaussian
and signal independent. In the latter case, channel estimation
means simply estimating the signal mean for each branch in the
trellis diagram of the receiver. If in addition the channel is linear,
the signal mean for a given branch can be computed as the con-
volution of the channel impulse response with the sequence of
symbols associated with the branch; therefore, the problem of
channel estimation reduces to the estimation of the channel im-
pulse response. In the case of interest in this paper, the entire
probability density function (pdf) of the signal must be esti-
mated for each branch in the trellis of the receiver. This problem
is analyzed in considerable detail in this paper.

The paper is organized as follows. The optical channel
is described in Section II, the receiver in Section III, and
techniques to adaptively estimate the channel in Section IV.
Techniques to predict the error rate of the optical receiver in
the presence of dispersion, nonlinearity, amplified spontaneous
emission (ASE), and thermal noise are developed in Section V.
The techniques presented in Section V are not limited to op-
tical channels. They can be applied to any channel where the
noise is non-Gaussian and signal dependent. The effect on the
bit-error rate (BER) of inaccuracies of the channel model used
by the receiver, which may occur because of implementation
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constraints, is analyzed in Section VI. The predictions of the
theory are compared with simulation results in Section VIL.
Single-chip integration of the MLSE receiver in complemen-
tary metal-oxide—semiconductor (CMOS) technology is briefly
discussed in Section VIII. The focus is on the analog-to-digital
converter (ADC), one the main challenges in the design of
high-speed MLSE-based receivers. Finally, conclusions are
drawn in Section IX.

II. THE OPTICAL CHANNEL

Figs. 1 and 2 show the models of the channel and the receiver
that will be used in this paper. The transmitter modulates the
intensity of the transmitted signal using a binary alphabet. The
optical fiber introduces chromatic and polarization-mode dis-
persion, as well as attenuation. To compensate the attenuation,
optical amplifiers are deployed periodically over the length of
the fiber. Optical amplifiers introduce ASE noise. At the receiver
the signal is band limited by an optical filter, and then converted
to a current by a PIN diode or avalanche photodetector. The re-
sulting photocurrent is amplified and filtered, and the output of
the filter is sampled at the symbol rate. The samples are applied
to the detector. The detector is described in Section III. The sam-
ples of the received signal are represented as

ynzen—I-nn-i-Zn:ﬂ?n‘l‘Zn (1)

where

€n = f(an7 Ap—1y--, an—5+1) (2)

represents the noise-free received optical signal (after O/E con-
version), which is in general a nonlinear function of a group of
0 consecutive transmitted bits @y, . . ., Gn—_s41, Ny are samples
of the ASE noise, z, are samples of the electrical noise, and
T, = e, + n,. In the case of interest in this paper, z,, includes
shot noise (the result of the quantum nature of light), and thermal
noise from the analog front end of the receiver. Nonlinearity
in the optical channel stems predominantly from the photode-
tector. Current in photodetectors is proportional to the received
optical power, which is a quadratic function of the electromag-
netic-field amplitude in the fiber. Another source of nonlinearity
is the intensity dependence of the index of refraction of the fiber
[this effect is important, for example, in dense-wavelength-di-
vision-multiplexed (DWDM) links where the optical power is
the aggregate of many channels]. It has been shown [12] that
the nonlinearity of the received signal depends on the spec-
tral width of the source. When chromatic dispersion is present,
the signal at the output of the photodetector in a single-mode
fiber driven by a narrow-band source is a quadratic function
of the 6 most recent transmitted bits [13]. An expression for
f(an,@n_1,...,an_s4+1)interms of second-order Volterra ker-
nels is discussed in [7]. Nonlinearity in optical channels can vary
over a wide range. In this paper, we assume the most general
case of arbitrary nonlinearity.

Thermal noise is Gaussian. Shot noise has a Poisson distri-
bution, but for large numbers of incident photons (the case of
interest here), its distribution can be closely approximated by a
Gaussian. In the rest of our discussion, it will be assumed that
zn is additive white Gaussian noise with power o2. On the other
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hand, after photodetection, ASE noise is strongly non-Gaussian
and signal dependent. It has been shown [14], [15] that the pdf
of x,, is noncentral chi-square with 2M degrees of freedom

pASE(zn | 6n)

(M-1)/2
1 [z, Tn + €n VTnen
N <€n> exp( No >IMl<2 No ) - O

In (3), Ny is related to the variance of the noise in the electro-
magnetic-field domain, M is the ratio of the O/E bandwidth of
the front end, and Z,,(-) is the mth modified Bessel function
of the first kind. For a detailed study of the statistical proper-
ties of ASE noise and a discussion of the physical meaning of
the parameters of (3), the reader is referred to [15]. The pdf for
the sum of the Gaussian and chi-square components of noise
does not have a closed-form analytical expression, but Marcuse
[14] proposes an accurate numerical approximation based on the
method of steepest descent. This approximation will be used in
Section VII to compute BERs for the MLSE receiver.

III. MLSE RECEIVER FOR NONLINEAR SIGNALS IN THE
PRESENCE OF NON-GAUSSIAN, SIGNAL-DEPENDENT NOISE

The optimal sequence detector for signals affected by ISI and
additive Gaussian noise consists of a whitened matched filter
followed by a Viterbi decoder [16]. It is well known that the sam-
ples of the signal taken at the output of the whitened matched
filter at the symbol rate constitute a set of sufficient statistics for
the detection. In the case of non-Gaussian noise, the problem of
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obtaining a set of sufficient statistics by sampling a filtered ver-
sion of the input signal at the symbol rate has not been solved.
In this paper, we assume that the output of the photodetector is
filtered and then sampled at the symbol rate, but we do not as-
sume that the input filter is a matched filter. We assume that the
samples of the signal plus noise are independent, but they are
not identically distributed.

Let NV be the total number of symbols transmitted. The max-
imum-likelihood sequence detector chooses, among the 2 pos-
sible sequences, the one that minimizes the metric

N
m, =Y —In (p(yk | egf)))

k=1

“

where p(ys | eg’)) is the conditional pdf of the received signal
Yk

e = fla,a” a0 )
and (a$”,a$”,. .. a) r =1,...,2") are the 2" candidate
sequences.

The minimization can be efficiently implemented using the
Viterbi algorithm. For a channel with § symbols of memory as
in (2), the trellis has 2°~! states. It is interesting to note from (3)
and (4) that, unlike in the Gaussian channel where the branch
metrics are simple Euclidean distances, in the optical channel
computation of the branch metrics in general requires the eval-
uation of different functions for each branch. This is the result
of the fact that the noise is signal dependent. The different func-
tions that must be evaluated are the logs of the conditional prob-
ability density functions of the signal given the bits associated
with the branches whose metrics are being computed. These are
the terms in the metrics of (4). In general, the functions repre-
senting the branch metrics do not have a closed-form analytical
expression.

IV. CHANNEL ESTIMATION

In most practical cases, the receiver does not have a
priori knowledge of the parameters of the noise pdf, such
as Ng, M, or o, and the nonlinear dispersion function
flan,an—1,...,an—s+1). Therefore, they must be estimated
from the received signal itself. The channel estimation methods
we consider in this paper are decision directed; in other words,
they assume that the receiver is operating normally and making
decisions with a sufficiently low error rate. At the beginning
of the operation, the channel estimator can be initialized
with relatively crude approximations to the expected value of
the signal and the pdf of the noise (for example, the former
could ignore the ISI, and the latter could be initialized with a
Gaussian function). Although this will result in a high initial
error rate, the estimation algorithm will typically converge, and
the error rate will be gradually reduced as the channel estima-
tion improves, until convergence is completed. Convergence
in decision-directed mode is not guaranteed, but in practice
it is found to be very robust. Conditions for convergence of
decision-directed training of various equalizer structures have
been studied in [17] and references thereof. It is also possible,
although less convenient, to train the channel estimator using
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a special training sequence known by the receiver and sent by
the transmitter during startup [18] or using blind equalization
techniques [19].

Channel estimation methods may be parametric or nonpara-
metric. Parametric methods assume that the functional form
for the pdf of the signal is known, but its parameters are not,
whereas nonparametric methods do not assume any knowledge
of the pdf. In this paper, we consider a parametric method,
the method of moments (MoM), and a nonparametric one, the
histogram method. Other methods exist, but they will not be
discussed in this paper.

A. Method of Moments

This method can be applied when the functional form of
the pdf is known, but the values of the parameters are not.
This is the case of interest in this paper, since the noise is
assumed to be the sum of an ASE and a Gaussian compo-
nent. From (3), it is clear that we need to estimate parameters
No, M, and o. Also the values of f(an,an—1,...,0n—5+1)
are needed for all 2° branches in the trellis. All of these
quantities can be expressed in terms of the moments of the
pdf of the signal, and their values estimated by the sample
moments of the input signal. Let p(an,an_1,-..,0n_5+1)
be the mean, v(an,@an—1,...,a,—s4+1) the variance, and
q(@ny@n_1,...,an_s4+1) the third-order central moment of
the pdf associated with branch (a,,an—_1,...,an_s+1) in the
trellis. Also define pg = p(0,0,...,0), 1 = u(l,1,...,1),
vg = v(0,0,...,0),v1 = v(1,1,...,1), Ey = f(0,0,...,0),
and o = ¢(0,0,...,0). Then, it is easy to show that

U1 — Vo
No=—"— 6
0= S0 = o) (6)
610N — qo

M=——— 7
ING (7N

Eq =10 — M Ny 3
02 =vg — 2EyNg — MNZ. 9)

Estimates for No, M, E,, and of can be computed from
(6)—-(9) by replacing the moments of the pdf by the cor-
responding sample moments of the signal. Notice that all
parameters of the ASE and Gaussian noise are estimated
based on moments associated with only two branches of the
trellis, independently of the number of states of the Viterbi
decoder. However, estimation of the noise-free signal values
flan,an_1,...,an_s+1) requires that the signal mean be
known for all branches. This is so because we do not constrain
the nonlinearity of the channel and specifying the most general
nonlinear function of § bits requires that all its 2° values be
specified. Equations similar to (8) can then be written to obtain
estimates of f(a,,an—1,...,a,—s+1) for all combinations of
values of ay,an_1,...,an_sy1. This provides the complete
estimation of the channel needed to implement the Viterbi
algorithm as described in the previous section.

B. Histogram Method

In this method, 2¢ histograms (one for each combination of
values of the receiver estimates of the 6 most recent received
bits @y, dn—1,...,0n_s4+1) are created.
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The signal is assumed to be quantized to K bits; therefore,
each histogram consists of at most 2% bins, where K is a de-
sign parameter. Notice that each histogram can be uniquely as-
sociated with a branch in the trellis diagram of the receiver. As-
suming that the number of signal samples collected is large, the
histogram (normalized so that the sum of all its bins is unity) is
an estimate of p(y,, | €, ). The histogram is updated iteratively,
based on the observed data. Assume that blocks of L samples are
collected and that l,gn) of the samples of the nth block fall into
bin £ of the histogram. Let p,(cn) be the estimate of the probability
corresponding to bin k after the nth block of data is processed,
and let ¢\ = 1" /L. It is shown in the Appendix ((82)) that
the estimator update equation is

e = =2+ gy (10)
where Ay is a parameter that controls the speed of the update,
which may be different for different bins. At any given itera-
tion n, p,(c"_l) is treated as the prior estimate of the probability
for bin &, and p,(c") is the posterior. Thus, A also controls how
much weight is given to the new evidence compared with the
prior. If no prior knowledge of the signal pdf is available when
the receiver begins to operate, A; must be made equal to 1 ini-
tially so that the estimate of the pdf is based exclusively on ob-
served samples (notice that a training sequence would be re-
quired in this case, since the receiver cannot be started in de-
cision-directed mode without making some assumption about
the signal pdf, on which the branch metric computations are
based). In successive iterations, \j is decreased, thus assigning
increasing weights to the observations previously accumulated.
The steady-state values of A; are design parameters. They de-
pend on the block size L and on how much weight it is desired
to give to the new observations versus the ones previously ac-
cumulated.

The main difficulty with the histogram method is that a large
number of samples is needed to obtain accurate estimates. This
is particularly problematic in the tail regions of the pdf, where
it may take an inordinate amount of time to obtain enough sam-
ples. In addition, samples in the tail regions could be corrupted
by decision errors, even at low BERs, although this problem can
be virtually eliminated using forward-error correction. On the
other hand, the MoM (Section IV-A) can yield accurate esti-
mates with a reasonable number of samples if the functional
form assumed is valid. However, in certain situations, the true
signal pdf may depart from the assumed functional form. One
of these situations may occur, for example, in DWDM systems
affected by four-wave mixing (FWM) and/or cross-phase modu-
lation (XPM). If the number of aggressors affecting the channel
under study is small, the interference could be significantly non-
Gaussian. In these situations, the pdf obtained using the MoM as
described in Section IV-A could be a reasonable initial approx-
imation to the true pdf, but actual information collected from
the samples of the received signal would significantly improve
the accuracy of the channel estimation. To apply this method,
the bins of the histogram are initialized using the best approxi-
mation to the pdf available before signal samples are collected,
which we call the prior pdf. The prior could be obtained using
the MoM or any other source of prior knowledge about the



AGAZZI et al.: MLSE IN DISPERSIVE OPTICAL CHANNELS

| [ [

2 w Prior ¢ ]
1 w/o Prior x
0 Prior _
I
s—1
=9
= X %
I A2
2 —4 %x

6

04 06 08 1 12 14 1.6
y (Normalized current)

1.8

Fig.3. Comparison between the histogram method with (w) and without (w/0)
prior initialization, L = 10°, and m = 100.

channel. The histogram is then updated iteratively, as discussed
previously.

As an example, we compare results obtained from the his-
togram method with and without initialization. We consider
transmissions over a nondispersive optical channel in the pres-
ence of ASE and thermal noise. Fig. 3 shows estimates of the
signal pdf corresponding to a,, = 1. The figure was generated
after receiving two data blocks of length L = 10° each, using
m = 100 (see Appendix). The optical signal-to-noise ratio
(OSNR) was OSNR = 16 dB (see (67)), the signal-to-Gaussian
(electrical)-noise ratio (SGNR) was SGNR = 20 dB (see (68)),
and the ratio of the O/E bandwidth of the front end was M = 3.
In this example, we used pasg(z, | e,) given by (3) as the
prior pdf. To estimate the parameters of this pdf, we applied
the MoM to the first block of L samples. Then, expression (10)
was used to update the pdf estimate using the rest of the data.
From Fig. 3, note that the values derived from the histogram
method without initialization are inaccurate in the tail regions
of the pdf, owing to the small number of samples available.
Initialization greatly improves the estimation in this region as
a result of the use of prior knowledge. This illustrates the ad-
vantages of combining the observations with prior knowledge
of the signal pdf.

In the following, we explore the effect of the selection of the
prior density. Fig. 4 depicts the normalized decision threshold
calculated using the histogram method with prior pdf on a dis-
persion-free channel. Two priors are considered: Gaussian and
chi-square. For the Gaussian, the mean and variance are esti-
mated from the first block of L = 10 received samples. For
the chi-square, the parameters are estimated using the MoM on
the first block of L samples. In the figure, we see the evolution
of both thresholds as the number of blocks of received samples
increases. Note that for the case of a Gaussian prior, around 400
data blocks were required to reach the optimum threshold, while
for the case of a chi-square prior, less than 100 data blocks were
necessary to reach that same threshold. Therefore, proper selec-
tion of the prior facilitates fast convergence. Note that the ad-
vantage grows in the presence of dispersion, since histograms
must be computed for each one of the 2° branches of the trellis.
This means that 2° times more data is needed to achieve equiv-
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alent accuracy of estimation. A good initialization is even more
important in this situation.

V. BER COMPUTATION

The probability of error of the Viterbi decoder is upper
bounded by [16]

P. < ZWH (a(i)ﬁ(j)) P (au) | ,,,(j)) P (au)) (11)
i#i

) @)

agj ,...7a%)) represents the transmitted

sequence, a) = (agi), agi), cee ag\i,)) is an erroneous sequence,
N is the total number of symbols transmitted, P(a® | a)) is
the probability of the error event ) — a( (the error event
that occurs when the Viterbi decoder chooses sequence a(®) in-
stead of a?)), and W (a™,al)) is the Hamming weight of
a® A a9 or, in other words, the number of bit errors in the
error event (A is the exclusive OR operator). P (a,(j )) is the prob-
ability that the transmitter sent sequence a®). It is well known
that (11) is a tight upper bound, and it can be used as an ap-
proximation to the probability of error. P (a(i) | all )) can be
computed based on (3) and the pdf of the Gaussian noise, but
the calculation does not have a closed-form solution. Define
b(Yn,en) = —Inp(yn | €,). Then, assuming that the erro-
neous sequence a differs from the transmitted sequence a only
for ng < n < nq, the receiver will choose the erroneous path if

where a) = (a{’

?

ni+6—1
Z b(yi, f(aisai1,...,ai 541))
i=n0
ny+6—1
> > b(yi f (G0 dica, . dimer)) . (12)
i:’no

Let RN be the vector space of N-tuples of real numbers,
where N is as before the total number of symbols transmitted.

Givenu = (u1,...,un),v = (vi,...,v5) € RY with
Un, :f(anvan—lrﬂvan—é-l—l) (13)
Un :f (dn7&n—17'--7&n—5+1) (14)
let L(u, v) be the locus of all points in RV such that
ni+6—1 ni+6—1
S blyiuw)= > blyivi). (15)
1=ng i=ng
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Fig. 5. Geometric interpretation of L(u, v) for a 2-D case.

Notice that sequences u and v differ only between ng and nj +
6 — 1. Fig. 5 shows a geometric interpretation for a two-dimen-
sional (2-D) case. It will be convenient in the following discus-
sion to introduce the functions

ni+6—1 ni+6—1
F(y,u)= Z b(yi,u;) and F(y,v)= Z b(yi,vi)
0 0 (16)
where y = (y1,¥2,...,yn) € RY. The probability of the error

event can be computed by integrating e~ ¥ %% over the en-
tire half-space containing v. The half-space containing v will be
called the error region for the pair (u, v), and it will be denoted
H (see the left side of Fig. 5). The integral is hard to compute,
but an approximation can easily be found using the method of
steepest descent as follows.

Define

G(y) = F(y,u) — F(y,v).

Let g be the vector in L(w,v) that minimizes F'(y,u). Then,
we can define the “distance” d between sequences u and v as

a7)

d=2F(Y,u). (18)

When the noise is Gaussian and signal independent, d is the
traditional Euclidean distance between sequences » and v. In
the general case of non-Gaussian signal-dependent noise, d is
not a distance since it does not meet the traditional conditions for
the definition of distance in metric spaces. However, by analogy
with the Gaussian case, we shall call it a “distance.” Although in
general there is no closed-form expression for d, it can be found
as a solution to the constrained optimization problem consisting
in minimizing F'(y, w) subject to the constraint G(y) = 0. This
problem can be solved numerically using commercial optimiza-
tion packages. In this paper, we use the MATLAB Optimization
Toolbox [20], which implements the sequential quadratic pro-
gramming optimization algorithm.

To obtain the probability of the error event, we now expand
F(y,w) in Taylor series up to second order around the con-
strained minimum ¥. Since F(y,u) is a sum of terms where
each term depends on only one component of y, the expansion
is

F(y,u) ~ Fo(y) = F(g,u)
ni+6—1 ni+6—1
+ Z pi(yi—7;) + Z ai(yi—7;)° (19
i=ng i=ng
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L(u,v)
where
0F (v,
;= M‘ : (20)
dyi  ly=y
and
10%F
4 = #l . 1)
2 01/1 Y=y
It is convenient to define the new variables
zi = /@i (yi — ;) (22)
then
ni+6—1 ny+6—1
Fo(z) = Yo omEt Y (23)
1=ng i=ng

where ; = pi/\/¢; and z = (z1,...,25) € RN . Let G(z) be

(17) expressed as a function of z, and

h =VG(2)|,_5 24
h

k=——. 25
Al =

It is clear that k is a unit vector normal to L(u,v) atg. It is
always possible to define an orthogonal transformation V' such

that Vk = e; = (1,0,...,0). Also define
s=Vz (26)
a=Vy. 27
Then, we can rewrite (23) in terms of variables s; as
ni+6—1 ni+6—1
i=ng i1=ng
By completing squares, (28) can be rewritten as
ni+6—1 . 2 ni+6—1 02
Fo(s) = F(7, ( . —’) - (29
o) =F@w+ Y (s+5) - > @9
1=ng 1=ng

The probability of the error event @ — a can be approximated
as

Pa|a)= / e FYHW gy ~ / e Fel®ds (30
H ’



AGAZZI et al.: MLSE IN DISPERSIVE OPTICAL CHANNELS

where H' is the region s; > 0 (see the right-hand side of Fig. 5).
Using (29), (30) can be expressed as

Pla|a) =~ / e Fe®) (g
B 1 7 YR\
=ex P[ 4 F(%")}Q(w) igo <E>
(31
where
Qz) = %erfc (\%) . (32)

To compute an approximation to the receiver BER, (11) is
used. As is common practice, the sum over error eventsin (11) is
replaced by its largest term, whose value is approximated using
(31). However, before (31) can be computed, the pairs of se-
quences that correspond to minimum distance error events must
be identified. This can be done by exhaustive search over a set
of error events of limited length.

In the remainder of this section, we consider two important
special cases where the theory developed above reduces to pre-
viously known results.

A. Gaussian Case

In this section, we consider the special case of Gaussian
signal-independent noise. Let o be its variance. Then

n1+6 1
02 Z — —(n1 +6—1-ng) In(2m0?).
i=ng (33)
Using (20)—(22) and (24) and (25), we get
_ 1
y= E(u +v) (34)
—(v—w) G3)
=—(wv—u
Y V2o
- v-r (36)
[v = ull
and
2 §—1-
F(g,u) = “1” _ (”1 + 5 “°> In(2r0?).  (37)
Note that for Gaussian channels F(y,u) = F(y) and H =
H’. Then, replacing in (31), we get
) v—u
rato = () G8)
o
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which is the usual expression for the probability of the error
event @ — a in the Gaussian case.

B. ASE-Limited Case

Next we address the special case of ASE-limited noise. To-
ward this end, we use an accurate approximation of (3) given by
[21, eq. (24)]

PASE(Z/n | en)

11 en 1/4 (VYn—ILsp—/€n)*
expl— 39)
2 \ais (yn sp) NO
where I, = NyM; then, (40), shown at the bottom of the page.

Using (20), (21), and (24), and assuming high signal-to-noise
ratio (SNR), we obtain

1_\/u_1~71/2
pi=—"% (41)
.—3/2
N
=Y 0 42
¢ 4N0 (42)
~1/4
¥ = \/_u1/4 (Vi — (43)
~1/4
2y,
hi =~ P (Vi = V) (44)

\/ﬁ 1/4

where §; = y; — Is,. Equations (41) through (44) can be directly
applied in (31) in order to obtain the probability of the error
event.

Next, we evaluate the probability of error for an ISI-free
system and compare the result with that obtained in previous
literature. Using (41) through (44), and taking into account
that for high SNR (|| > 0) the @ function in (31) can be

approximated by Q(z) ~ (1/v2rz)e~" /2, we obtain from

(3D

P(ala)~ = Nyl : [ Wu i)
2\/_yl/‘*lx/_—\/_l No

(45)
Let I (I(®) be the mean current generated by the
symbol corresponding to the bit 1 (0). For example, the
probability of the error event £&1,9 = {a=1—a =0}
(-1 = {a=0— a=1}) is given by (45) with u = (V)
(u=1 (0), 10 > 0). Note that the result agrees with the one
derived from [21, eq. (30)] when it is evaluated at high SNR.
Similarly, it can be easily shown that in the case of I(?) = 0
(i.e., no signal is present for the bit 0), our theory converges to
[21, eq. (16)] when the latter is evaluated at high SNR.
Fig. 6 shows the probability of the error event £1_.o as a
function of normalized (optical) signal-to-noise ratio (SNRT)
defined by SNRT = (IV /I, )M = IM /Ny (see [21]). It

ni+6—1

>

i=ng

F(y,u) ~

1 3
<1H(2 7T-]V-O) - Z hl(UL) + Z ln(yl - Isp) +

(40)

(\/yi_lsp_m)2> '

No
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Exact <— |
[21] Eq. (30) -&- |

s Ref.
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Fig. 6. Probability of the error event P (81_‘0) as a function of SNRT.

can be seen that the exact solution (integrating the exact pdf),
Marcuse’s approximation ([21, eq. (30)]), and the approxima-
tion derived from the theory of this paper (45) have nearly iden-
tical behavior. It is important to mention that in this example we
considered the case of high SNR only for mathematical conve-
nience, since the theory presented in this paper is valid for low
SNR as well.

VI. MISMATCHED RECEIVERS

The theory developed in the previous section assumes that the
receiver has perfect knowledge of the signal pdf. In many prac-
tical situations, this is not the case. In nonparametric estimation,
mismatches may occur when the number of samples used in the
estimation is insufficient. In parametric estimation, they may be
the result of assuming a functional form for the pdf that cannot
represent the channel accurately. Mismatches may also occur if
the number of states of the Viterbi decoder is not sufficient to
model the ISI present in the channel.

In this section, we extend the theory of Section V to mis-
matched receivers. Toward this end, we introduce a distinction
between the conditional pdf of the signal p(y, | e,) and its
model assumed by the receiver, which we denote D(Yn | én),
where é,, = f(an,an-1,...,a,_s ;). Note that the receiver
may assume a dispersion length $ different from the true disper-
sion length §. Define

~

by n) = =10 p(yo | 20) (46)
. n1+(§—1 R
and
Gly) = F(y, &) - F(y,9) (48)
with
i = f(anr Gnty 0y 501) (49)
’[A}n :f(arn&nfl ..... dn_6+1) (50)
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Fig. 7. Geometric interpretation for mismatched receivers.

Since the receiver makes decisions based on its own (mis-
matched) model of the channel, the error surface L(, ) is de-
fined by the equation

Gly) =0 (51)
and g is redefined as the vector in L(#@,?) that minimizes

F(y,u). Equations (19) through (23) remain valid. Vectors h
and k are replaced by

h= VACAT'(z)|z:5 (52)

A

k=—. (53)
IRl

Following steps similar to those of Section V, we finally ob-
tain the following expression for the probability of the error
eventa — a

ol armen P e 1o (PR 17 (7
P(a|‘1)~eXP[T_F('y:“)]Q<W> igo <E> .
54

A. Gaussian Case

As an example of application of the above theory, consider the
case of Gaussian signal-independent noise, where the receiver
mismatch is caused by ISI not accounted for by the function
f (@ns@n—1,...,a,_s,)in the channel estimator. For the pur-
pose of this example, we assume a fixed ISI pattern z, whose
components are given by

A~

in = f(a'n,; Ap—1y-- -, an—5+1) - f(an-, Ap—1y---, an—S-‘,—l)’
no<n<ng—6+1. (55
From Fig. 7, it is clear that
a+v . .
y= 5 +i— p(o—a) (56)
where
1-(0—u
H= ,\(4,\2) (57)
|9 —
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Also from Fig. 7

P= 1 (58)
9 —
It is easy to verify that
1 /1 R R
pi=—3 <§ - u) (0; — ;) (59)
1
= —= 60
? 202 (60)
and therefore
2 /1
'?Zg@—u)(ﬁ—ﬁ) (61)
Also
Pt L )
F(y,u) 1 2(n1 +6—1—mng)In(2rc%). (62)

Since the noise is Gaussian, note that F(y,u) = Fg(y) and
H = H'. Finally, replacing all these results in (54), we get

||a_a||2_2i-(a_a)>_

20|10 — @l

p@|@:@( (63)

This is the well-known result for the probability of an error event
in the presence of uncorrelated Gaussian noise and ISI (see, e.g.,
[22. eq. (22)]).

B. ASE-Limited Case

Based on the results of Section V-B, in the following, we an-
alyze the case of ASE-limited noise. We consider again the case
of ISI not completely accounted for by the channel estimator.
Expressions (40)—(44) are still valid. The probability of error
can be evaluated replacing them in (54).

As an example, we evaluate the performance of 1) a matched
receiver for the case of ISI-free received signal, 2) a mismatched
receiver for a channel with memory order 1, and 3) a receiver
perfectly matched to the channel of Case 2).

Case 1): This system is a simple threshold detector
where the threshold level is given by . Consider, for ex-
ample, the calculation of the probability of the error event
&o—1 = {a=0— a =1} (ie., a transmitted bit O is detected
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Probability of the error event £y_,1 as a function of SNRT (left). Representative pdfs at SNRT = 200 (right).

as a bit 1). Assuming that I(®) > 0, it can be obtained directly
from (45)

1m (1(0))1/4
R VT
xexp[ ( I(ONO vi)® ] (64)

Case 2): In this case, the receiver is also a threshold detector
with the same value of 7 given in 1), but the channel introduces
ISI. The received signal is given by

hO\/7+ hiv/Tn-1)*

where I; (I; € {I(®, I1(V}) is the mean current generated by
the bit a;. In this example, we assume that hg, h; > 0. The
value of hy is obtained by normalizing the channel energy (i.e.,
ho = /1 — h?). In the following, we consider the particular
dominant error event £&_,1 = {a = (0,1) — a = (1,1)}
(i.e., a transmitted O is detected as a 1 when there is a 1 in the
memory of the channel). In this case, the probability of the error

event can be evaluated as

l\/NO (hovl(o) + hlvf(l))l/Q
2 T 371/4|(h0~/1(0)—l—hp/I(l))—

_((hoVI(O) + hVID) —
Ny

f(an, an—1) (65)

P((‘:O_q) ~ \/5|
Vi)®

X exp (66)

Note that for small ISI (i.e., hy < hg), the middle factor in
(66) will be almost equal to the middle factor in (64). The main
difference in performance between 1) and 2) is produced by the
exponential function (it is easy to show that the term (hg VIO 4
h1VIM) in (66) will be larger than the term (V'I(0) of (64)).
This causes a degradation of the performance of the mismatched
receiver.

Case 3): In this case, the receiver can be implemented by a
two-state Viterbi detector (see (65)). The probability of the error
event £y_,1 can be obtained using the results of Section V-B.
Note that the main difference with (66) is that the matched re-
ceiver incorporates knowledge of the ISI in the channel state,
therefore yielding better performance than the receiver of Case
2).

Fig. 8 (left) shows the results for the probability of the error
event £y_,1 for all three cases. In this particular example, the
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IST coefficient h; was set to 0.05. The relatively large degra-
dation incurred by the mismatched receiver can be understood
analyzing Fig. 8 (right), where the representative pdfs of the
received signal in cases 1) and 2) are depicted with solid and
dashed lines, respectively (the vertical line shows the threshold
used). The pdfs for the ISI-free channel are used for symbol de-
tection in the receiver in both Case 1) and Case 2). Note that
the probability of the error event £y_,; is given by the integral
of the pdf of the symbol I(®) from threshold level to infinity.
A significant increase in P(&y_,1) from Case 1) to Case 2) can
be observed (inset graph is a zoom of the crossing point of the
pdfs). This explains the performance degradation incurred by
receiver (Case 2)). Notice that Cases 1) and 2) could have been
alternatively analyzed using [21, eq. (30)]. Although for clarity
this is not shown, the results agree with those of Fig. 8.

VII. SIMULATION RESULTS

Below we show simulation results that confirm the theoret-
ical analysis presented in previous sections. In the following,
we assume that the transmitted pulse has an unchirped enve-
lope exp(—t%/2T¢) with unit amplitude and T, = 36 ps. The
extinction ratio (r1g), defined hereafter, was set to 10 dB. Al-
though we consider chromatic dispersion only, the results are
also valid in the presence of PMD. In order to clearly distin-
guish the effects on receiver performance of the chi-square-dis-
tributed ASE noise and of the Gaussian noise contributed by the
receiver front end, we define two different SNRs: one that only
takes into account ASE noise and another that only takes into
account Gaussian thermal noise. They are defined as

7

OSNR = 27 optical-signal-to-noise ratio 67)
¢ 2

SGNR = =5, signal-to-Gaussian-noise ratio. (68)
UZ

Because of the nonlinear nature of the optical channel, we
define (? as the signal power in the electrical domain (i.e.,

N
Z?Zl e2 /2V). We also define the extinction ratio as

7

T10 = m (69)

In practical implementations, the extinction ratio usually is
7 dB or greater. The amount of noise is strongly dependent on
the system architecture. The OSNR depends on the transmit
laser and the number of optical amplifiers used. The SGNR de-
pends on the design of the receiver front end and the type of elec-
trical amplifiers used. In particular, thermal noise is different for
field-effect and bipolar transistors. In any case, for practical im-
plementations, the OSNR should be greater than ~ 15 dB, and
the SGNR should be greater than ~ 22 dB.

A. Performance of MLSE With an Unconstrained Complexity
Viterbi Decoder

We will analyze system performance for a Viterbi decoder
where exact knowledge of the channel impulse response is as-
sumed and the number of states of the receiver is sufficient
to allow an accurate representation of the nonlinear response
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Fig. 9. BER as a function of OSNR on a dispersive (1700 ps/nm) channel for
different SGNR values. Dashed curves represent the theory of this paper, and
crosses are simulation results. M = 3, bit rate = 10 Gb/s, and r1, = 10 dB.
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crosses are simulation results. M = 3, bit rate = 10 Gb/s, and r1, = 10 dB.

flan,an—1,...,an—_s+1) (in other words, the number of states
is at least 2°~1).

In Figs. 9-11, simulation results for the Viterbi decoder
(crosses) are compared against the theory (dashed lines) for DI
products of 1700, 3400, and 5100 ps/nm, respectively, where
D is the dispersion parameter and [ is the fiber length. For
example, they could correspond, respectively, to fiber links of
100, 200, and 300 km of standard single-mode fiber (SSMF)
as specified by the International Telecommunications Union
(ITU) Recommendation G.652 [23] used in the third telecom-
munications window (1550 nm), which leads to a dispersion
parameter D = 17 ps/km/nm. The Viterbi decoder uses 8, 16,
and 32 states, respectively, in order to model the entire channel
response in all cases. The good accuracy of the analytical
BER computation developed in the previous sections can be
observed.

The theoretical approximation developed in this paper
achieves its highest accuracy at low BERs (i.e., BER < 1073).
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For high BERs (low SNR), the prediction of the theory may
slightly depart from the simulation results. The departure is
the result of two main causes. The first is the simplification of
expression (11) where the sum over all error events is replaced
by its largest term. In the case of high BER, the probability
of some non-minimum-distance error events may be close to
that of minimum-distance events, therefore the terms neglected
in (11) may no longer be insignificant. Second, the quadratic
approximation to the logarithm of the pdf (19) may loose
some accuracy at low SNR. These factors explain the small
discrepancy between fitting of theory and simulation at low
SNR in Figs. 9 and 11 and 10 and 12. These inaccuracies
can be corrected simply by including more error events in
(11) besides those of minimum distance and increasing the
order of the Taylor series expansion in (19). Nevertheless, the
theory as applied in this paper proves to be extremely accurate
for practical values of BER (e.g., < 1072), making a higher
complexity unnecessary. It can be seen from the figures that
the mismatch between theory and simulations in the low SNR
region is less than 1 dB. Since the slope of the curves is small
in this region, the discrepancy is insignificant in terms of BER.

B. Mismatched Receivers: Inaccurate Knowledge of the
Signal pdf

We now illustrate the case of mismatched receivers where
the mismatch is due to an inaccurate knowledge of the signal
pdf. In Fig. 12, we compare three MLSE receivers using 1)
Euclidean metric (EM) (“[J”), 2) ASE-limited case metric
(ASE-M) (“x”), and 3) the exact metric based on Marcuse’s
derivation (“+”). Results derived from simulation (marks)
and theory (lines) are shown for SGNR = 22 dB. In every
case note that the values obtained from the theory accurately
match simulation results. In particular, it can be seen that EM
performs worse at low OSNR where ASE noise is dominant.
Conversely, ASE-M performs worse in the high-OSNR region,
where Gaussian noise is dominant.

C. Mismatched Receivers: Constrained Complexity
Viterbi Decoder

The complexity of the Viterbi algorithm grows exponentially
with the length of the channel memory. A reduction of the
decoder complexity can be achieved by mismatching Viterbi
memory from the channel memory (which leads to a reduc-
tion in the number of states of the receiver). In this case, the
ISI coefficients not modeled by the channel estimator in the
Viterbi decoder are considered as residual ISI (RISI), which
modifies the statistics of the received signal. The new statistic
can be computed as follows. The noise-free channel response
given by (2) is truncated to the L most representative bits. Let
(Gny@n-1,...,4n_s4+1) be a given group of & consecutive
transmitted bits. Assuming that the most representative bits are
consecutive, the corresponding noise-free signal is

én = f@n—L,,0n-L,—1,---s0n—L,—L+1) (70)

with L integer and L; + L < 6. The R = § — L bits not ac-
counted for by the channel estimator give rise to RISI. In this
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case, the conditional pdf of the received signal is evaluated av-
eraging over the 27 possible bit patterns, that is

1

en €E

where E denotes the set of the 2% noise-free signals e, =
.f(a’n7 Ap—1y--+, a’n—5+1) with

Ap—L; =0An—L,

yAn—L1—1 = 0n—1;-1

Ap—L;—L4+1 = On—L,—L+1-

Fig. 13 shows the penalty incurred on a
Dl = 5100 ps/km/nm fiber link by 8-, 16-, and 32-state
Viterbi detectors. We consider optical channel transmissions
with dominant ASE noise (i.e., effects of electrical noise are
neglected). For comparison, the results of the unconstrained
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complexity detector can be observed in Fig. 11 (SGNR
= oo dB). Equation (71) is used in (4) for metric computation.
Note the good agreement of the simulation results (“x”) and
the theory developed in this paper. In addition, from Fig. 13,
it can be observed that the number of states is a critical design
parameter for high-dispersion links. In particular, we see
that for fiber dispersion of 5100 ps/nm (300 km of SSMF),
the number of states of the Viterbi decoder needed to have a
reasonable penalty (e.g., < 3 dB) is at least 16.

In the case of high RISI, function F'(-,-) is not necessarily
monotonic. In this situation, the space may need to be parti-
tioned into more than two decision regions. However, this topic
will not be elaborated any further in this paper.

VIII. IMPLEMENTATION CONSIDERATIONS

Although the main purpose of this paper is to analyze the
structure and performance of the maximum-likelihood sequence
receiver for optical channels, it is also useful to consider some
issues that so far have precluded its practical implementation.
Our focus will be on receivers for data rates of 10 Gb/s or
higher. The implementation that can make this technology most
viable commercially is a digital monolithic integrated circuit in
CMOS technology. The main challenges to the design of such
a receiver are the implementation of the high-speed signal pro-
cessing functions and the ADC. Typical clock frequencies al-
lowed by current CMOS technology are in the 200-MHz range.
This is far from the 10-GHz symbol rate of optical receivers of
interest in this paper. Therefore, parallel processing techniques
are required [24]. Application of parallel processing techniques
to optical receivers to achieve a 10-Gb/s data rate with a reduced
clock rate was proposed in [25]. Parallel Viterbi decoders have
been described in [26] and [27], and references thereof. Appli-
cation of the sliding block Viterbi algorithm [27] and other ad-
vanced digital signal processing (DSP) techniques to optical re-
ceivers have been recently discussed in [2] and [8].

In this section, we focus primarily on the ADC. An MLSE-
based receiver capable of compensating the chromatic disper-
sion and PMD of up to 300 km of ITU G.652 single-mode fiber
requires an ADC with a resolution of about 6 b and symbol
rate sampling. To enable a commercially attractive solution, the
ADC must be integrated with the DSP in CMOS technology.
Although a 6-b, 10-GHz ADC is well beyond the state of the art
in CMOS technology, the required throughput can be achieved
with an interleaved array of ADCs sampling at a lower rate. The
use of interleaving to increase the effective rate of ADCs has
been extensively considered in the literature [28]-[30]. How-
ever, one of the difficulties encountered is that differences in
gain, offset, or sampling phase among the constituent ADCs
cause fixed pattern noise [29]. Fixed pattern noise has tradi-
tionally limited the applicability of interleaved ADCs. Calibra-
tion techniques have been developed [30], [31] to allow mis-
matches to be dynamically identified and compensated. These
techniques are well suited to communications receiver applica-
tions, because the calibration can easily be incorporated into the
adaptive loops used for timing recovery, automatic gain control
(AGCQC), offset compensation, and equalization.
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ADC phase error compensation through independent timing-recovery

Fig. 14 shows how phase errors among the interleaves of an
ADC array can be compensated by breaking the timing recovery
loop into a set of interleaved loops acting independently over
each ADC [32], [33]. A similar concept can be applied to the
AGC. By breaking a single AGC into interleaved loops, the
gain errors of the constituent ADCs can be compensated. ADCs
with a resolution of about 6 b and sampling rates of > 1 GHz
have already been demonstrated in CMOS technology. An inter-
leaved array of 8—10 of these converters could achieve an effec-
tive sampling rate of 10 GHz without loss of performance using
the digital calibration techniques just described. Additional de-
tails about these techniques can be found in [32] and [33].

IX. CONCLUSION

In this paper, the structure and performance of MLSE-based
optical receivers were analyzed. MLSE is useful to compen-
sate dispersion in the optical fiber, which becomes a significant
limitation at 10 Gb/s or higher rates. A theory of the error rate
of these receivers, which are characterized by the fact that the
channel is nonlinear and the noise is non-Gaussian and signal
dependent, was developed. The theory has been tested by com-
puter simulations and by analysis of limit cases where it reduces
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to previously known results. The applicability of the theory de-
veloped in this paper is not limited to optical channels. It can be
applied to other channels where the noise is non-Gaussian and
signal dependent.

APPENDIX
HiSTOGRAM UPDATE EQUATION

In this Appendix, we derive the update equation (10). We es-
timate the probability in each bin of the signal histogram inde-
pendently. For simplicity of notation, we drop the subscript k
used in Section IV-B to identify the bins. We also drop the time
index n.

Let p be the probability value associated with a certain bin
of the histogram. p is a random variable, and we wish to esti-
mate its mean value and its pdf. First, we are going to assume
that p is estimated in an entirely nonparametric fashion using
the histogram method, but instead of doing the estimation only
once based on all the data collected, we do the estimation iter-
atively, collecting blocks of L signal samples and using them
to update previous estimates of p. This approach is necessary
in a channel estimation application, since data is received con-
tinuously instead of being available in a single block when the
receiver is initialized. At the beginning, since we do not have
any prior knowledge of the pdf of p, we assume a uniform dis-
tribution. We conduct experiments, and we find that in L trials,
the signal falls in the bin under study a total of / times. The ini-
tial prior density of p is

o(p) = 1. (72)
The joint pdf of { and p is
F0.p) = £ )Thlo) = g =) " 73)
and the posterior probability is
i(p) =f(p|1) = fj(cl(’;))) = ];((lzi)) p”
= %p’(l -p)t!
10 +£)<£(Z i)z st C DR

Note that the latter expression corresponds to the Beta distribu-
tion
Pla+B) o
i(p) = s =77 2"
®) = Fayr(p)
withao =1+ 1land 3 =L -1+ 1.
We now iterate the procedure collecting L; more signal sam-
ples, of which /; fall in the bin under consideration. Using I1; (p)
as the prior, we get

(1-p)° (75)

(L+ Ly + 1)
A+ )L+ Ly —1—1)”

I+ (1 _ p)L+L1_l_ll

My (p) =
(76)
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which corresponds to a Beta distribution function with parame-
ters

a=Il+1 +1,
B=L+Ly—1—-1,+1.

(77)
(78)

In general, iterating the procedure, we get successive priors,
allin the form of Beta densities, with values of o and 3 reflecting
all samples taken in the past (in all measurements). Notice that
ITo(p) could be regarded as a Beta density with « = § = 1.
In a practical application, however, we may want to limit the
memory associated with the prior so that it does not become in-
creasingly more difficult to adapt it in the presence of new data.
This would be the case if the amount of data taken previously
were very large. Therefore, for the purpose of practical adaptive
noise estimation, we assume that the number (o — 1) of previous
hits in a certain bin is fixed. Then, based on the mean value of
p for that bin, we compute a total equivalent number of trials in
past experiments.

Let Mt be the total number of past trials and m the number
of hits in those past trials falling in the bin under study. We want
to fix m to a certain “reasonable” number and estimate M as

m m

Mp=—" =2 79
TTEp) D 9

where p is the mean value of p based on the prior density. It can
be shown that the posterior value of p is

m+1

E )= — 80
0 1)= 37 (80)

where L is the total number of new trials and [ is the number of

hits in the chosen bin in the L trials. Then, p can be recursively

adjusted by

_ pMr+1
—_——
Mr+ L

For practical applications, we define

L ~ m l
= =) = -, and §g= — (81)
Mr+L P I
obtaining the following recursive estimator for p:
p—(1-X)p+ Az (82)

From (81), it can be seen that for small values of p (e.g., p <K
10~%) X is essentially equal to A & L(p/m). For large values of
D, A — 1, meaning that we give much more weight to the new
evidence than to the prior knowledge. Introducing a subscript &k
to identify the histogram bins and a superscript n to number the
successive blocks of signal samples collected, and dropping the
bars, we obtain (10).

In a practical application of this method, P is not estimated
solely based on measured data. Instead, it is initialized with
some a priori pdf known to be a good approximation to the
true pdf, and then it is updated iteratively using observations
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and (10). In this form, the a priori knowledge of the pdf is com-
bined with observations to make the best possible use of all the
information available.

(1]

[2]

(3]

[4]
[5]

[6

—_

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

REFERENCES

J. H. Winters and R. D. Gitlin, “Electrical signal processing techniques
in long-haul fiber-optic systems,” IEEE Trans. Commun., vol. 38, no. 9,
pp. 1439-1453, Sep. 1990.
H. F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. Ur-
bansky, “Principles for electronic equalization for polarization-mode
dispersion,” J. Lightw. Technol., vol. 22, no. 4, pp. 1169-1182, Apr.
2004.
J. H. Winters, R. D. Gitlin, and S. Kasturia, “Reducing the effects of
transmission impairments in digital fiber optic systems,” IEEE Commun.
Mag., vol. 31, no. 6, pp. 68—76, Jun. 1993.
B. L. Kasper, “Equalization of multimode optical fiber systems,” Bell
Syst. Tech. J., vol. 61, no. 7, p. 1367, Sep. 1982.
A. J. Weiss, “On the performance of electrical equalization in optical
fiber transmission systems,” IEEE Photon. Technol. Lett., vol. 15, no. 9,
pp. 1225-1227, Sep. 2003.
F. Buchali and H. Bulow, “Adaptive PMD compensation by elec-
trical and optical techniques,” J. Lightw. Technol., vol. 22, no. 4, pp.
1116-1126, Apr. 2004.
O. E. Agazzi and V. Gopinathan. The impact of nonlinearity on elec-
tronic dispersion compensation of optical channels. presented at Optical
Fiber Communication Conf. Exhibit (OFC). [CD-ROM] Optical Society
of America, Washington, DC, presentation TuG6.
O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, “Maximum likelihood
sequence estimation in the presence of chromatic and polarization
mode dispersion in intensity modulation/direct detection optical chan-
nels,” in Proc. IEEE Int. Conf. Communications (ICC), Jun. 2004, pp.
2787-2793.
R. J. Nuyts, Y. K. Park, and P. Gallion, “Dispersion equalization of a
10 Gb/s repeatered transmission system using dispersion compensation
fibers,” J. Lightw. Technol., vol. 15, no. 1, pp. 31-42, Jan. 1997.
M. Secondini, E. Forestieri, and G. Prati, “Adaptive minimum MSE con-
trolled PLC optical equalizer for chromatic dispersion compensation,” J.
Lightw. Technol., vol. 21, no. 10, pp. 2322-2331, Oct. 2003.
E. Forestieri, G. Colavolpe, and G. Prati, “Novel MSE adaptive control
of optical PMD compensators,” J. Lightw. Technol., vol. 20, no. 12, pp.
1997-2003, Dec. 2002.
S. D. Personik, “Baseband linearity and equalization in fiber optic dig-
ital communications systems,” Bell Syst. Tech. J., vol. 52, no. 7, pp.
1175-1194, Sep. 1973.
B. E. A. Saleh and M. I. Irshid, “Coherence and intersymbol interfer-
ence in digital fiber optic communication systems,” IEEE J. Quantum
Electron., vol. QE-18, pp. 944-951, Jun. 1982.
D. Marcuse, “Calculation of bit-error probability for a lightwave system
with optical amplifiers and post-detection Gaussian noise,” J. Lightw.
Technol., vol. 9, pp. 505-513, Apr. 1991.
P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave sys-
tems with optical amplifiers,” J. Lightw. Technol., vol. 9, pp. 1576-1582,
Nov. 1991.
G. D. Forney, “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,” IEEE Trans.
Commun., vol. 18, no. 3, pp. 363-378, May 1972.
R. A.Kennedy, B. D. O. Anderson, and R. R. Bitmead, “Blind adaptation
of decision feedback equalizers: Gross convergence properties,” Int. J.
Adapt. Control Signal Process., vol. 7, pp. 497-523, 1993.
E. A. Lee and D. G. Messerschmitt, Digital Communication, 2d
ed. Norwell, MA: Kluwer, 1994, p. 713.
J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995, p. 594.

MATLAB, Software Package Version 6.1, The MathWorks, Inc.,
Natick, MA, 2002.
D. Marcuse, “Derivation of analytical expressions for the bit-error prob-
ability in lightwave systems with optical amplifiers,” J. Lightw. Technol.,
vol. 8, no. 12, pp. 1816-1823, Dec. 1990.
O.E. Agazzi and N. Seshadri, “On the use of tentative decisions to cancel
intersymbol interference and nonlinear distortion (with application to
magnetic recording channels),” IEEE Trans. Inf. Theory, vol. 43, no. 2,
pp. 394-408, Mar. 1997.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 2, FEBRUARY 2005

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Characteristics of Single-Mode Optical Fiber and Cable, ITU-T Rec-
ommendation G.652, 2003.

K. Parhi, VLSI Digital Signal Processing Systems.
1999.

O. E. Agazzi, V. Gopinathan, K. Parhi, K. Kota, and A. Phanse.
(2000) DSP Based Equalization for Optical Channels—Feasibility
of a VLSI Implementation. IEEE 802.3ae Task Force, New Orleans,
LA. [Online]. Available: http://grouper.ieee.org/groups/802/3/ae/
public/sep00/agazzi_1_0900.pdf

H. Dawid, G. Fettweis, and H. Meyr, “A CMOS IC for Gb/s Viterbi
decoding: System design and VLSI implementation,” IEEE Trans. Very
Large Scale (VLSI) Syst., vol. 4, no. 1, pp. 17-31, Mar. 1996.

P.J. Blackand T. H. Y. Meng, “A 1 Gb/s, four-state, sliding block Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 32, no. 6, pp. 797-805, Jun.
1997.

W. C. Black and D. A. Hodges, “Time-interleaved converter arrays,”
IEEE J. Solid-State Circuits, vol. 15, no. 6, pp. 1022-1029, Dec. 1980.
A. Petraglia and S. K. Mitra, “Analysis of mismatch effects among A/D
converters in a time-interleaved waveform digitizer,” IEEE Trans. In-
strum. Meas., vol. 40, no. 5, pp. 831-835, Oct. 1991.

D. Fu, K. C. Dyer, S. H. Lewis, and P. J. Hurst, “A digital background
calibration technique for time-interleaved analog-to-digital converters,”
IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1904-1911, Dec. 1998.
S. M. Jamal, D. Fu, M. P. Singh, P.J. Hurst, and S. H. Lewis, “Calibration
of sample-time error in a two-channel time-interleaved analog-to-digital
converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 1, pp.
130-139, Jan. 2004.

O. E. Agazzi and V. Gopinathan, “Methods and systems for DSP-based
receivers,” U.S. Patent US2002/0 080 898 A1 (pending), Jun. 27, 2002.
, “Methods and systems for digitally processing optical data sig-
nals,” U.S. Patent US2002/0012 152 A1 (pending), Jan. 31, 2002.

New York: Wiley,

Oscar E. Agazzi (S'79-M’82-SM’01-F’02) re-
ceived the Electrical and Electronic Engineer and
the Licentiate in Physics degrees from the National
University of Cordoba, Cordoba, Argentina, in
1974 and 1975, respectively, and the Ph.D. degree
in electronic engineering from the University of
California, Berkeley, in 1982.

Between 1982 and 1987, he was with the Re-
search Center of the Armed Forces, Buenos Aires,
Argentina. In 1987, he joined AT&T Bell Labo-
ratories, Murray Hill, NJ. In 1996, he moved to

Lucent Technologies Bell Laboratories, also in Murray Hill, where he became
a Bell Laboratories Fellow. Between 1997 and 2004, he was with Broadcom
Corporation, Irvine, CA. He is now with ClariPhy Communications, Inc.,
Irvine, CA. His interests are the theory and implementation of communications
systems and digital signal processing algorithms. He has published more than
40 technical papers in journals and conferences and has more than 40 patents
issued or pending.

Mario R. Hueda was born in Jujuy, Argentina, in
1967. He received the Electrical and Electronic En-
gineer degree and the Ph.D. degree from the National
University of Cordoba, Cordoba, Argentina, in 1994
and 2002, respectively.

From March 1994 to 1996, he received a
fellowship from CONICOR (the Scientific and
Technological Research Council of Cordoba) to
carry out research and development in the area of
voice-band data transmission. During the summer
of 1996, he was a Visiting Scholar with Lucent

Technologies—Bell Laboratories, Murray Hill, NJ, where he worked on
code-division multiple-access receivers. In 1997, he joined the Digital Commu-
nications Research Laboratory at the Department of Electronic Engineering of
the National University of Cordoba. He is currently also with CONICET (the
National Scientific and Technological Research Council of Argentina), Buenos
Aires, Argentina. His research interests include digital communications and
performance analysis of communication systems.



AGAZZI et al.: MLSE IN DISPERSIVE OPTICAL CHANNELS

Hugo S. Carrer was born in Cordoba, Argentina,
in 1976. He received the Electronic Engineer degree
from the National University of Cordoba, Cordoba,
Argentina, in 2001. He is currently working toward
the Ph.D. degree at the same university.

Since 2002, he has been with the Digital Commu-
nications Research Laboratory at the Department of
Electronic Engineering of the National University of
Cordoba. His research interests include equalization
and digital signal processing in high-speed lightwave
systems.

communication systems

763

Diego E. Crivelli was born in Buenos Aires,
Argentina, in 1976. He received the Electronic
Engineer degree from the National University of
Cordoba, Cordoba, Argentina, in 2002. He is cur-
rently working toward the Ph.D. degree at the same
university.

Since 2003, he has been with the Digital Commu-
nications Research Laboratory at the Department of
Electronic Engineering of the National University of
Cordoba. His research interests include modulation,
equalization, and coding in high-speed fiber-optic



	toc
	Maximum-Likelihood Sequence Estimation in Dispersive Optical Cha
	Oscar E. Agazzi, Fellow, IEEE, Mario R. Hueda, Hugo S. Carrer, a
	I. I NTRODUCTION
	II. T HE O PTICAL C HANNEL

	Fig.€1. Optical channel model.
	Fig.€2. Simplified optical receiver model.
	III. MLSE R ECEIVER FOR N ONLINEAR S IGNALS IN THE P RESENCE OF 
	IV. C HANNEL E STIMATION
	A. Method of Moments
	B. Histogram Method


	Fig.€3. Comparison between the histogram method with (w) and wit
	Fig.€4. Comparison between Gaussian and chi-square initializatio
	V. BER C OMPUTATION

	Fig. 5. Geometric interpretation of $L( {\mbi u}, {\mbi v})$ for
	A. Gaussian Case
	B. ASE-Limited Case

	Fig. 6. Probability of the error event $P( {\cal E}_{1\rightarro
	VI. M ISMATCHED R ECEIVERS

	Fig.€7. Geometric interpretation for mismatched receivers.
	A. Gaussian Case

	Fig. 8. Probability of the error event $ {\cal E}_{0\rightarrow 
	B. ASE-Limited Case
	Case 1): This system is a simple threshold detector where the th
	Case 2): In this case, the receiver is also a threshold detector
	Case 3): In this case, the receiver can be implemented by a two-

	VII. S IMULATION R ESULTS
	A. Performance of MLSE With an Unconstrained Complexity Viterbi 


	Fig.€9. BER as a function of OSNR on a dispersive (1700 ps/nm) c
	Fig.€10. BER as a function of OSNR on a dispersive (3400 ps/nm) 
	B. Mismatched Receivers: Inaccurate Knowledge of the Signal pdf
	C. Mismatched Receivers: Constrained Complexity Viterbi Decoder

	Fig.€11. BER as a function of OSNR on a dispersive (5100 ps/nm) 
	Fig.€12. BER for mismatched receivers as a function of OSNR on a
	VIII. I MPLEMENTATION C ONSIDERATIONS

	Fig.€13. Penalty incurred by constrained complexity Viterbi deco
	Fig.€14. ADC phase error compensation through independent timing
	IX. C ONCLUSION
	H ISTOGRAM U PDATE E QUATION
	J. H. Winters and R. D. Gitlin, Electrical signal processing tec
	H. F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. 
	J. H. Winters, R. D. Gitlin, and S. Kasturia, Reducing the effec
	B. L. Kasper, Equalization of multimode optical fiber systems, B
	A. J. Weiss, On the performance of electrical equalization in op
	F. Buchali and H. Bulow, Adaptive PMD compensation by electrical
	O. E. Agazzi and V. Gopinathan . The impact of nonlinearity on e
	O. E. Agazzi, D. E. Crivelli, and H. S. Carrer, Maximum likeliho
	R. J. Nuyts, Y. K. Park, and P. Gallion, Dispersion equalization
	M. Secondini, E. Forestieri, and G. Prati, Adaptive minimum MSE 
	E. Forestieri, G. Colavolpe, and G. Prati, Novel MSE adaptive co
	S. D. Personik, Baseband linearity and equalization in fiber opt
	B. E. A. Saleh and M. I. Irshid, Coherence and intersymbol inter
	D. Marcuse, Calculation of bit-error probability for a lightwave
	P. A. Humblet and M. Azizoglu, On the bit error rate of lightwav
	G. D. Forney, Maximum-likelihood sequence estimation of digital 
	R. A. Kennedy, B. D. O. Anderson, and R. R. Bitmead, Blind adapt
	E. A. Lee and D. G. Messerschmitt, Digital Communication, 2d ed.
	J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-

	MATLAB, Software Package Version 6.1, The MathWorks, Inc., Natic
	D. Marcuse, Derivation of analytical expressions for the bit-err
	O. E. Agazzi and N. Seshadri, On the use of tentative decisions 

	Characteristics of Single-Mode Optical Fiber and Cable, ITU-T Re
	K. Parhi, VLSI Digital Signal Processing Systems . New York: Wil
	O. E. Agazzi, V. Gopinathan, K. Parhi, K. Kota, and A. Phanse . 
	H. Dawid, G. Fettweis, and H. Meyr, A CMOS IC for Gb/s Viterbi d
	P. J. Black and T. H. Y. Meng, A 1 Gb/s, four-state, sliding blo
	W. C. Black and D. A. Hodges, Time-interleaved converter arrays,
	A. Petraglia and S. K. Mitra, Analysis of mismatch effects among
	D. Fu, K. C. Dyer, S. H. Lewis, and P. J. Hurst, A digital backg
	S. M. Jamal, D. Fu, M. P. Singh, P. J. Hurst, and S. H. Lewis, C
	O. E. Agazzi and V. Gopinathan, Methods and systems for DSP-base



