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Abstract—Maximum likelihood sequence es-
timation (MLSE) has been proposed in earlier
literature to combat the effects of nonlinear dis-
persion in intensity modulation/direct detec-
tion (IM/DD) optical channels. In this paper,
we develop a theory of the bit error rate (BER)
of MLSE-based IM/DD receivers operating in
the presence of nonlinear dispersion and am-
plified spontaneous emission (ASE) noise. We
focus on long haul or metro links spanning sev-
eral hundred kilometers of single mode fibers
with optical amplifiers. Numerical results show
a close agreement between the predictions of
the theory and computer simulations.
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estimation (MLSE), chromatic dispersion, po-
larization mode dispersion, amplified sponta-
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I INTRODUCTION

High-speed fiber optic transmission systems suffer
from impairments like chromatic dispersion (CD),
polarization mode dispersion (PMD), and amplified
spontaneous emission (ASE) noise due to optical am-
plifiers. The combination of these impairments with
the square-law response of the photodetector results
in nonlinear intersymbol interference (ISI) and non-
Gaussian, signal dependent noise. Due to this nonlin-
ear nature, techniques like feed forward equalization
(FFE) or decision feedback equalization (DFE) are
severely degraded, whereas maximum likelihood se-
quence estimation (MLSE) equalization is not (Agazzi
et al., 2004a).

MLSE receivers have been widely studied in the con-
text of additive white Gaussian noise (AWGN) chan-
nels. Nevertheless, among the properties that require
a new study on lightwave systems are the nonlinear na-
ture of the optical channel and the fact that the noise
is non-Gaussian and signal-dependent.

MLSE-based receivers have already been reported
(Winters and Gitlin, 1990; Haunstein et al., 2001;
Agazzi et al., 2004b). Weiss (2003) reported com-
puter simulations of MLSE receivers in the presence of
CD, PMD, and ASE noise. A semi-analytical method

to evaluate the bit error rate (BER) of MLSE based
IM/DD receivers operating in the presence of non-
linearities and generic non-Gaussian signal-dependent
noise, was introduced by Agazzi et al. (2004b). How-
ever, closed-form analytical expressions for the bit er-
ror probability similar to those available for AWGN
channels (Proakis, 1995) have not been reported so
far.

We introduce in this letter a simple analytical ex-
pression for the bit error rate in the ASE-limited
case, a condition usually satisfied in practice (Agrawal,
1997; Ramaswami and Sivarajan, 2002). Computer
simulations show a close agreement with the predic-
tions of our theory. Furthermore, our results are very
useful to analyze performance in schemes like turbo
equalization and turbo coding.

The rest of the paper is organized as follows. In
Section II we present the channel model. A brief de-
scription of MLSE receiver is given in Section III. Per-
formance analysis is introduced in Section IV. The
predictions of the theory are compared with simula-
tion results in Section V. Conclusions are drawn in
Section VI.

II CHANNEL MODEL

Figure 1 shows a simplified model of the system under
consideration. The transmitter modulates the inten-
sity of the signal using a binary alphabet. Let {an}
be the sequence of information bits at the input of
the optical transmitter (an ∈ A = {0, 1}). The op-
tical power ratio between the pulses representing a
logical 1 and a logical 0 is called the extinction ra-
tio. We assume that the intensity level for a logical 0
(an = 0) is different from zero (i.e., finite extinction
ratio), which is usual in practical transmitters (Ra-
maswami and Sivarajan, 2002). The optical fiber in-
troduces chromatic and polarization mode dispersion,
as well as attenuation. Optical amplifiers are deployed
periodically along the fiber to compensate for attenu-
ation, but also introduce ASE noise in the signal. The
received optical signal is filtered and then converted to
a current by a PIN diode or avalanche photodetector.
The resulting photocurrent is filtered by an integrate
and dump electrical filter (Marcuse, 1990). The out-
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Figure 1: Optical channel model.

put of the filter is sampled at the symbol rate and
applied to the MLSE-based detector.

The samples of the received electrical signal can be
expressed as

yn = In + nn = f(an) + nn, (1)

where In = f(an) represents the noise-free received
optical signal, which is in general a nonlinear func-
tion of a group of δ consecutive transmitted bits an =
(an, an−1, . . . , an−δ+1), and nn are samples of the non-
Gaussian signal-dependent noise originated by the di-
rect detection process of the optical signal and ASE
noise. ASE noise is considered as additive and Gaus-
sian in the optical domain, but due to squaring at the
photodiode, it becomes non-Gaussian and signal de-
pendent, and it is characterized by the χ2-distribution
(Marcuse, 1990). Thermal noise, shot noise, and noise
contributions from any other source are ignored since
it is assumed that ASE noise is dominant.

Based on the above considerations, it has been
shown that the probability density function (pdf) of
yn is given by:

fy|a(yn|an) =
M

Isp

(

yn
In

)(M−1)/2

exp
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)

, (2)

where Isp is related to the variance of the noise in
the optical domain, M is the ratio of the optical to
electrical bandwidth of the front-end, and Im(·) is the
mth modified Bessel function of the first kind. For a
detailed analysis of (2), the reader is referred to (Mar-
cuse, 1990).

III MLSE DETECTOR

The maximum likelihood sequence detector chooses,
among all possible transmitted bit sequences, the
sequence {ân} that minimizes the metric (Proakis,
1995):

mr =
∑

n

mn =
∑

n

− ln
(

fy|a(yn|ân)
)

, (3)

with ân = (ân, ân−1, . . . , ân−δ+1). The analysis and
implementation of the receiver can be simplified by

using the following approximation for the pdf (2):

fy|a(yn|an) ≈
1

2
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where Ispm , Isp/M and

Kn = In + Isp −
3

2
Ispm. (5)

The approximation (4) is derived in (Carrer et al.,
2003).

The minimization of (3) can be efficiently imple-
mented using the Viterbi algorithm. Using (4), the
expression for the metric required by the Viterbi algo-
rithm can be expressed as

mn =

(√
yn −

√

K̂n

)2

+
Ispm
2

ln(K̂n), (6)

where K̂n = În + Isp − 3
2Ispm, with În = f(ân).

IV PERFORMANCE ANALYSIS

In this section, we analyze the performance of the
MLSE described before. Toward this end, we use the
expression for the bit error probability of MLSE de-
coders (Lee and Messerschmitt, 1988) given by1

Pb =
∑

e∈E
w(e) Pr{Ψ̂|Ψ}Pr{Ψ}, (7)

where E is the set of all error events e starting at a
given time instant. Each error event e is characterized
by both a correct path Ψ = {an} and an incorrect
path Ψ̂ = {ân} that diverges from the correct path
at a given time instant and reemerges with the correct
path l time instants later. w(e) is the Hamming weight
of Ψ ∧ Ψ̂ or, in other words, the number of bit errors
in the error event (∧ is the exclusive OR operator).
Pr{Ψ̂|Ψ} is the probability of the error event Ψ → Ψ̂
(the Viterbi decoder chooses sequence Ψ̂ instead of Ψ),
and Pr{Ψ} is the probability that the transmitter sent
sequence Ψ.

From (6), note that the MLSE-based detector will
choose the erroneous path (i.e., Ψ→ Ψ̂) if
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where gn = 1

2Ispm ln(Kn) and ĝn = 1
2Ispm ln(K̂n). Af-

ter binomial expansion, some manipulation, and re-
placing un =

√
yn, we obtain
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1In our case, each detection error causes exactly one bit error.



where Gn = gn− ĝn. The probability density function
of un can be obtained (Papoulis, 1991) replacing (4)
in

fu|a(un|an) = 2unfy|a(u
2
n|an) un > 0, (10)

yielding

fu|a(un|an) =
un

√
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exp
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−
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]

.

(11)
For high optical signal-to-noise ratio (OSNR) (see

(19)), we verify that Pr{|un −
√
Kn| < ξ} → 1 with

ξ > 0 and ξ → 0. Then, expression (11) can be ap-
proximated as
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.

(12)
From (12) note that un can be considered as a Gaus-
sian variable with mean and variance respectively
given by

ηu = E{un} ≈
√

Kn, σ2
u ≈

Ispm
2

. (13)

Taking into account the independence of the samples
un (given the transmitted sequence), the left side of
inequality (9) is a Gaussian variable with mean and
variance respectively given by
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To obtain theoretical bounds for the bit error prob-
ability, we use the following upper bound for Pr{Ψ̂|Ψ}
(Lee and Messerschmitt, 1988):
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At high OSNR (see (19)), Gn can be neglected, and

Kn ≈ In, and K̂n ≈ În. (17)

From the above, and using (14), (15), and (17), it is
simple to verify that (16) reduces to
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where Q(x) = 1√
2π

∫∞
x
e−

1
2
t2dt. Let I0 and I1 be the

current generated by each constellation symbol. Then,
defining

• Extinction Ratio : r01 = r−1
10 =

I0
I1

(r01 > 0, see Section II),

•Optical Signal-to-Noise Ratio: OSNR =
I1
2Isp

,

(19)

•Normalized OSNR: SNRT , M OSNR,
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the error event probability (18) can be rewritten as

Pr
{

Ψ̂|Ψ
}
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(

√

SNRT β2 d2
)

, (20)

where β = 1 − √r01. Parameters β and d take into
account the reduction of SNRT owing to the extinction
ratio and channel dispersion (note that d2 = 1 for
optical channels with no dispersion).

Defining dmin as the minimum distance of an error
event, and taking into account that w(e) ≥ 1, the bit
error probability can be lower bounded by (Lee and
Messerschmitt, 1988)

Pb ≥ JQ

(

√

SNRT β2 d2
min

)

, (21)

where J =
∑

e∈D Pr{Ψ} and D is the set of error
events with distance dmin. The lower bound (21) with
J = 1 will be used in Section V to evaluate the per-
formance of MLSE-based receivers.

V SIMULATION RESULTS AND
DISCUSSION

In this section, we confirm the theoretical analysis in-
troduced previously by using computer simulations.
We present results for a dispersive optical channel with
single-mode fiber as specified by the ITU G.652 Rec-
ommendation (2003). The latter is used in the third
telecommunications window (1550 nm), which leads
to a dispersion parameter D = 17 ps/km-nm. We
consider a data rate of 10 Gb/s, r10 = 7 and 14 dB,
and M = 3. In the following we assume that the
transmitted pulse has an unchirped Gaussian enve-
lope exp(−t2/2T 2

0 ) with unit amplitude and T0 = 36
ps. The MLSE was implemented with an eight-state
Viterbi algorithm where a perfect knowledge of the
channel response is assumed.

Figures 2 and 3 show the bit error rate (BER) versus
OSNR for an optical channel with 100 and 200 km of
fiber span, respectively. We present theoretical values
obtained from (21), and simulation results of the entire
system using both (i) the optimum metrics based on
the exact pdf of the received signal (2), and (ii) the
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Figure 2: BER versus OSNR for 100 km of fiber. M =
3.
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Figure 3: BER versus OSNR for 200 km of fiber. M =
3.

approximate metrics defined by (6). Parameter dmin in
(21) is found from the Viterbi algorithm by exhaustive
search. In all cases, comparisons between the values
derived from the theory and simulation confirm the
good accuracy of the lower bound (21) presented in
this paper.

VI CONCLUSIONS

In this paper, we have introduced a new theoreti-
cal performance analysis of lightwave systems in the
presence of nonlinear dispersion and ASE noise. Un-
like previous contributions, we have derived a sim-
ple closed-form analytical expression for the bit error
probability. The accuracy of the new theory has been
confirmed by comparison with values derived from
computer simulations. Finally, although the analysis
presented here considers ideal optical/electrical filters
(e.g., integrate-and-dump electrical filters), simulation
results not presented in this work have shown that the
accuracy of the new analysis is also satisfactory for
more realistic filters such as, for example, raised cosine
optical and five-pole Bessel electrical filters (Bosco et
al., 2003; Forestieri, 2000)

REFERENCES

Agazzi O. E., and V. Gopinathan, “The impact of non-
linearity on electronic dispersion compensation of
optical channels,” in Proc. of the Optical Fiber
Communication Conference and Exhibit (OFC),
(2004a).

Agazzi O. E., D. E. Crivelli, and H. S. Carrer, “Maxi-
mum likelihood sequence estimation in the presence
of chromatic and polarization mode dispersion in
intensity modulation/direct detection optical chan-
nels,” in IEEE Proc. of the International Confer-
ence on Communications (ICC), 5, 2787–2793,
(2004b).

Agrawal G. P., Fiber-Optic Communication Systems.
Wiley-Interscience, (1997).

Bosco G., G. Montrosi, and S. Benedetto, “Soft decod-
ing in optical systems,” IEEE Trans. Commun.,
51, 1258–1265, (2003).

Carrer H. S., D. E. Crivelli, and M. R. Hueda, “Nuevo
detector para sistemas de transmisión por fibra
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