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Abstract

As sessile cells of fungal biofilms are at least 500-fold more resistant to antifungal drugs than their plank-
tonic counterparts, there is a requirement for new antifungal agents. Olygostyrylbenzenes (OSBs) are the
first generation of poly(phenylene)vinylene dendrimers with a gram-positive antibacterial activity. Thus, this
study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms
of Candida tropicalis. The minimum inhibitory concentration (MIC) for the planktonic population and the ses-
sile minimum inhibitory concentrations (SMIC) were determined. Biofilm eradication was studied by crystal
violet stain and light microscopy (LM), and confocal laser scanning microscopy (CLSM) was also utilized
in conjunction with the image analysis software COMSTAT. Although all the OSBs studied had antifungal
activity, the cationic OSBs were more effective than the anionic ones. A significant reduction of biofilms was
observed at MIC and supraMIC50 (50 times higher than MIC) for compound 2, and at supraMIC50 with com-
pound 3. Alterations in surface topography and the three-dimensional architecture of the biofilms were evi-
dentwith LM and CLSM. The LM analysis revealed that the C. tropicalis strain produced a striking biofilm with
oval blastospores, pseudohyphae, and true hyphae. CLSM images showed that a decrease occurred in the
thickness of the mature biofilms treated with the OSBs at the most effective concentration for each one. The
results obtained by microscopy were supported by those of the COMSTAT program. Our results revealed an
antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections.

Lay Summary

This study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and
biofilms of Candida tropicalis. Our results revealed an antibiofilm activity, with compound 2 being a potential
candidate for the treatment of C. tropicalis infections.
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Abbreviations CFU colony-forming unit
AmB Amphotericin B

AMP antimicrobial peptides cv cFystal violet )

BBU biofilm biomass units . d1methylsulf0x1de‘

CAMPs cationic antimicrobial peptides ECM extracellular matrix
FBS Fetal Bovine Serum
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CLSM  confocal laser scanning microscopy
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LM light microscope

MFC minimum fungicidal concentration

MIC minimum inhibitory concentration

NCPF National Collection of Pathogenic Fungi

OD optical density

OSBs olygostyrylbenzenes

RPMI Roswell Park Memorial Institute

SD standard deviation

SDA and SDB  Sabouraud dextrose agar or broth

SMIC sessile minimal inhibitory concentration

subMIC10 concentration 10 times lower than the MIC

supraMIC50  concentration 50 times higher than the
minimum inhibitory concentrations

supraMIC100  concentration 100 times higher than the
minimum inhibitory concentrations

Introduction

Some previous studies have described an increase in fungal super-
ficial infections and serious invasive candidiasis closely related to
Candida tropicalis.'=3 Concerning this, biofilms are considered
to be self-protective mechanisms for the growth of microorgan-
isms and crucial to the development of chronic infections.*>’
They have also been observed as adherent sessile cell populations
attached to a surface within a slimy extracellular matrix (ECM).
The sessile cells adhere to the animate or inanimate surfaces,
grow and divide to form microcolonies, and finally form macro-
colonies, which lead to mature biofilms.® The biofilms associated
with Candida infections are clinically relevant due to their mul-
tifactorial resistance and tolerance to antifungal agents.>>’~" Of
these, C. tropicalis has been reported to have a high capacity
to form biofilms with a dense network of yeast and filamentous
cells within an ECM.'%-12 The diffusion within C. tropicalis
biofilms is less than that of Candida glabrata or Candida krusei
biofilms.!3 This different composition and quantity of ECM per-
mits less penetration, for example, to antifungal agents such as
amphotericin B (AmB).%>4

An increase in biofilm resistant infections caused by Candida
strains has stimulated research into new chemotherapeutic

14,15 with it having been described that biofilms are at

agents,
least 500-fold more resistant to antifungal agents than their
planktonic cells.®'> For this reason, a constant research effort
is needed to search for new antifungal agents to treat relevant
infections, especially those associated with the formation of
biofilms. Recently, oligostyrylbenzenes (OSBs) have emerged
as a new family of compounds with antibacterial properties.'®
OSBs are simple aromatic systems with a rigid conjugate scaf-
fold, and have been reported as first generation dendrimers
of polyphenylene-vinylene (Fig. 1).!” These have been ex-
tensively studied for their good fluorescence properties, and

recently reported as being potent Gram-positive antibacterial

agents.'®18-20 However, these structures present few advantages,
as OSBs have a rigid core and the functional groups are placed at
a specific location. In addition, although the conjugated scaffold
has no activity, the specific structure and geometry, along with
the peripheral groups and the molecular polarity, make it easy to
establish a correlation between the structure and activity. Never-
theless, increasing the number of active functional groups does
not always result in a higher activity, because a perfect balance
between the hydrophobic and hydrophilic parts of the molecule
is required. The conjugated core has a high fluorescence that can
be used as a probe to localize and rationalize the mechanism of
these molecules. Moreover, OSBs have shown low cytotoxicity
against COS-1 and VERO cells.'® However, there is no informa-
tion available about OSB antifungal action, either on planktonic
cells or biofilms.

The present study aimed at evaluating the potential antifun-
gal activity on planktonic yeast cells and the antibiofilm action
of four OSBs against C. tropicalis.

Our results showed that compound 2 had an important
fungicidal action with biofilm eradication. This OSB compound
could therefore be a potential candidate for the treatment of C.
tropicalis infections.

Methods

Culture medium and reagents

Sabouraud dextrose broth (SDB) and agar (SDA, Difco, De-
troit, MI, USA), crystal violet (CV, Anedra Buenos Aires,
Argentina), AmB, Roswell Park Memorial Institute (RPMI)
medium, phosphate-buffered saline, Calcofluor-White M2R,
Evans Blue (Sigma Aldrich Co., St. Louis, MO, USA), fetal
bovine serum (FBS, Greiner Bio-One, Frickenhausen, Germany),
and dimethylsulfoxide (DMSO, Merck Darmstadt, Germany).

Oligostyrylbenzene derivatives

Four OSBs with different functional groups designated 1, 2, 3,
and 4 were used (Fig. 1), prepared according to standardized
techniques in organic chemistry and characterized by nuclear
magnetic resonance, Fourier-transform infrared spectroscopy
and the electromagnetic spectrum.'®?? For biological exper-
iments, a stock solution of each compound (10 mg/ml) was
prepared with 1% DMSO.

Yeast strain

The yeast strain C. tropicalis 3111 from the National Collection
of Pathogenic Fungi (NCPE, Bristol, UK) was used. This strain
was frozen (—80°C) in SDB with glycerol 15% (v/v). Yeast cells
were subcultured onto SDA and incubated at 37°C for 24 hours

for antifungal activity experiments.>"»>?
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Figure 1. Chemical structure of four OSBs differently functionalized called 1, 2, 3, and 4.

Antifungal activity in planktonic yeast cells

The minimum inhibitory concentration (MIC) and the min-
imum fungicidal concentration (MFC) for planktonic yeast
cells for each OSB compound and for AmB were determined
following standard methods.?®* The MIC is defined as the lowest
concentration that will inhibit visible growth of a microorgan-
ism, and the MFC is the lowest concentration that will prevent
the growth of yeast after subculture onto antifungal free media.

The effects of OSBs 1, 2, 3, and 4 on biofilms were analyzed
using an overnight culture in SDB with a yeast concentration of
1 x 10° colony-forming units (cfu) per ml, equal to 0.5 on the
McFarland scale. RPMI medium with 0.2% glucose, glutamine
and buffered with morpholino propane sulphonic acid (0.16 M,
pH 7.0 £ 0.1) was used. Serial dilutions of each compound in this
medium (2-256 ug/ml) were placed in a 96-well microplate in
triplicate. Fungal inoculum (1 x 10° cfu/ml) was diluted in RPMI
medium (1:1000) and incubated at 37°C for 48 hours.23-2¢

For the MFC experiment, we seeded each well in which
fungal growth was not observed with 100 ul SDA. The broth
dilutions were streaked onto SDA and incubated for 48 hours,
and the lowest value of each compound which eliminated 99.9%
of the initial inoculum was defined as the MFC.%’

Antibiofilm activity

The sessile minimum inhibitory concentration (SMIC) was
determined as described below. Briefly, 100 ul per well of
each compound was added and the following four different
concentrations were evaluated: subMIC concentration (10 times
lower than MIC), MIC concentration, and two supraMIC con-
centrations (50 and 100 times higher than MIC). In addition,
wells without AmB or OSB but with 1% (v/v) DMSO were
used as control. After inoculation, the 96-well microplate was
incubated for 48 hours at 37°C, and the optical density (OD)
was determined at 595 nm.

The SMIC50 and SMIC80 values were defined as the values at
which the OD values decreased by 50 and 80%, respectively.?®-2”
In the case of AmB, 200 ug/ml corresponded to the SMIC80
value. The biofilms were measured by staining the adherent
sessile cells with CV on a flat-bottomed 96-well microplate
(Greiner Bio-One).?*"?° Using the 1.0 McFarland standards,
yeast cells were placed into wells and incubated for 90 minutes at
37°C. Previously, plates had been pretreated with FBS 50% (v/v)
to increase the adherence of the yeast cells to the well surfaces.
The supernatant was removed, and the microplate was washed.
Then, 200 ul of SDB was added and incubated for 48 hours at
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37°C without shaking. After this incubation time, nonadhered
cells were washed, and 200 ul of each compound was added and
incubated for 48 hours at 37°C. The samples were gently rinsed
and allowed to dry for 24 hours at room temperature prior to CV
staining. Yeast cells were washed with phosphate-buffered saline
to pH 7.0 + 0.1. The microplate was stained with 200 ul of 1%
(w/v) CV for 5 minutes, after which the wells were washed with
phosphate-buffered saline to remove unreacted dye, and then
200 ul of ethanol/glacial acetone bleaching solution (70/30) were
added. The total biomass of biofilms was quantified by spec-
trophotometric reading of the OD at 595 nm using a microplate
reader (Infinite F50 Model, Tecan, Australia). The average OD
of the control wells (ODc, containing only SDB at pH 6.5)
was subtracted from the OD of all wells tested. The untreated
biofilms were considered to be a positive control of mature
biofilm formation, and were treated with AmB (200 pg/ml) as a
positive control of antifungal activity on mature biofilms.?4-2¢
The biofilm biomass unit (BBU) is an arbitrary number that is
related to the optical density of the biofilm.?? The percentage of
biofilm reduction was calculated using the following equation:3°
%R = Control OD595 nm — OSB OD595 nm

1
Control ODs95 ym x 100

Cultivable sessile yeast cells

Cultivable sessile cells of the mature biofilms were determined
after exposure to the compounds by plate count (cfu/ml). The
incubation time was 48 hours at 37°C without shaking. The
supernatant wells were removed and 100 ul of sterile phosphate-
buffered saline were added, after which, the microplate was
sonicated (40 kHz, 60 seconds) in order to resuspend and
homogenize the sessile cells. Then, 100 ul of sterile phosphate-
buffered saline previously diluted (1/1000) in SDB were seeded
onto a SDA plate and incubated for 24-48 h at 37°C.3! Finally,
correlation studies between cfu/ml and BBU were peformed.>4-2¢

Microscopic analysis of biofilms

C. tropicalis biofilms were developed on glass covers (12 mm O,
Menzel Deckgliser, Braunschweig, Germany) placed in a 24-well
microplate (Greiner Bio-One) treated with FBS 50% (v/v). After
biofilm compound exposure, the supernatants were removed,
and the covers were rinsed with sterile phosphate-buffered saline.
The samples studied at the highest concentration of eradication
were the positive control of mature biofilms (without antifungal
treatment) and the samples with compounds or with AmB.>»2#-26

To carry out the light microscope (LM) analyses, the samples
were washed and dried at 24°C. Then, each condition was
stained with 1% (w/v) CV for 5 minutes, and the samples
were observed at 100-600x using an inverted LM (Ax overt
40 C, Carl Zeiss Microlmaging GmbH, Gottingen, Germany).
Finally, morphology yeast forms and the biofilm micro- and

macrocolonies were observed.*2¢

Table 1. Minimum inhibitory concentration (MIC) and minimum
fungicidal concentration (MFC) of four oligostyrylbenzenes com-
pounds (1, 2, 3, and 4) and amphotericin B (AmB) evaluated in
planktonic cells of Candida tropicalis.

1 2 3 4 AmB

(ng/ml)  (ug/ml)  (ug/ml)  (ug/ml)  (ug/ml)
MIC 32 8 64 16 0.25
MFC 64 8 128 16 0.25

Biofilms were further characterized by confocal laser scan-
ning microscopy (CLSM), with the biofilms being stained with
Calcofluor-White 15 ul in a 1:1 mixture of Calcofluor-White
(0.5 g/l) and 10% (w/v) KOH, which was added to each of
the glass covers and incubated for 5 minutes in the dark at
room temperature.*?? Afterward, the samples were assembled
to perform the analysis. The covers were examined by using
a Fluoview FV1000 Spectral Olympus CSLM (Olympus Latin
America, Miami, FL, USA) equipped with a PLAPON 60X O
NA:1.42 Olympus oil immersion lens, with static CLSM images
being acquired at 0.5 — 1 um z intervals.?1-24-26

For microscopic analyses, three independent experiments
were performed in triplicate. These images were obtained and
evaluated independently by two investigators (M.A.Q. and
M.G.P.). Representative microscopic images and statistical re-
sults are shown in Figure 3. An analysis was performed using the
software COMSTAT.32-33 The following variables that describe
the structure of biofilms were analyzed: biomass or biovolume
(um3/um?), average microcolony volume (um?), maximum
diffusion distance (um), average diffusion distance (um) and
roughness coefficient.3?>33 The evaluation of the images was

carried out using the Image] free software !-2%26-31

Statistical analysis

The data represent the mean (+ standard deviation [SD]) of three
independent experiments, which were performed in triplicate.
The relationship between the CV and cfu/ml assay values was
calculated using the Pearson product correlation. The data were
also analyzed by using analysis of variance (ANOVA) followed
by the Student-Newman-Keuls test for multiple comparisons.
Values of *P < .01 and **P < .001 were considered to be
significant when comparing with nontreated biofilms.

Results

To study the relationship between antifungal action and an-
tibiofilm activity, the MIC and MFC values of each compound
against planktonic fungal cells were determined. Table 1 summa-
rizes the MIC and MFC determinations of C. #ropicalis NCPF
3111 in relation to the OSBs. The lowest value of MFC that
killed 99.9% of yeast was for compound 2, which achieved the
fungicidal endpoint with 8 pg/ml. Compound 4 also revealed
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Figure 2. Antifungal activity of oligostyrylbenzene (OSB) derivatives and Amphotericin B (AmB) on Candida tropicalis biofilms. (A) Quantification by crystal violet
(CV) staining expressed in biofilm biomass units (BBU). (B) The samples were stained with CV for LM (100x). Abbreviations: MIC, minimum inhibitory concentra-
tion; subMIC10, concentration 10 times lower than the MIC value; supraMIC50, concentration 50 times higher than the MIC value; supraMIC100, concentration 100
times higher than the MIC value; AmB SMIC80, 80% reduction in the BBU of the biofilms treated with the antifungal compared with control wells corresponding
to supraMIC800. All experiments were performed in triplicate, and the numerical data were presented as means + standard deviation. Differences in *P < .01

and **P < .001 were considered significant compared with untreated biofilms.

a good fungicidal activity (16 ug/ml). With respect to AmB, the
MIC and MFC values were 0.25 ug/ml. The MICs were close
to MFCs for the four OSBs, indicating a fungicidal effect on
planktonic yeast cells. Nevertheless, different values of MICs
were obtained for each compound.

Candida species have been reported as being potent biofilm
producers. This finding was studied using a microtiter plate
biofilm assay and CV stains for C. tropicalis NCPF 3111, a strain
classified as a prolific biofilm former (BBU 33.00 + 0.60). Under
subMIC10 concentrations, the four compounds produced little
reduction in the BBU. However, the BBU decreased significantly
at MIC values for compound 2 (3.27 & 0.81 **P < .001). This
value was almost 10 times lower than that found for untreated
biofilms, which represented a reduction of 90% (**P < .001)
(Fig. 2A). In contrast, supraMIC50 enhanced the effect of
compounds 2 and 3, reducing the BBU. Furthermore, this reduc-
tion for compound 2 represented an eradication rate of 94%
(**P < .001), which was similar to the AmB (200 pg/ml) value.
In contrast, the biofilm reduction was lower at the supraMIC100
value for all OSBs, possibly due to the paradoxical effect, which
also was reported for other antifungal agents. It should also
be noted that during the experiment the negative control (with
DMSO) did not show any activity. In addition, a good correla-
tion between the CV assay and cfu/ml was obtained (data not
shown). The LM images indicated the presence of yeast, pseudo-

and true hyphae, and micro- and macrocolonies in untreated
biofilms. We confirmed antibiofilm activity, which was exhibited
by a decrease in the thickness of the biofilms. The presence of
biofilm microcolonies of compound 2 was similar to that of
AmB, in terms of having the highest levels of reduction (Fig. 2 B).

The biofilm architecture was measured using CLSM, which
can be used to obtain information about the topography and
biofilm organization, as well as the sessile cell morphological
details and spatial localization. Figure 3 shows the CLSM images
for XY (top) and XZ (bottom), with the blue channel showing
Calcofluor-White dying sessile cell walls of C. #ropicalis, and
with CLSM confirming the antibiofilm activity of OSBs on
mature biofilms. Figure 3A-D displays the CLSM images, which
reveal a decrease in the mature biofilm thickness when treated
with OSBs at the most effective concentration for both AmB
(SMIC80) (Fig. 3E) and untreated biofilms (Fig. 3F). The three-
dimensional images of the topographic surfaces and architecture
of the biofilms reveal void space in the matrix, channels, and
pore morphology alterations, which could change in stream
velocity inside the ECM (Fig. 3, inset).

Various biofilm morphological parameters under different
treatment strategies were quantified using the software COM-
STAT (Table 2). The highest reduction of biomass was obtained
for OSB compound 2, compared to the untreated biofilms and
AmB. The average microcolony volume was reduced in these
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(A)
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Figure 3. Confocal laser scanning microscopy (CLSM) images showing the effect of oligostyrylbenzene (OSB) compounds on Candida tropicalis biofilms. (A) 1
at supraMIC50, (B) 2 at MIC, (C) 3 at supraMIC50, (D) 4 at supraMIC100, (E) AmB at SMIC80, and (F) untreated biofilms. The blue channel shows Calcofluor-White
dying sessile cell walls. Images were captured at 600x magnification and a scale bar of 10 xm. Inset: Different topographic surface architectures of mature biofilm
obtained by 3D image structure reconstruction.

Table 2. COMSTAT analysis of architectural parameters of Candida tropicalis mature biofilms treated with four oligostyrylbenzenes (OSBs)
compounds or with amphotericin B (AmB).

1 2 3 4 AmB Untreated

(supra MIC50) (supra MICS50) (supra MIC50) (supra MICS50) (SMICS80) biofilms
Bio-volume (pm3/pum?) 1.35 + 0.24** 0.57 £ 0.01** 1.48 + 0.29** 1.48 + 0.317** 0.76 £ 0.07%* 9.27 £+ 1.61
Average microcolony volume (um3)  16.70 + 0.32%* 6.09 £ 0.14** 12.95 £+ 0.55* 11.55 £ 0.13 9.03 + 0.20 10.85 £ 0.74
Maximum diffusion distance (um) 9.65 + 0.12 17.19 £ 1.28** 17.01 + 1.77** 8.12 + 0.43 14.29 £+ 0.65%** 9.60 + 0.40
Average diffusion distance (um) 0.51 + 0.02* 0.81 + 0.03** 0.29 + 0.08 0.16 + 0.01* 0.12 + 0.01* 0.25 + 0.05
Roughness coefficient 1.39 + 0.19** 1.83 + 0.11** 1.77 + 0.03** 1.30 + 0.24** 1.62 + 0.01%** 0.17 £ 0.01

All experiments were performed in triplicate, and numerical data were presented as means + standard deviation. *P < .01 and **P < .001 values were considered significant
when compared with nontreated biofilms.

OSBs, as illustrated in the LM image. In addition, biofilms
treated with compound 2 exhibited a higher maximum diffusion
distance, as well as a greater average diffusion distance and
roughness coefficient, compared to untreated biofilms.

Discussion

Although non-albicans Candida species have emerged as an
important cause of infections, there is still a lack of information
about their antifungal resistance and pathogenicity.'3-%-10,37,38

Consequently, there is a constant need for new research into

novel antifungal agents. C. tropicalis has emerged as one of the
most important Candida species in terms of epidemiology and
virulence, especially in Asia and the majority of Latin American
countries.”>” Moreover, this species has been recognized as
being a very strong biofilm producer, even greater than other
Candida species.!»10-12,15

Few antifungal drugs can be used systemically for invasive
fungal infections, and are limited when compared with other
drugs to treat bacterial infections.®~?>37-3% In addition, they are

increasingly compromised by the rise of drug resistance.®%1* In

0Z0Z 8unf g} uo Jasn yajolqgigsiansiaaiun ejesddn Aq 6/5/585/9v08eAW/AWW/E60 L 01 /10p/10B1Sqe-[0iB-a0uBApE/AWW/ WO dNo"olWapeoe.//:sdny WoJj papeojumoq



Quinteros et al.

particular, the development of new antibiofilm agents is urgently
needed to reduce the incidence of biofilm-associated infections,
due to biofilm involvement in infectious disease and the spread
of multi-drug resistance.*°

We have previously shown that these compounds presented
antibacterial activity, and a preliminary study was performed to
test these compounds on the bacteria.!® The cationic OSBs 2 and
4 are bactericides and penetrated to the cell, while the anionic
OSBs 1 and 3 remained stuck outside on the membrane and
developed a bacteriostatic behavior. Although the mechanism
of OSB molecules as antifungals is still unclear, there are some
physicochemical properties of these molecules that, on com-
parison with others, can help elucidate their action mechanism
on planktonic cells. To our knowledge, no prior studies have
examined the killing activities of OSBs against C. tropicalis. In
the present study, the compounds evaluated showed a fungicidal
effect on fungal planktonic forms, with the MIC and MFC
values being found to be between 32 and 256 times higher
than the MIC of AmB. The OSBs have an amphiphilic struc-
ture with a hydrophobic conjugate core and peripheral ionic
groups. Electrostatic interactions of OSBs with polysaccha-
rides (negatively charged) or proteins (positively charged), and
hydrophobic interaction with lipids in the fungus wall, could
be the main causes of antifungal action of OSBs. In fact, the
OSBs revealed different antifungal activities on planktonic cells
(MICs 8-64 ug/ml), and the MIC values were close to those
of the MFCs (MFC/MIC < 2). This has also been previously
observed for other molecules with similar structures, such as
quaternary ammonium salts or the well-known benzalkonium
chlorides.>* Although different values of MICs were found for
each compound, the antimicrobial peptides (AMP) have broad-
spectrum activities and multiple mechanisms of action. Cationic
antimicrobial peptides (CAMPs) are short, positively charged
peptides with an amphipathic structure.>® Concerning these,
only a few studies have described the effect of CAMPs on biofilm
formation by fungal pathogens such as Candida.’® Similarly, the
target of CAMPs is the microbial cytoplasmic membranes, and
their mechanism of action is associated with pore-forming and
general membrane permeabilization.>® According to different
studies, OSB antimicrobial activity depends on the electrostatic
charge and the hydrophobicity of its structure.*"*? This suggests
that antifungal activity may depend on the balance between the
charge and the hydrophobicity present in the OSB molecules.
From our results, we hypothesize that OSB may interact with
the cell wall of the fungi, as cationic OSB 2 and 4 are antifungal
and revealed a higher activity than anionic OSB 1 and 3. Thus,
this different behavior observed may be partly explained by the
fungal cell wall being mainly composed of negatively charged
polysaccharides that interact strongly with cationic OSB.

Compound 1 was active against the C. tropicalis NCPF 3111
biofilms, attaining SMICS50 values (which caused 50% biofilm
reduction) at the supraMICS50 concentration. In addition, com-

pound 2 reached the SMIC80 value at MIC and supraMIC50
concentrations, with compound 3 achieving SMIC50 at MIC
and SMIC80 at supraMIC50 values, and the lowest biofilm
reduction being observed for compound 4. Our results revealed
that compound 2 was more active than the other OSBs in
sessile cells, as well as in planktonic forms, since it required
a concentration 50 times higher than its MIC (supraMIC50)
to reach SMIC80. To produce the same effect, AmB had
to be used at a concentration 800 times higher than its MIC
(supraMIC800). Similarly, Tolosa et al. reported that compounds
1 and 2 were more active as antibacterials than compounds
3 and 4.1

At supraMIC100 values, our results demonstrated that
biofilm reduction was lower in the four OSB treatments, being
more susceptible to reduction at lower concentrations. This
was possibly due to a paradoxical antifungal effect,*> which
has been defined as regrowth occurring at two dilutions above
SMIC80 and having been described for Candida spp. in an in
vitro biofilm model with echinocandins.'S>*3:* The nature of
this paradoxical effect, however, is not yet fully understood and
has been the focus of many studies.** Melo et al. analyzed the
manifestation of the paradoxical effect for several isolates of
C. albicans, C. tropicalis, C. parapsilosis, C. orthopsilosis, and
C. metapsilosis.*® Interestingly, paradoxical growth was more
frequently observed when the isolates were grown as biofilms
(80%) compared to planktonic cell culturing conditions (40%).
At the same time, for echinocandin, one important factor that
determines the manifestation of this paradoxical effect is the
concentration itself, as demonstrated by paradoxical growth in
the presence of high echinocandin concentrations.

The LM analysis showed that the C. tropicalis strain pro-
duced a striking biofilm with oval blastospores, pseudohyphae
and true hyphae. CLSM has been used to evaluate the archi-
tecture, topographic biofilm surface and the morphological
and spatial localization of sessile forms inside the biofilms. The
biomass biofilm parameters, such as roughness coefficient, pores
and voids inside treated biofilms, were significantly different
among the different OSBs. The biofilm bio-volume (um?/um?),
along with the average micro-colony volume (um?), shows the
forms of the sessile cells occupying the surface. An established
biofilm comprises sessile cells and ECM, which in turn, are
comprised of polysaccharides, proteins, extracellular DNA
(eDNA) and lipids. The biofilm architecture determines the mi-
croenvironment, because it governs the liquid and nutrient flow,
charge, stability properties and hydrophilic and hydrophobic
interactions.3'>32

Fungal infections are recurrent in the clinical environment,
so the development of novel approaches to treat Candida infec-
tions has a great clinical relevance, especially those associated
with biofilms, because antifungal drugs have little effect on
them. Our results revealed, for the first time, fungicidal action
in planktonic yeast cells and an important antibiofilm activity
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of OSB compounds. Moreover, OSB 2 could be a potential
candidate for C. tropicalis infections.
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