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Abstract 

In the Northern Patagonian gulfs of Argentina, Golfo Nuevo (GN) and Golfo San 
José (GSJ), blooms of toxigenic microalgae and the detection of their associated 
phycotoxins are recurrent phenomena. The present study evaluated the transfer of 
phycotoxins from toxigenic microalgae to mesozooplankton in GN and GSJ 
throughout an annual cycle (December 2014-2015 and January 2015-2016, 
respectively). In addition, solid-phase adsorption toxin tracking (SPATT) samplers 
were deployed, for the first time in these gulfs, to estimate the occurrence of 
phycotoxins in the seawater between the phytoplankton samplings. Domoic acid 
(DA) was present throughout annual cycle in SPATT samplers, while no paralytic 
shellfish poisoning (PSP) toxins were detected. Ten toxigenic species were 
identified: Alexandrium catenella, Dinophysis acuminata, D. acuta, D. tripos, D. 
caudata, Prorocentrum lima, Pseudo-nitzschia australis, P. calliantha, P. 
fraudulenta, and P. pungens. Lipophilic and hydrophilic toxins were detected in 
phytoplankton and mesozooplankton from both gulfs. Pseudo-nitzschia spp. were 
the toxigenic species most frequent in these gulfs. Consequently, DA was the 
phycotoxin most abundantly detected and transferred to upper trophic levels. 
Spirolides were detected in phytoplankton and mesozooplankton for the first time 
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in the study area. Likewise, dinophysistoxins were found in mesozooplankton from 
both gulfs and this is the first report of the presence of these phycotoxins in 
zooplankton from the Argentine Sea. The dominance of calanoid copepods 
indicates that they were the primary vector of phycotoxins in the pelagic trophic 
web. 

Keywords: Phycotoxins trophic transfer; Northern Patagonian gulfs; 
mesozooplankton accumulation; toxigenic phytoplankton; harmful algal blooms; 
phycotoxins 

Introduction 

Certain marine microalgae produce potent toxins that negatively affect human and 
ecosystem health, as well as economic activities that depend on marine resources 
when they are transported and accumulated through the marine food webs. In 
humans, phycotoxins can produce different types of gastrointestinal and 
neurological symptoms and even death due to the ingestion of contaminated 
seafood (Esteves et al. 1992; Shumway 1990; Lincoln et al. 2001). Impacts on 
marine organisms are generally observed as acute intoxications that include mass 
mortality of cultivated and wild organisms (such as fishes, birds and marine 
mammals) (Geraci et al. 1989; Anderson and White 1992; Gulland 1999; Núñez-
Vázquez et al. 2004; Gayoso and Fulco 2006; Montoya and Carreto 2007; De la 
Riva et al. 2009; Fire et al. 2010). Although toxic microalgae are consumed by 
various marine organisms (Turner 2010), it has been reported that the main entry 
point for phycotoxins into the pelagic food web is copepods (Turner 2014).  

Recently passive sampling techniques for monitoring the occurrence of 
phycotoxins and shellfish contamination events have been developed worldwide 
(MacKenzie et al. 2004; Lane et al. 2010; MacKenzie 2010). The techniques 
include the passive accumulation of phycotoxins from the water column onto 
porous synthetic resin filled sachets (solid-phase adsorption toxin tracking, 
SPATT) and their subsequent extraction and analysis (MacKenzie et al. 2004). The 
SPATT methodology has several advantages, such as that the adsorbed toxins are 
not subject to biotransformation and depuration unlike in shellfish, and time and 
space integrated sampling of toxins that simulates shellfish adsorption. Although 
the use of SPATT samplers to provide an early warning of lipophilic toxins has 
been questioned (Pizarro et al. 2013), several studies have demonstrated that 
SPATT samplers coupled to sensitive analytical technologies such as LC–MS/MS 
is a highly sensitive tool allowing for early information on the presence of this 
group of phycotoxins (Turrel et al. 2007; Reguera et al. 2012; McCarthy et al. 
2014).  

In the Argentine Sea, harmful algal blooms (HAB) occur frequently and repeat 
with varying intensities over the years (Gayoso and Fulco 2006; Almandoz et al. 
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2007; Montoya et al. 2010; D’Agostino et al. 2015; Carreto et al. 2016; D’Agostino 
et al. 2018). To date, five shellfish poisoning symptoms have been reported in 
Argentine Sea (reviewed by Krock et al. 2018). The North Patagonian Gulfs of 
Argentina, Golfo Nuevo (GN), Golfo San José (GSJ) and Golfo San Matías (GSM) 
(Figure 1), are some of the most productive areas of the Patagonian Shelf 
ecosystem (Carreto et al. 1986; Acha et al. 2004). These gulfs are characterized by 
an important biodiversity, with the presence of marine mammals (Harris and 
García 1990; Crespo and Pedraza 1991; Bastida and Rodríguez 2009), marine birds 
(Yorio et al. 1998), fishes (Elías 1998), natural shellfish banks (Orensanz et al. 
2007; Amoroso et al. 2011) and seaweed beds (Boraso and Kreibohm 1984). In 
these gulfs, blooms of toxigenic microalgae as well as the detection of their 
respective toxins are recurring phenomena. In this sense, a HAB and Shellfish 
Toxicity Monitoring Program has been carried out in coastal waters of the North 
Patagonian gulfs since 2000. Paralytic shellfish poisoning (PSP), diarrhetic 
shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP) toxins are 
monitored frequently and the shellfish fisheries in both GN and GSJ have been 
closed annually, because levels of paralytic shellfish toxins, produced by the 
dinoflagellate A. catenella (formerly named A. tamarense), were above the 
regulatory limit of 80 µg saxitoxin (STX) eq. 100 g-1 of mussel tissue (HAB and 
Shellfish Toxicity Monitoring Program; Wilson et al. 2015). On the other hand, 
only in a few years (2009, 2011, 2017, 2018 and 2019) the harvest of mollusks was 
closed either in GN and/or GSJ, because DSP toxin (produced by dinoflagellates of 
the genera Dinophysis and Prorocentrum) levels in shellfish field samples 
exceeded the regulatory limits (Harmful Algal Bloom and Shellfish Toxicity 
Monitoring Program; Gracia Villalobos et al. 2015). In contrast, they have not been 
closed due to domoic acid (DA), a neurotoxin produced by species of the diatom 
genus Pseudo-nitzschia (the regulatory limit for DA is 20 μg g-1 of mussel tissue). 
Although no cases of ASP events have been documented to date either in wildlife 
or in humans in the North Patagonian gulfs, previous research carried out in GN 
and GSJ showed the presence of DA in phytoplankton and mesozooplankton 
(mostly calanoid copepods) samples, as well as in fecal samples of whales 
(Eubalaena australis) collected at similar sites and on similar dates to those of the 
present study (D’Agostino et al. 2017). These findings indicate that the southern 
right whales are exposed to DA through the ingestion of contaminated 
zooplankton, mainly copepods, while they remain in their calving grounds in these 
gulfs. This could, in turn, become a risk for other species due the transfer of 
phycotoxins through the food web. In contrast, to date, spirolides (spiroimine 
shellfish poisoning, SSP) and azaspiracids (azaspiracid shellfish poisoning, AZP) 
have not been observed in these gulfs. In view of the above, the aim of the present 
study was to investigate the transfer of phycotoxins from toxigenic microalgae to 
mesozooplankton in GN and GSJ throughout an annual cycle. In this study levels 
of phycotoxins dissolved in the water column of North Patagonian gulfs were 
quantified and analyzed for the first time. The present study contributes baseline 
knowledge on the occurrence of phycotoxins and their accumulation in higher 
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trophic levels in GN and GSJ, and provides new information about the seasonal 
dynamics of phycotoxins in this area throughout an annual cycle. 

Materials and methods 

Sample collection 

Plankton and seawater samples were collected on an approximately monthly basis 
at three sites (S) in GN (S1 = 42.61°S, 64.29°W; S2 = 42.63°S, 64.27°W; S3 = 
42.56°S, 64.34°W) and GSJ (S1 = 42.40°S, 64.12°W; S2 = 42.37°S, 64.08°W; S3 
= 42.33°S, 64.08°W) (Figure 1). Sampling was carried out in GN from December 
2014 to December 2015 (nphyto S1 = 11, S2 = 10, S3 = 9; nmesozoo S1 = 11, S2 = 10, 
S3 = 9), and in GSJ from January 2015 to January 2016 (nphyto S1 = 10, S2 = 10, S3 
= 10; nmesozoo S1 = 10, S2 = 10, S3 = 10). The PSP toxin analyses of plankton 
(phyto- and mesozooplankton) were performed from samples collected in GN from 
July 2015 to December 2015 (nphyto S1 = 5, S2 = 4, S3 = 3; nmesozoo S1 = 5, S2 = 4, 
S3 = 3) and in GSJ from August 2015 to January 2016 (nphyto S1 = 5, S2 = 5, S3 = 
5; nmesozoo S1 = 5, S2 = 5, S3 = 5). At each sampling site, surface seawater 
temperature was measured in situ with a portable thermometer (for details see 
D’Agostino et al. 2018). Seawater was subsequently sampled at 3 m and 10 m 
depths using a 2.5 L Van Dorn bottle from a boat. One liter from each depth was 
mixed and 500 mL were taken for the analysis of chlorophyll a (Chl-a) and 
phaeopigments (Phae), and a 250 mL aliquot was fixed with Lugol’s solution at a 
final concentration of 0.4 mL 100 mL-1 (Ferrario et al. 1995) for quantitative 
analysis of toxigenic species. Phytoplankton samples for both relative abundance 
and phycotoxin analysis were collected using oblique net tows from 20 m depth to 
the surface using a 20 µm mesh net while traveling over a 7 min period at a speed 
of 2 knots. Samples were collected in 500 mL plastic bottles. Net tow samples for 
relative abundance analysis were fixed with 4% formaldehyde, whereas samples 
for phycotoxin analysis were placed in portable coolers and immediately processed 
after returning to the laboratory (see below). Mesozooplankton samples for 
quantitative taxonomic and phycotoxin analysis were collected using a 335 µm 
mesh net equipped with a flow meter (General Oceanics Model 2030R) on mouth 
of the net. Net tows were performed obliquely from a depth of 30 m to the surface 
for 7 min period at a speed of 2 knots and the samples were put in 250 mL plastic 
flasks. Mesozooplankton samples for taxonomic analysis were fixed with 4% 
formaldehyde, whereas samples for phycotoxin extractions were placed in portable 
coolers and immediately processed after returning to the laboratory (see below). 
The mesozooplankton samples collected in October in GN could not be used in the 
analyses of phycotoxins, because of an intense P. australis bloom and long chains 
of this species were found in the respective mesozooplankton samples which made 
it impossible to attribute any phycotoxins to mesozooplankton. 
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Phycopigment analysis 

For Chl-a determination, the seawater samples were filtered through GF/F filters 
(25 mm and 0.7 μm in pore size) which were stored frozen at -20 °C. Chl-a was 
extracted during 24 h at 4 °C with 5 ml 90% acetone in darkness. Extracts were 
centrifuged at 1,680 x g for 5 minutes. Chl-a and Phae were subsequently 
quantified using a spectrofluorophotometer (Shimatzu RF-5301PC) at λEx/λEm: 
430/671 nm calibrated with a standard of Anacystis nidulans and concentrations 
were estimated according to Holm-Hansen et al. (1965) equations. Chl-a is a 
photosynthetic pigment common to all autotrophic phytoplankton organisms. 
Concentration data from high performance liquid chromatography (HPLC) analysis 
were therefore used to estimate phytoplankton biomass (Almandoz et al. 2011; 
Gonçalves-Araujo et al. 2016). Chl-a values were corrected for Phae by 
acidification with HCl (0.1 N). Phae (mainly phaeofitin) was used as a principal 
indicator of Chl-a degradation as a result of herbivorous zooplankton grazing 
(Lorenzen 1967; Helling and Baars 1985; Head and Harris 1992).  

Species identification and abundance of planktonic organisms 

Microalgae species in bottle samples were enumerated with an inverted microscope 
(Leica DMIL) at × 200 magnification following Utermöhl (1958). For toxigenic 
diatoms identification, net samples were cleaned (Hasle and Fryxell, 1970). 
Naphrax mounted slides (Ferrario et al. 1995) were observed with an optical 
microscope equipped with phase contrast at × 400 and × 1000 magnification. 
Scanning electron microscopy observations of the samples were made with a Jeol 
JSM-6360 LV at the Facultad de Ciencias Naturales y Museo, Universidad 
Nacional de La Plata, and with Zeiss Supra 40 at the Advanced Microscopy Center 
of the Universidad de Buenos Aires (UBA) in order to identify Pseudo-nitzschia 
species. Taxonomic phytoplankton identifications were based on the specific 
literature (Balech 1995, 2002; Boltovskoy 1995; Tomas 1997; Ferrario et al. 1999, 
2002; Lundholm et al. 2003; Fryxell and Hasle 2004; Sar et al. 2006; Almandoz et 
al. 2007; Reguera et al. 2012; Guiry and Guiry 2017). Phytoplankton abundances 
were expressed as cells per liter (cells L-1). For qualitative estimation, net samples 
were standardized into an abundance scale. Abundance estimates were obtained by 
counting the number of cells for toxic species in three 0.1 mL aliquots. The 
abundance classification was performed using a relative abundance scale between 0 
and 6 (0 = absent and 6 = bloom [> 1,000,000]; for details see Gracia Villalobos et 
al. 2015) according to the abundance of this species in natural populations. For data 
presentation the abundance of toxigenic species identified in bottle samples were 
standardized to the same relative abundance scale. When the same species was 
identified in both the bottle and net samples at the same site, the highest abundance 
was used in subsequent analyses.  

A Pearson correlation was used to investigate the relationships between 
phytoplankton biomass and phytoplankton abundances. In all tests, the threshold 
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for significance was set at 0.05. Statistical analyses were conducted in InfoStat 
(free version) software packages. 

Mesozooplankton samples for species identification and enumeration were 
examined under a stereo microscope Nikon SMZ645 at × 30, × 40 and × 50 
magnification. Potential consumers of toxic microalgae were identified to the 
lowest possible taxonomic level using appropriate literature (Boltovskoy 1981, 
1999; Kirkwood 1982; Cervellini 1988; Harris et al. 2000; Young 2002). 
According to the abundance of organisms observed a priori in the samples, total or 
aliquot counts were applied. In the latter case, samples were subsampled (1/10) 
(Boltovskoy 1981) and all individuals were then identified and counted. 
Mesozooplankton abundances were expressed as number of individuals per cubic 
meter (ind m-3). 

SPATT samplers 

SPATT samplers were deployed to complement sporadic phytoplankton and toxin 
sampling with integrated toxin sampling over an extended period. The purpose of 
the deployment of SPATT samplers was also to evaluate the presence/absence of 
phycotoxins in the study area and to confirm that no phycotoxin classes were 
missed by discrete phytoplankton sampling. The SPATT samplers were prepared 
from 95 µm polyester mesh that contained ~ 10 g (dry weight) of DIAION HP20 
(Sigma, Deisenhofen, Germany) resin. For activation, SPATT samplers were 
conditioned in 100% MeOH for approximately 24 h. Then, they were rinsed 
several times with distilled water and kept wet and refrigerated between 4-6 °C 
until they were placed on the study site in GN and GSJ (Figure 1). In each gulf, two 
SPATT samplers were deployed at a fixed sampling site (GN = 42.61°S, 64.27°W; 
GSJ = 42.41°S, 64.11°W; Figure 1), shallow (≈ 15 m) and anchored approximately 
1 m from the seabed. One of the SPATT samplers was used for the analysis of 
hydrophilic PSP toxins, while the other was used for analysis of DA and lipophilic 
toxins. The SPATT samplers were replaced monthly (at the same time of plankton 
and seawater samples were collect) and kept at 4 °C until extraction. 

Phycotoxin analysis 

Phytoplankton samples for phycotoxins extraction were filtered through GF/F 
filters (25 mm and 0.7 μm in pore size) and frozen (-20 °C) until analysis. Filters 
were transferred into FastPrep tubes containing 0.9 g of lysing matrix D (Thermo 
Savant, Illkirch, France) and 0.5 mL of methanol was added to extract multiple 
lipophilic toxins (such as DA, gymnodimine (GYM), spirolides (SPXs), 
dinophysistoxins (DTXs), okadaic acid (OA), pectenotoxins (PTXs), yessotoxins 
(YTXs), and azaspiracids (AZAs)) and 1 mL 0.03 M acetic acid was added to 
extract hydrophilic PSP toxins. The samples were homogenized by reciprocal 
shaking at maximum speed (6.5 m s-1) for 45 s in a Bio101 FastPrep instrument 
(Thermo Savant, Illkirch, France). After homogenization, samples were centrifuged 
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(Eppendorf 5415 R, Hamburg, Germany) at 16,100 × g at 4 °C for 15 min. 
Supernatants were transferred to centrifugation filters (0.45 μm pore-size, Millipore 
Ultrafree, Eschborn, Germany) and centrifuged at 800 × g at 4 °C for 30 s, and then 
transferred to autosampler vials (Krock et al. 2008). 

Mesozooplankton samples for phycotoxin extraction were filtered through GF/F 
filters (47 mm and 0.7 µm in pore size) and frozen (-20 °C) until analysis. Filters 
for lipophilic toxins extraction were cut in half and transferred into FastPrep tubes 
containing 0.9 g lysing matrix D (Thermo Savant, Illkirch, France) and 1 mL 
methanol was added. Samples were homogenized as described above. Filtrates of 
the same samples were combined and dried in a gentle nitrogen stream and 
reconstituted with methanol to a final volume of 0.5 mL. Subsequently, the extracts 
were filtered through centrifugation filters (0.45 μm pore-size, Millipore Ultrafree, 
Eschborn, Germany) at 16,100 × g at 4 °C for 5 min. Samples were transferred into 
an autosampler vial for LC-MS/MS analyses (Tammilehto et al. 2012). For 
extraction of hydrophilic toxins, filters were cut in small fractions and transferred 
into centrifuge tubes and phycotoxins were extracted in acetic acid 0.03 M (4 mL) 
with the use of ultrasonication (Sonopuls HD 2070, Bandelin, Berlin, Germany; 2 
min/7 cycles/ 96% power). Samples were vortexed (Heidolph Reax top) for 2 min, 
centrifuged (Eppendorf 5810R) at 3220 × g at 4 °C for 10 min, and the supernatant 
was transferred into centrifuge tubes and stored at 4 °C until used (Leandro et al. 
2010). The residues were reextracted once as described above. Then, extracts were 
combined and evaporated using a rotary evaporator (Heidolph Rotary Evaporator, 
Laborota 4002), and the volumes were adjusted to 1 mL with 0.03 M acetic acid. 
Finally, the concentrates were filtered through centrifugation filters (0.45 μm pore-
size, Millipore Ultrafree, Eschborn, Germany), and centrifuged at 3,000 × g at 4 °C 
for 30 s, and then transferred to autosampler vials. 

Each SPATT sampler for lipophilic toxin extractions was rinsed three times with 
500 mL of Milli-Q water. SPATT samplers were subsequently dried on filter paper 
for 3 h at 50 °C in a drying oven. Then, dry SPATT samplers were opened, and the 
resins were transferred to 50 mL centrifuge tubes and 30 mL of 100% MeOH was 
added. The mixture was vortexed for 1 min, and the tubes were left overnight in 
order to extract the lipophilic toxins adsorbed by the resins. Subsequently, the 
mixture of resins with MeOH were transferred into chromatographic glass columns 
(27 cm length, 13 mm ID, packed with a 2 cm layer of quartz wool and 1 cm of 
quartz sand), and the centrifugation tubes were rinsed with an additional 15 mL 
methanol. Methanol was eluted dropwise from the column until the liquid reached 
the top column layer and subsequently another 25 mL were added to each column 
for complete extraction of toxins. Finally, fractions were combined and methanol 
evaporated using a rotary evaporator (Heidolph Rotary Evaporator, Laborota 4002) 
to a final volume of approximately 0.5 mL. The concentrates were transferred to 
HPLC vials and adjusted with methanol to 1 mL. The extracts were filtered through 
centrifugation filters (0.45 mm pore-size, Millipore Ultrafree, Eschborn, Germany) 
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at 3000 × g at 4 °C for 0.5 min. Samples were transferred into an autosampler vial 
for lipophilic toxin analysis (Fux et al. 2008). 

PSP toxins accumulated in SPATT samplers were extracted following the 
methodology described in Rodríguez et al. (2011) with little modification. Each 
SPATT sampler was opened and the resin was transferred to a chromatographic 
column. The resin was then rinsed with 7 mL of Milli-Q water and the PSP toxins 
were eluted twice with a solution of 10% MeOH (3.5 mL) containing 2% of 100% 
acetic acid. Finally, the rinsed water fraction and the two methanolic fractions were 
combined and evaporated using a rotary evaporator (Heidolph Rotary Evaporator, 
Laborota 4002) until approximately 0.5 mL, then the final volume was adjusted to 
1 mL with acetic acid (0.03 N). Subsequently, the extracts were filtered through 
centrifugation filters (0.45 mm pore-size, Millipore Ultrafree, Eschborn, Germany) 
at 3000 × g at 4 °C for 0.5 min at 4 °C. Samples were transferred into an 
autosampler vial for PSP toxin analysis. 

Analysis of multiple lipophilic toxins was performed by liquid chromatography 
coupled to tandem mass spectrometry (LC–MS/MS), as described in Krock et al. 
(2008). In brief, samples were analyzed in the selected reaction monitoring mode 
by single injection and quantified against external standard solutions of DA, DTX-
1, PTX-2, PTX-11 and SPX-1 purchased from the Certified Reference Material 
Program of the IMB-NRC (Halifax, NS, Canada). As no analytical standard of 20-
methyl spirolide G is commercially available, 20-methyl spirolide G values were 
expressed as SPX-1 equivalents assuming a similar molecular response factor. The 
filtrates of the acetic acid extraction were analyzed for PSP toxins after separation 
of target analytes in reverse-phase mode by high-performance liquid 
chromatography with post-column derivatization and fluorescence detection (LC-
FD), according to the method described by Krock et al. (2007). PSP toxins were 
analyzed by single injection and quantified against an external four point 
calibration curve of PSP mix solutions containing (C1/2, GTX1/4, GTX2/3, 
dcGTX2/3, B1, dcSTX, NEO and STX). All toxins were purchased from the 
Certified Reference Material Program of the IMB-NRC (Halifax, NS, Canada). 
Phycotoxin levels in SPATT samplers were expressed as nanograms per SPATT 
and in plankton samples as nanograms per net tow (ng NT-1). A list of monitored 
phycotoxins is given in Table 1.  

Results 

Phytoplankton biomass and occurrence of toxigenic Pseudo-nitzschia 
species  

In GN, phytoplankton biomass (Chl-a) ranged between 0.23-4.45 µg L-1 
throughout the sampling period, with minimum values found during late spring 
(0.23 µg L-1; Dec-14) and early summer (0.39 µg L-1; Jan-15) (Figure 2a). A clear 
correlation between phytoplankton biomass and diatom abundances (Pearson’s 
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correlation: r = 0.97, p < 0.05, n = 11) was found. The maximum values were 
observed during late winter (1.04 µg L-1; Sep-15) and spring (4.45 µg L-1; Oct-15) 
(Figure 2a). This peak was associated with an intense bloom of P. australis that 
occurred in October 2015 in this gulf (Figure 2c). Total diatom abundances (cells 
L-1) peaked in early summer (9.5 x 104 cells L-1, Jan-15) and spring (6.72 x 105 
cells L-1, Oct-15) and attained their minimum in late spring and early winter (Dec-
14 and Jul 15 = 4.4 x 102 cells L-1) (Figure 2a). Pseudo-nitzschia spp. were found 
throughout the annual cycle except for July 2015, from low densities ranging from 
1.1 x 102 cells L-1 in bottle samples and 2 in concentrated net samples to bloom 
densities (6.06 x 105 cells L-1 and 6 in relative scale abundance) (Figure 2c). 
During October 2015 Pseudo-nitzschia spp. were dominant, representing > 90% of 
total diatoms (Figure 2a). The Pseudo-nitzschia species that were detected with the 
highest frequency and abundance during the study period in GN were P. calliantha 
and P. australis, which reached densities of 1.49 x 105 and 4.56 x 105 cell L-1, 
respectively in October 2015 (Figure 2c).  

In GSJ, phytoplankton biomass ranged from 0.74-2.69 µg L-1, throughout the 
annual cycle (Figure 2b). Lowest values were found in late summer (0.84 µg L-1, 
Mar-15) and during winter (0.74 and 0.85 µg L-1, Jul-15 and Aug-15, respectively), 
and they were found to be highest in autumn (2.7 µg L-1, Apr-15) and spring (2.56 
µg L-1, Oct-15) (Figure 2b). No significant correlation between phytoplankton 
biomass and diatom abundances (Pearson’s correlation: r = -0.173, p > 0.05, n = 
10) was found. The highest diatom abundances were detected in late summer (1.93 
x 105

 cells L-1, Mar-15) and spring (7.33 x 105 cells L-1, Nov-15) which did not 
coincide with the highest biomass values found in this gulf, and were lowest during 
the winter (1.73 x 103 cells L-1, Jul-15) (Figure 2b). Pseudo-nitzschia spp. were 
present throughout the period studied (Figure 2d), ranging from 4.4 x 102 to 1.32 x 
104 cells L-1 in bottle samples and from 2 to 4 in concentrated net samples (Figure 
2d). The most abundant species were P. pungens and P. calliantha with maximum 
cell abundances of 1.32 x 104 cells L-1 observed in March 2015 and 1.23 x 104 cells 
L-1 in April 2015, respectively (Figure 2d).  

In general, values of Phae in GN and GSJ showed a pattern similar to that of Chl-a 
levels (Figure 2a and b). In GN, the highest values of Phae (1.22 µg L-1) were 
observed in October 2015 coincident with the bloom of P. australis and the highest 
Chl-a levels registered in this gulf (Figure 2a). Likewise, in GSJ, the highest mean 
values of Phae were detected in April and October 2015 (1.99 and 1.29 µg L-1, 
respectively) coincident with the peaks of Chl-a (Figure 2b).  

Toxigenic phytoplankton species and phycotoxin abundance 

Taxonomic analyses showed the presence of 10 potentially toxic phytoplankton 
species, six of them dinoflagellates: Alexandrium catenella, Dinophysis acuminata, 
D. acuta (only in GSJ), D. tripos, D. caudata (only in GN), Prorocentrum lima 
(only in GN) (Figure 3a and b), and the other four diatoms: Pseudo-nitzschia 
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australis, P. calliantha, P. fraudulenta, and P. pungens (Figure 2c and d). In GN A. 
catenella, the recognized source of PSP in the study area, was observed only during 
summer (Feb-15) and spring (Oct-15) in the net samples, with abundances of 1 and 
2 respectively in the abundance scale (Figure 2a) and was not identified in the 
bottle samples from this gulf. Three out of five phytoplankton samples were 
positive for PSP toxins at low levels. In October 2015 a correlation between A. 
catenella and PSP toxins in phytoplankton samples was found (Figure 3a). The 
genus Dinophysis, the source of PTX toxins in marine waters (Reguera et al. 2014), 
was observed to reach bloom densities of 103 cells L-1 (Maneiro et al. 2000). This 
genus was represented by D. acuminata, D. caudata, and D. tripos, which all have 
been associated with DSP events in the Argentine Sea (Fabro et al. 2015; Gracia 
Villalobos et al. 2015; Turner and Goya 2015) (Figure 3a). The most abundant 
Dinophysis species in bottle samples was D. caudata, which reached a bloom 
density (1.32 x 103 cells L-1) in January 2015 and D. acuminata in net samples in 
February 2015, with an abundance of 2 on the abundance scale (Figure 3a). PTX2 
was detected in 27.27% samples from this gulf and only in February 2015 was 
there a correlation between Dinphysis spp. and PTX2. (Figure 3a). The genus 
Pseudo-nitzschia was found in 90.9% of the phytoplankton samples (Figure 2c). 
Domoic acid was the most abundant toxin, being present in 54.54% of samples, 
with levels between 1.47 and 6,140 ng NT-1 (Figure 2c). The highest DA 
abundances (6,140 ng NT-1) coincided with the bloom of P. australis observed in 
bottle and net samples in October 2015 (Figure 2c). On the other hand only traces 
of 20-methyl spirolide G (20-Me-SPX-G), 13-desmethyl spirolide C (SPX1) and 
pectenotoxin-11 (PTX11) were detected (< LOD (limit of detection), data not 
shown).  

Toxigenic dinoflagellates were the most frequently found in GSJ (Figure 3b). The 
most frequent species found both in bottle and net samples were A. catenella and 
D. tripos that reached maximum cell densities of 4.4 x 102 and 1.76 x 103 cells L-1 
in bottle samples and abundance levels of 2 and 3 in concentrated net samples, 
respectively (Figure 3b). A. catenella was identified in 60% of phytoplankton 
samples, from late autumn to spring 2015 with densities in bottle samples of 2.2 x 
102 and 4.4 x 102 cells L-1 and of 1 and 3 on the abundance scale (Figure 3b). The 
PSP toxin pairs C1/2 and GTX2/3 were detected in all analyzed phytoplankton 
samples, except for the sample collected in January 2016 (Fig. 3b). C1/C2 
abundances ranged between 36.8 and 266 ng NT-1 and GTX2/3 between 23.8 and 
283 ng NT-1 (Figure 3b). Maximum levels of both toxins were detected in mid-
winter (Aug-15, Figure 3b). In this gulf, the presence of A. catenella coincided with 
the detection of PSP toxins in the phytoplankton samples analyzed for PSP toxins 
(Figure 3b). The genus Dinophysis was observed in 50% of samples, with densities 
in bottle samples ranging between 4.4 x 102 and 1.76 x 103 cells L-1 and with levels 
between 1 and 3 in concentrated net samples (Figure 3b). The most frequently 
found Dinophysis species in this gulf was D. tripos (Figure 3b). Two pectenotoxins 
(PTX) were detected in this gulf, PTX2 and PTX11 (Figure 3b). PTX2 was 
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detected in 60% of samples and PTX11 in 20% of them (Figure 3b). A general 
concurrence between the presence of D. tripos and PTX2 was observed (Figure 
3b). In fact, the maximum level PTX2 (634 ng NT-1) was detected with the 
presence of a bloom of D. tripos (1.76 x 103 cells L-1) in April 2015 (Figure 3b). 
The genus Pseudo-nitzschia was observed in 100% of phytoplankton samples, with 
densities ranging between 4.4 x 102 and 1.32 x 104 cells L-1 and with abundances 
between 2 and 4 in concentrated net samples (Figure 2d). Phycotoxin analyses 
showed the presence of DA in all phytoplankton samples, with abundances ranging 
between 1.3 and 1,053 ng DA NT-1 (Figure 2d). 20-Me-SPX-G was detected in 
mid-spring (Nov-15) and early summer (Jan-16), whereas SPX1 was found during 
winter (Jul and Aug-15); both spirolides were found in very low abundances 
(Figure 3b). On the other hand, trace levels of DTX1 were detected (<LOD, data 
not shown). 

Potential zooplankton vectors and phycotoxin content 

Analysis of mesozooplankton samples revealed the presence of primarily 
herbivorous organisms (appendicularians, ascidian larvae, cirripedian larvae, 
echinoderm larvae and mollusc larvae), predominantly omnivorous (copepods 
(copepodites and adults) and euphausiids (larvae, juveniles and adults)) and 
predominantly carnivorous (amphipods (only in GN), cnidarians, chaetognaths, 
decapod larvae, polychaete larvae and fish larvae) species as possible vectors of 
phycotoxins (Figure 4a and b). 

In GN, calanoid copepods dominated the mesozooplankton community throughout 
the annual cycle, except during summer 2015 when appendicularians (Oikopleura 
sp. and Fritillaria sp.) were the dominant group (Figure 4a). In general, the most 
abundant copepod species were the small copepods Ctenocalanus vanus and 
Paracalanus parvus and the large copepods Calanus australis and Calanoides 
carinatus (data not show). Phycotoxin analysis of mesozooplankton samples 
showed the presence of low levels of DA, DTX1, 20-Me-SPX-G and GTX2/3 
(Figure 4a). Domoic acid was the most frequent toxin, being present in almost 50% 
of the mesozooplankton samples (Figure 4a) ranging from 0.71 to 138 ng NT-1. The 
maximum level of DA was detected in April (138 ng NT-1) (Figure 4a) when the 
copepod C. australis was the most abundant species (35.12 ind m-3). In addition, 
PTX2 and dcGTX3 were detected at trace levels (< LOD, data not shown). 

In GSJ, among the zooplankton that could act as potential phycotoxin vectors, 
calanoid copepods were the most abundant group throughout the annual cycle 
(Figure 4b). The most abundant species were C. vanus and P. parvus among the 
small copepods and the large abundant calanoids were C. carinatus and C. 
australis (data not shown). Analysis of phycotoxins revealed the presence of DA, 
DTX1, PTX2, GTX2/3 (Figure 4b) and trace levels of 20-Me-SPX-G and dcGTX3 
(< LOD, data not shown). DA was the most frequent toxin, being present in 100% 
of the mesozooplankton samples ranging from 0.69 to 64 ng NT-1 (Figure 4b). This 
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latter value was detected in May 2015 when C. carinatus was the dominant specie 
in mesozooplankton community (271.97 ind m-3). DTX1 was only detected in May 
2015 and was the phycotoxins most abundant in the mesozooplankton (Figure 4b). 
The other phycotoxins only were detected sporadically and at low levels on a few 
sampling dates (Figure 4b). 

Adsorption of phycotoxins by SPATT (Solid Phase Adsorption Toxin 
Tracking) samplers 

Domoic acid was present in all SPATT samplers from GN and all but one (Jan-15) 
from GSJ at low levels (Table 2). The maximum levels both in GN and in GSJ 
were found during spring (Dec-15 and Sep-15, respectively) (Table 2). In contrast, 
no PSP toxins or its analogs were detected in SPATT samplers from GN and GSJ 
during the study period. 

Discussion and conclusions 

This study represents the most complete analysis carried out to date on the 
dynamics of phycotoxins produced by phytoplankton organisms and their 
accumulation in higher trophic levels both in GN and GSJ. It is also important to 
highlight that this is the first study in which SPATT (Solid Phase Adsorption Toxin 
Tracking) samplers were used to determine the phycotoxins dissolved in the water 
column in both GN and GSJ in addition to sporadic phytoplankton sampling and 
toxin determination. SPATT samplers are complementary to toxin determinations 
in plankton, because SPATT, despite not being quantitative in a strict analytical 
sense, provides integral data on toxin occurrence over an extended time period and 
therefore capture important toxin occurrences between individual plankton 
samplings. It is noteworthy that only DA was detected on SPATT samplers. This 
clearly indicated that DA-producing Pseudo-nitzschia species constitute a regular 
component of the phytoplankton communities in GSJ and GN. In contrast, the 
absence of other phycotoxins on the exposed SPATT samplers indicate that the 
toxic species found in plankton samples, did not dominate the plankton community 
over the study period. Nevertheless, this does not imply that these species might 
not form blooms under favorable conditions. In order to achieve a higher temporal 
resolution of toxic species and their associated toxins in the area, future 
investigations should consider the replacement of these samplers weekly. This 
would improve our knowledge of the phycotoxins present in North Patagonian 
gulfs, their persistence in the column water and frequency of the toxic episodes. 

Both in GN and GSJ, only the PSP toxins C1/2 and GTX2/3 were found. Contrary 
to previous studies carried out in these gulfs (Reyero et al. 1998; Andrinolo et al. 
1999a), our findings showed higher levels of C1/2 than of GTX2/3 several times in 
both GN and GSJ. Both studies (Reyero et al. 1998; Andrinolo et al. 1999a) found 
trace levels of C1/2 in field samples from GN and GSJ or these toxins were not 
detected in phytoplankton samples. Interestingly, those studies have documented 
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that the profiles of PSP toxins were dominated almost exclusively by GTX1/4. This 
dominance of GTX1/4 in field samples from GN and GSJ was also found in a 
study carried out during the winter and spring (Cadaillón 2012). Therefore, those 
results also differ from the findings found in the present study in GN and GSJ for 
the same seasons. 

In addition, previous studies have reported the absence of C1/C2 or lower levels 
than those of the GTX2/3 in natural populations of A. catenella (formerly described 
as A. tamarense) from the Argentine Sea (Carreto et al. 2001; Montoya et al. 2010; 
Krock et al. 2015). According to these authors, the profiles of the PSP toxins 
obtained from the analysis of field samples of A. catenella were dominated by the 
GTX2/3 epimers, and even Krock et al. (2015) found only GTX2/3 toxins and trace 
amounts of STX. Notwithstanding Montoya et al. (2010) and Krock et al. (2015) 
reported the presence of elevated levels of C1/2 toxins followed by GTX1/4, in 
culture strains of A. catenella (described as A. tamarense) that were isolated from 
the same area where the natural populations of this dinoflagellate were sampled 
during their studies. These differences in C1/2 levels between natural and cultured 
strains of A. catenella cells found by these and others authors (Oshima et al. 1992; 
Anderson et al. 1996) led to the hypothesis that the production of toxin by this 
dinoflagellate changes according to whether it is studied in natural or laboratory 
conditions (Andrinolo et al. 1999b; Montoya et al. 2010). However, the results 
obtained in our study show that this dinoflagellate is able to synthesize C1/2 in 
natural conditions. Another possible explanation for the absence of C1/2 in field 
samples, could be related with the time that elapses between the collection of the 
samples at the study sites and the phycotoxin analyses in the laboratory, which 
would be sufficient for the chemical conversion of N-sulfocarbamoyl toxins (C 
toxins) to gonyautoxins (GTXs) (Santinelli et al. 2002; Krock et al. 2015). In line 
with this, Krock et al. (2015) indicated that the detection of only GTX2/3 toxins in 
field samples could be associated with the transformation of C1/2 toxins, which 
could have occurred within the time (three months) between the collection of 
plankton samples in the study area and their analysis in the laboratory. However, in 
the present study this period of time sometimes was greater (between 1 and 7 
months). Therefore, it should not be ruled out that the differences between the 
profiles of PSP toxins observed here and in previous studies carried out in 
Argentine Sea, could be due to an unexplored diversity of PSP-producing 
organisms in the South West Atlantic. 

With respect to toxicity it has been demonstrated that GTXs have an intermediate 
toxicity compared to STX, while the toxins of the sulfocarbamoyl group (B and C 
toxins) are the least toxic ones (Kwong et al. 2006). But it must be taken into 
account that the N-sulfocarbamoyl group is chemically labile and the sulfonyl 
group is easily cleaved off at low pH and/or metabolic activity of the ingesting 
organisms, which converts the almost non-toxic N-sulfocarbamoyl B- and C-toxins 
into the more toxic carbamoyl toxins such as gonyautoxins (GTX) (Krock et al. 
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2007). Via this mechanism a priori low toxic Alexandrium blooms can become 
more toxic through ingestion and biotransformation by vectors.  

In both GN and GSJ, only one sample of mesozooplankton was positive for PSP 
toxins in each gulf. In both cases, low levels of the epimers GTX2/3 were detected. 
The absence of C toxins in these samples is in line with the biotransformation of N-
sulfocarbamoyl toxins as discussed above. In addition, decarbamoyl toxin dcGTX3 
was detected in five samples (3 from GN and 2 from GSJ) at trace levels (<LOD = 
15 ng dcGTX3 NT-1). As A. catenella has never been reported to produce 
decarbamoyl toxins (Montoya et al. 2010; Krock et al. 2015), the detection of 
dcGTX3 in mesozooplankton can been seen as an indication that copepods (most 
abundant group among the potential toxin vectors in GN and GSJ) also 
decarbamoylate carbamoyl toxins as it has been described for filter feeding 
mollusks (Artigas et al. 2010; Turner et al. 2013). At this point the observation of 
decarbamoyl toxins in copepods is only a first indication and the hypothesis of 
decarbamoylation of PSP toxins in zooplankton needs to be confirmed by feeding 
experiments.  

Grazing experiments have documented that copepods select their prey based on 
levels of PSP toxins, feeding on dinoflagellates when the levels of toxins present in 
them were low, and when the concentrations of toxins in the dinoflagellates 
increased the copepods fed on non-toxic dinoflagellates (Turriff et al. 1995; Shaw 
et al. 1997; Teegarden 1999; Guisande et al. 2002). This selective behavior of 
copepods towards non-toxic dinoflagellates, could be an explanation for the 
absence of PSP toxins recorded in the present study in the mesozooplankton 
samples dominated by copepods species. Evidence of this could be the presence of 
PSP toxins in the phytoplankton samples analyzed, and the closure of the shellfish 
fisheries from the detection of PSP toxins in the study area during the period 
analyzed in the present study (Harmful Algal Bloom and Shellfish Toxicity 
Monitoring Program). By contrast, several investigations have reported that 
mesozooplankton, and especially copepods, are capable of feeding on toxic 
dinoflagellate species (Turrif et al. 1995; Turner et al. 2000; Teegarden et al. 2001; 
Durbin et al. 2002; Doucette et al. 2006) and accumulate PSP toxins produced by 
them (White 1981; Turriff et al. 1995; Lincoln et al. 2001; Bargu et al. 2002; 
Durbin et al. 2002; Hamasaki et al. 2003; Teegarden et al. 2003; Doucette et al. 
2006). Therefore, future studies should analyze, through grazing experiments, 
whether the dominant copepod species both in GN and GSJ are the key vector for 
the transfer of PSP to higher trophic level organisms. 

In addition to the transfer of hydrophilic PSP toxins, this study also addressed the 
transfer of lipophilic toxins in the marine food web. Only one study showed the 
association between Dinophysis spp. and DSP toxins in shellfish from GN and GSJ 
by the analysis of samples collected by the Harmful Algal Bloom and Shellfish 
Toxicity Monitoring Program as well as in phytoplankton samples collected in 
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February 2005 in these gulfs (Gracia Villalobos et al. 2015). In agreement with our 
results, Gracia Villalobos et al. (2015) found that the DSP toxin profiles from 
phytoplankton samples consisted mostly of PTX2 and PTX11. These authors 
observed a clear association of D. tripos with PTX2 and PTX11, which is in 
agreement with our results from GSJ and -to a lesser extent- GN. Our findings 
support the hypothesis that D. tripos could be the major PTX toxin producer 
species in North Patagonian gulfs (Gracia Villalobos et al. 2015). During the study 
period, PTX2 was detected more frequently and in higher levels in GSJ than in GN. 
The highest level of this toxin of phytoplankton in GSJ were recorded in April (634 
ng PTX2 NT-1), coincident with a bloom of D. tripos (1.76 x 103 cells L-1), and the 
only detection of PTX2 in the mesozooplankton samples (26 ng PTX2 NT-1). 
Although the PTX2 level found in the mesozooplankton sample in April was low, 
this represents the first detection of PTX2 in the mesozooplankton, mostly 
copepods, in the study area reported to date. Likewise, trace levels of this toxin 
were detected in mesozooplankton from GN. Therefore, these findings 
demonstrated that PTX toxins are transferred and accumulated by copepods in the 
study area. In agreement with this, several researchers have demonstrated that the 
copepods ingest toxic species of Dinophysis during natural blooms of these 
dinoflagellates (Jansen et al. 2006; Kozlowsky-Suzuki et al. 2006) and accumulate 
their toxins (Setälä et al. 2009). 

Diatoms of the genus Pseudo-nitzschia were the potentially toxic species most 
frequently found in these gulfs during the studied annual cycle, with concentrations 
up to 4.56 x 105 cells L- 1. Consequently, DA was the phycotoxin that was most 
abundant and transferred to upper trophic levels in both gulfs. The highest DA 
level recorded in phytoplankton samples was detected concurrently with the bloom 
of P. australis in GN in October 2015. The attribution of toxicity to a species 
usually involves the proof of the presence of toxins in cultures or isolated cells 
(Álvarez et al. 2009). However, in the present study the identification of a bloom of 
P. australis in net tow samples and the high cell densities of this species observed 
in bottle samples in GN in October, suggest that this species was the main producer 
of the highest levels of DA. In the Argentine Sea P. australis has been suggested to 
be the major producer of DA (Almandoz et al. 2017). Furthermore, P. australis is 
considered to be a strong DA producer (12-37 pg cell-1) (Bates 2000; Kotaki et al. 
2000) and for this reason it has been reported to be the most toxic species of the 
genus Pseudo-nitzschia (Trainer et al. 2000) and primarily responsible for ASP 
problems worldwide (Bates 2000; Fire et al. 2010). Therefore, the simultaneous 
detection of the highest levels of DA and major densities of P. australis in the 
Argentine Sea (Negri and Inza 1998; Sastre et al. 2001; Negri et al. 2004; 
Almandoz et al. 2007, 2017) are worth being highlighted, because proliferation of 
this species may pose a risk for fishery activities in the region that are focused on 
Tehuelche scallop (Aequipecten tehuelchus) in GSJ (Orensanz et al. 2007) and on 
several species of marine animals that feed and reproduce in both gulfs. 
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The present findings indicate that calanoid copepods were the main potential 
vectors for the trophic transfer of DA both in GN and GSJ during the studied 
period. Evidence of this is the dominance of this group among the potential 
consumers of Pseudo-nitzschia spp. throughout the year in both gulfs, including 
those months in which the highest levels of DA were recorded in phytoplankton 
and mesozooplankton samples. In the present study, C. vanus was the calanoid 
copepod that coincided with highest DA concentrations during April, June and 
October 2015 in the plankton (phyto- and mesozooplankton) samples from GN. In 
GSJ the highest levels of DA were recorded in the plankton samples during January 
2015, May 2015 and January 2016 when C. australis, C. carinatus and Acartia 
tonsa were the most abundant species, respectively. These copepod species have 
been defined as herbivores or omnivores (Boltovskoy 1981, 1999; Lombard et al. 
2010; D'Agostino 2013; Antacli et al. 2014 and reference herein), therefore they 
could act as effective phycotoxins vectors, either by the direct consumption of DA-
producing species or by ingestion of organisms of lower trophic levels 
contaminated with toxins. Consequently, vectorial intoxication of pelagic food 
webs could occur either by the grazing of copepods on toxic microalgae and also 
by predation of organisms contaminated with DA. In addition, taking into account 
that Phae are related to degradation of Chl-a due to grazing by zooplankton, the 
detection of the highest levels of Phae together with the highest abundances of 
Pseudo-nitzschia spp. in both gulfs (including the bloom of P. australis and the 
highest levels of DA observed in phytoplankton samples in GN), show other 
evidence that copepods were the main vector of DA through the food web.  

Although spirolides have been previously detected in the Argentine Sea (Almandoz 
et al. 2014; Turner and Goya 2015; Fabro et al. 2017; Krock et al. 2018), in this 
study we report for the first time the presence of SPX1 and 20-Me-SPX-G in 
plankton (phyto- and mesozooplankton) samples from GN and GSJ. However, 
Alexandrium ostenfeldii the only known source of spirolides (Cembella et al. 2001; 
Franco et al. 2006) was not detected in phytoplankton samples from this study. 
Until now, A. ostenfeldii was only found in the Beagle Channel, southern 
Argentina (Almandoz et al. 2014) and in Argentinean slope waters (Fabro et al. 
2017; Guinder et al. 2018) and it has not been previously observed in the Northern 
Patagonian gulfs. However, the identification of these spirolides in phytoplankton 
samples suggests the presence of A. ostenfeldii in the study area. On the other hand, 
the detection of 20-Me-SPX-G in mesozooplankton is evidence that zooplankton, 
mainly copepods, accumulate these neurotoxins. It has been demonstrated that 
spirolides produce strong neurotoxic symptoms when they are administrated to 
laboratory rodents (Guéret and Brimble 2010). Therefore, even when low levels of 
spirolides were detected in the present study, the presence of SPX1 and 20-Me-
SPX-G in plankton indicates that it is important for monitoring programs to assess 
the transfer of these neurotoxins through food webs. This will generate knowledge 
about the impacts of spirolides exposure in marine fauna as well as on human 
health by consumption of seafood contaminated with these phycotoxins.  
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In the present study, dinophysistoxins, DTX1, was recorded for the first time in 
mesozooplankton samples from the Argentine Sea. To date, the presence of these 
phycotoxins had been demonstrated only in phytoplankton and shellfish from the 
Argentine Sea (Gracia Villalobos et al. 2015; Fabro et al. 2018; Krock et al. 2018). 
Although dinophysistoxins were absent in phytoplankton samples from GN and 
GSJ, the presence of DTX1 in mesozooplankton samples indicate that toxigenic 
strains of P. lima were present in the phytoplankton and were consumed by the 
mesozooplanktonic organisms.  

Our findings indicate that there are transfers of phycotoxins to higher trophic levels 
in North Patagonian gulfs. In line with this, the present study highlights the need 
for understanding the mechanisms of transfer of phycotoxins from phytoplankton 
producer-species to higher trophic levels in the study area. The important role that 
copepods play in pelagic food webs of Northern Patagonian gulfs (Hoffmeyer et al. 
2010; D’Agostino et al. 2016, 2018) justifies the need to conduct studies under 
controlled conditions that evaluate the grazing of main copepod species on 
toxigenic microalgae species present in the area. This research will allow one to 
know if copepods select among toxic and nontoxic phytoplankton species, as well 
the rate and the time of phycotoxin retention in their body. Likewise, future studies 
should focus on phycotoxin content of copepod body tissues, as well as to know if 
there are biotransformations of the toxins by copepods following ingestion of toxic 
microalgae. 
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Table 1: Toxins screened by LC-MS/MS 

Chemical 
classification, and 
polarity 

Syndrome Toxin 
group  

Toxins Mass 
transition 

(m/z) 

hydrophilic, amino acid  ASP DA domoic acid 312>266 

312>161 

lipophilic, cyclic imine  

 

SSP GYM gymnodimine A 

gymnodimine B 

gymnodimine C 

gymnodimine D 

12-methyl gymnodimine A 

16-desmethyl gymnodimine 
D 

508>490 

526>508 

526>508 

524>506 

522>504 

510>492 

SSP SPX spirolide A 

spirolide B 

spirolide C 

spirolide D 

13-desmethyl spirolide C 

13-desmethyl spirolide D 

spirolide G 

20-methyl spirolide G 

692>150 

694>150 

706>164 

708>164 

692>164 

694>164 

692>164 

706>164 

SSP PnTx pinnatoxin E 

pinnatoxin F 

pinnatoxin G 

784>164 

766>164 

694>164 
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lipophilic  

 

 GD goniodomin A 786>607 

DSP 

 

OA okadic acid  822>223 

DTX dinophysistoxin-1 

dinophysistoxin-1b 

di-hydrodinophysistoxin-1 

dinophysistoxin-2 

836>237 

836>237 

638>237 

822>223 

AZP  AZA azaspiracid-1 

azaspiracid-2 

azaspiracid-3 

842>824 

856>838 

828>810 

 PTX pectenotoxin-2 

pectenotoxin-2 seco acid 

pectenotoxin-11 

pectenotoxin-12 

876>213 

894>213 

892>213 

874>213 

 YTX yessotoxin 

45-hydroxy yessotoxin 

homo yessotoxin 

45-hydroxy homo 
yessotoxin 

1160>965 

1176>981 

1174>979 

1190>977 
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Table 2: Domoic acid (DA) adsorbed by SPATTs (Solid Phase Adsorption Toxin Tracking) in Golfo Nuevo 
(GN) and Golfo San José (GSJ). ND = no detected 

GN GSJ 

Date DA ng/SPATT Date DA ng/SPATT 

Jan-15 3.20 Jan-15 ND 

Feb-15 5.45 Apr-15 6.47 

Apr-15 10.77 May-15 3.61 

Jun-15 9.90 Jul-15 5.34 

Jul-15 6.24 Aug-15 12.16 

Sep-15 5.82 Sep-15 17.89 

Oct-15 6.59 Oct-15 9.29 

Nov-15 5.02 Nov-15 17.46 

Dec-15 71.91 Jan-16 16.33 

 

  

This article is protected by copyright. All rights reserved. 



 

A
cc

ep
te

d 
A

rt
ic

le
 

Figures 

Figure 1: Site locations of sampling in Golfo Nuevo and Golfo San José (S1, S2, S3). 〈〉
SPATTs (solidphase adsorption toxin tracking). 

 
 
Figure 2: Seasonal variability in Golfo Nuevo and Golfo San José of (a and b) total diatoms; 
total cell densities of Pseudo-nitzschia species; chlorophyll a (Chla-a) and phaeopigments 
(Phae), and (c-d) relative cell abundances of Pseudo-nitzschia species, and levels of domoic 
acid (DA). For data presentation the abundance of Pseudo-nitzschia spp. identified in bottle 
samples were standardized in the relative abundance scale (see Gracia Villalobos et al., 
2015). 
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Figure 3: Relative cell abundances of toxigenic dinoflagellates and phycotoxins levels 
detected in Golfo Nuevo (a) and Golfo San José (b). For data presentation the abundance of 
dinoflagellates identified in bottle samples were standardized in the relative abundance scale 
(see Gracia Villalobos et al., 2015). C = Nsulfocarbamoyl toxins. GTX = Gonyautoxins. PTX = 
Pectenotoxins. SPX = Spirolides. 

 
 
Figure 4: Abundances (ind m-3) of potential vectors of phycotoxins and phycotoxins levels 
present in mesozooplankton samples from Golfo Nuevo (a) and Golfo San José (b). Domoic 
acid (DA) data from June-December 2015 in GN and July-November 2015 in GSJ were taken 
from D’Agostino et al. (2017). C = Nsulfocarbamoyl toxins. GTX = Gonyautoxins. PTX = 
Pectenotoxins. SPX = Spirolides. DTX = Dinophysistoxins. Note that abundances (ind m-3) is 
displayed on a logarithmic scale. 
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